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Abstract: Designing a control architecture for au-
tonomous robots able to reason and to act in their
environment to accomplish tasks, and to adapt in real
time to the actual execution context, raises major
questions in the field of control theory, knowledge-
based and reasoning systems, as well as software archi-
tecture. We propose in this paper an approach to build
such systems, based on the experiences and contribu-
tions of two laboratories, INRIA and LAAS-CNRS.

1 Introduction

It is known that the necessity of designing truly au-
tonomous robots comes from highly demanding appli-
cations (undersea intervention, planetary exploration,
working in nuclear plants, etc.). Since, in such appli-
cation fields, any repairing intervention is excluded,
the need for a total technological autonomy is obvious:
energy, computing facilities, sensors... Furthermore,
the dialogue with an end-user is reduced to mission
specification and, when possible, to very few high-level
communications (for example teleprogramming). This
means that an almost total operational autonomy is
also required, especially in the domains of perception,
decision and control.

This search for operational autonomy raises major ques-
tions in the fields of control theory, knowledge-based
and reasoning systems, as well as architecture. How-
ever, the specificity of the application domain gener-
ates particular constraints which may sometimes be
felt as antagonistic according to the concerned scien-
tific domain:

1) The need for adaptivity in time and space. This
leads to the necessity of on-line planning:

o because of the incompleteness of the knowledge,

or of existing uncertainties on measurements. This

is for example the case when the environment is
gradually discovered by the robot;

e because of technical limitations. In most cases,
the on-board storage capabilities make impos-
sible to keep in memory all possible execution
courses.

2) The need for reliability. Since no intervention is
possible in general, it is necessary to be sure, as far as

possible, that the robot will work satisfactorily before
1ts launching. This implies:

¢ the necessity of ensuring that every step down to
the real-time implementation of the tasks han-
dled by a planner is correct, takes the expected
time and that possible conflicts may be avoided;

e to be able to verify the largest possible set of
assertions about the mission: nominal behavior,
emergency procedures, etc.

Up to now, and in most of the architectures for au-
tonomous robots, these requirements were not consid-
ered as compatible: item 2 needs an exhaustive knowl-
edge of all the handled entities and of the way they are
organized. Determinism and synchrony assumption
are often used. Analysis of continuous-time aspects is
also required. This may be clearly not compatible with
issues of item 1. Conversely, item 1 requirements make
difficult non-trivial verifications and are inappropriate
to take into account automatic control aspects.

The aim of this paper is to present and illustrate some
ideas which would constitute the generic basis of an ar-
chitecture allowing to take into account as far as pos-
sible the previous requirements. The challenge may
here be understood as the feasibility of designing an
autonomous robot endowed with capacities of plan-
ning its own actions in order to accomplish specified
tasks while having a so-called reactive or reflex behav-
ior with respect to its environment. For that purpose,
we emphasize design aspects at two levels in the robot
architecture:

e the functional level: it concerns the design, vali-
dation and implementation of control loops asso-
ciated with a local behavior, called robot-tasks;

e the decisional level: it relies on a layered plan-
based architecture and provides with a suitable
framework for the interaction between delibera-
tion and action, as defined later.

The interest of this structure is that on-line plan-
ning will be allowed at the last level, without ex-
cluding reactivity or sensor-based reflex actions at the
first one. Furthermore, verification aspects will be
made possible almost from implementation up to high



level mission specification when models based on state-
transitions systems are used.

The paper is organized as follows: in the next section,
we present the concepts underlying our approach to
the design of a intelligent robot. Then, in section 3,
we detail the functional level, and in section 4 the deci-
sional level. An example of the proposed architecture
is finally given in section 5.

2 Basic Principles

The proposed approach is based on a few simple ideas,
an overview of which we give in this section.

2.1 At the Functional Level

A key question is ”What is an action?” In other words,
what are the characteristics of the smallest entity of
this type handled by the decisional level? A partial
response lies in the concept of reactivity, widely used,
sometimes wrongly. The theory of discrete-event sys-
tems provide us with a rather precise definition: a
synchronous reactive system produces a set of output
events deterministically and instantaneously upon the
occurrence of a set of input events. Such an emission
of signals may thus be considered as an internal action,
which will perhaps lead to a robot action, i.e. a dedi-
cated motion. This last may therefore be started by an
event occurrence, but it still remains to describe what
this motion will be. A second point is that, clearly,
other types of actions may also be triggered on event
reception at a higher level: sensor activation, planning
requirement, asking for operator intervention, etc. We
thus already conclude: 1- that a too general concept of
action is not the adequate one at the functional level;
2- that the specification in terms of reactivity only is
necessary but not sufficient.

Let us now come to the problem of specifying and con-
trolling a robot action. This may be stated as a control
problem which may be efficiently solved in real-time
using adequate feedback control loops. Since it is a
powerful and mathematically rigorous tool, we believe
that control theory should be used as far as possible.
In particular, sensor-based control loops are a nice way
of performing motions in continuous interaction with
the environment, called reflex actions. Furthermore,
it will be seen that implementation issues are easily
handled within this framework. This is why we de-
fine the key entity at the functional level as a kind of
event-driven reflex action, called robot-task.

2.2 At the Decisional Level

The investigation on the interaction between deliber-
ation and action is certainly a key aspect in the de-
velopment of intelligent agents and particularly au-
tonomous robots. Deliberation here is both a goal-
oriented planning process wherein the robot antici-
pates its actions and the evolution of the world, and
also a time-bounded context dependent decision for a
timely response to events.

While there are high emergency situations where a
first and immediate (reflex) reaction should be per-
formed, such situations often require last resort safety

actions. They can often be avoided if the agent is able
to detect events which allow it to predict such situa-
tions in advance. Note that this is first a requirement
for sensors and sensor data interpretation. Being in-
formed in advance and consequently having more time
to deliberate, the agent should be able to produce a
better decision. Note also that such a capacity is gen-
erally ignored in ”purely” reactive approaches where
the robot makes uses only of ”"short” range sensors
giving it data on its immediate environment.

Acting is permanent, and planning should be done
in parallel: an intelligent agent should not neglect
any opportunity to anticipate (i.e, to plan). How-
ever, since planning requires an amount of time usu-
ally longer than the dynamics imposed by the occur-
rence of an event, the paradigm that we shall develop
consists in controlling the functional level by a delib-
erative system that has a bounded reaction time for
a first response. This level is composed of a plan-
ner which produces the sequence of actions necessary
to achieve a given task or to reach a given goal, and a
supervisor which actually interacts with the functional
level, controls the execution of the plan and reacts to
incoming events.

The decisional level may not be unique: a planner usu-
ally requires abstract models, and its representations
of actions do not embed the actual interactions with
the environment. For example, a planner would use
a model in which situations are described in terms of
predicates and general topology (e.g. “connects (D1,
R1, R2)”) without taking into account the geometry
of the environment. Furthermore, there may be sev-
eral ways to execute a given action (as defined at the
high-level planning system) depending on the actual
execution situation. Hence, there may be several deci-
sional layers the lower ones manipulating representa-
tions of actions which are more procedural and closer
to the execution conditions.

Let us now present functional and decisional levels
more deeply.

3 The Functional Level

As previously evoked, this level mainly relies on the
concept of robot task. This keystone concept is the
minimal granule to be handled by the decisional level,
while it is the object of maximum complexity to be
concerned by the control aspects. It characterizes in
a structured way a closed loop control scheme, the
temporal features related to its implementation and
the management of associated events. Fully described
in [19], it is defined in a formal way as follows:

A Robot-Task is the entire parametrized specification:
o of an elementary servo-control task, i.e. the activa-
tion of a control scheme structurally invariant along
the task duration;

o and of a logical behavior associated with a set of sig-
nals liable to occur previously to and during the task
execution.

Let us give some details on these two aspects.



3.1 Design and Implementation of a Ser-
voing Task

A first step consists in specifying the continuous-time
control law associated with a dedicated robot-task. In
the case of a two-wheeled mobile robot, it is for exam-
ple the expression of the control which, given desired
and actual configuration at time ¢, computes the wheel
velocities or the driving torques to be applied. Usu-
ally, such a scheme may be split in several functional
modules (position estimation, trajectory generation,
feedback control...) which exchange data.

Now this description should take into account imple-
mentation issues: discretization, variable quantization,
delays, computation times, periods, communication
and synchronization between the involved processes.
This is done by defining the basic entity called Module-
Task, which is a real-time task used to implement an
elementary functional module of the control law.

Since the Module-Tasks may, possibly, be distributed
over a multiprocessor target architecture, they com-
municate using message passing and typed ports. A
set of 8 communication and synchronization mecha-
nisms is provided (see [19]). Dedicated simulation
tools allow to finely validate this design step.

3.2 The Event-based Behavior

In a way, a Robot Task is atomic for the decisional

level. However it follows an internal sequencing which

has not to be seen in normal (failure-free) circum-

stances. Nevertheless the Robot Task has also to ex-

change information with the supervisor, described later,
which synchronizes and /or conditions their activation.

In the present approach, these two aspects are con-

sidered in a single way. Thus the Robot Tasks can

be considered as reactive systems and can be pro-

grammed using the synchrony assumption ([5]): sig-

nals are emitted from and to a finite state automaton

which specifies the Robot-Task behavior. This au-

tomaton, called RTA, is encoded using the synchronous
language ESTEREL ([5]).

The signals are emitted by specific module tasks, called
”observers”. They are strongly typed:

e the pre-conditions. Their occurrence is required for
starting the servoing task. They may be pure synchro-
nization signals or signals related to the environment,
usually obtained through a sensor

o the exceptions. They are exclusively emitted by ob-
servers in case of failure detection.

e the post-conditions. They are either logical synchro-
nization signals emitted by the RTA itself in case of
correct termination, or signals related to the environ-
ment.

The treatments associated with pre- and post-conditions

are quite simple and not described here. The excep-
tion processing is more specific:

o type 1 processing: the reaction to the received excep-
tion signal is limited to the modification of the value
of at least one parameter in the module-tasks (gain
tuning, for example).
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Figure 2: Paradigm for the Integration of Planning
and Execution

o type 2 processing: the exception requires the activa-
tion of a new Robot-Task. The current one is therefore
killed. When the ending is correct, the nominal post-
conditions are fulfilled. Otherwise, a specific signal is
emitted towards the supervisor, which knows the re-
covering process to activate (see later).

e type 3 processing: the exception is considered as fa-
tal. Then, everything is stopped.

Design of a Robot Task: An object-oriented ap-
proach is used for design and modelling of robot-tasks.
Based on this approach, a dedicated human-machine
interface has been realized. It allows to easily instan-
tiate all the objects required in a given robot task and
to specify the values of temporal attributes. Graphic
facilities are also provided. Figure 1 gives an example
of a robot task which consists in making park a mo-
bile robot. To conclude on this aspect, let us underline
that the ESTEREL synchronous code is automatically
generated from the object specification. All existing
verification tools may then be used on this code with-
out any need for the user to learn the language.

4 The Decisional Level

4.1 A Paradigm for Integrating Delibera-
tion and Action

We summarize here the paradigm we have adopted
in order to take into account the different attributes
discussed in section 2.2.

A decisional level is composed of two independent en-
tities: a planner and a supervisor (figure 2).

The Planner is given a description of the state of the
world and a goal; it produces a plan. One criterion
that should be considered when speaking about plan-
ning is the “quality” of the produced plan which is
related to the cost of achievement of a given task or
objective (time, energy, ... ), and to the robustness of
the plan, i.e., its ability to cope with non nominal sit-
uations. This last aspect is one of the motivations of
our approach: besides providing a plan, the planner
should also provide a set of execution ”modalities”.
These execution modalities are expressed in terms of:
e constraints or directions to be used by a lower plan-
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Figure 1: A robot-task example for parking a mobile robot

ning level;

e description of situations to monitor and the appro-
priate reactions to their occurrence; such reactions are
immediate reflexes, “local” correcting actions (with-
out questioning the plan), or requests for re-planning.

These ”"modalities” provide a convenient (and com-
pact) representation for a class of conditional plans.
However, the generation of ”modalities” still remains
to be investigated: we have no generic method yet
for integrating modalities production in a planning
algorithm. However, it is possible to produce useful
modalities in a second step by performing an analy-
sis of the plan as produced by the a first ”classical”
planning step. Such an analysis can be based on a
knowledge of the limitations of the planner itself and
of the world description it uses, as well as on domain
or application specific knowledge (see section 5 for ex-
ample).

The Supervisor interacts with the other layers and
with the planner. The other layers are viewed as a
set of processes which exchange signals with the su-
pervisor. These processes correspond to the actions
of the agent as well as events associated with environ-
ment changes independent from robot actions.

These processes are under the control of the supervi-
sor which has to comply with their specific features.
For example, a process representing a robot motion,
cannot be cancelled instantaneously by the supervisor:
indeed, such a process has an "inertia”. The supervi-

sor may request a stop at any moment during execu-
tion; however, the process will go through a series of
steps before actually finishing.

The simplest way to represent such processes are finite
state automata (’I’E‘SA). More elaborate representations
such as temporized processes should be investigated.

In the FSA we use, at any moment:

o the set of allowed external signals correspond to all
the actions that can be taken by the supervisor;

e similarly, the set of possible internal signals corre-
spond to all environment changes that could be per-
ceived by the supervisor.

The activity of the supervisor consists in monitoring
the plan execution by performing situation detection
and assessment and by taking appropriate decisions
in real time, i.e., within time bounds compatible with
the rate of the signals produced by the processes and
their possible consequences (Figure 3).

The responsibility of ”closing the loop” at the level of
plan execution control is entirely devoted to the super-
visor. In order to achieve it, the supervisor makes use
only of deliberation algorithms which are guaranteed
to be time-bounded and compatible with the dynam-
ics of the controlled system. Indeed, all deliberation
algorithms which do not verify this property are ac-
tually performed by the planner upon request of the
supervisor.

This execution control is done through the use of the
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plan and its execution modalities, as well a set of
situation-driven procedures embedded in the supervi-
sor and independent of the plan. These procedures are
predefined (at design phase), but can take into account
the current goal and plan when they are executed, by
recognizing specific goal or plan patterns.

4.2 A Generic Architecture

We propose here below an architecture which is adapted
to a class of autonomous robot applications where it
is possible (and suitable) to describe the world model
in an abstract symbolic level, and where the robot is
given goals expressed in terms of a state. However,
even though there is sufficient information to build
and maintain such a description, this does not mean
that detailed information is also available. Typical
cases are “intervention robots” that have to operate
in an ill-known environment discovered by the robot’s
sensors and on which only incomplete and uncertain
previous knowledge may exist. Examples are disaster
intervention (e.g., the AMR-EUREKA [16] project) or

planetary rovers (e.g., VAP1[12].

The global system architecture we propose is orga-
nized into three levels representing two decisional lay-
ers and a functional level (figure 4). The two upper
levels are built with the supervisor-planner paradigm.
The higher level uses a temporal planner. The sec-

1VAP: Autonomous Planetary Vehicle, a project of the
French national space agency CNES.
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Figure 4: Global Architecture

ond level receives tasks that it transforms into scripts
(procedures) composed of elementary robot actions,
and supervises script execution while being reactive
to asynchronous events and environment conditions.
Planning at this level is a “refinement” using domain
or task specific knowledge: it does not use a general
planner.

The functional “execution” embeds a set of elementary
robot tasks implementing task-oriented servo-loops as
well as a set of robot primitive functions (motion plan-
ner, perception, etc...).

5 An Instance of the Architecture

We present next an example of the architecture which
complies with the different properties discussed in the
previous sections.

At The Mission Planning Level: For the planner,
we have developed a temporal planning system called
IzTeT (Indexed Time Table) [11, 9] which can reason
on symbolic and numeric temporal relations between
time instants.

A Plan, as produced by IxTeT, is a set of partially or-

dered tasks, together with temporal constraints such

as minimal and maximal expected durations, and syn-

ghronization with expected external events or absolute
ates.

In the current implementation, the temporal plan su-
pervisor is provided with automaton classes correspond-
ing to the execution of the different actions which
may be included in the plan. Whenever an action is
started an automaton of the associated class is instan-
tiated. The “internal” events, as well as the “external”
events, are represented as time-stamped transitions in
the world model as it is used by the temporal planner.

At the task-planning level: At this level, we use C-
PRS [15] which provides a suitable framework for goal-
driven as well as situation-driven deliberation processes.
Indeed, PRS implements script (called KA in PRS) se-



lection and goal posting mechanisms. Planning can be
performed through context dependent goal decompo-
sition; situation-driven reaction can be performed by
triggering K As according to the world model content.

At the executive level: This level is purely reac-
tive with no planning capacities. It controls the exe-
cution of robot-tasks and other robot primitive func-
tions using pre-defined context-dependent actions. It
is implemented using a rule-based system KHEOPS
[10] which allows to compile (off-line) a set of rules,
producing a program which performs a time-bounded
search through a decision-tree.

At the functional level: Concerning the functional

level,

an example of architecture is described is [19]

and an implementation is given in [18]. It allows the

user to specify complex robot-tasks with temporal prop-

erties, to check their performances in a discrete-time
multi-rate framework and on a target hardware archi-
tecture. It also provides with automatic code genera-
tion for automaton encoding as well as for execution
within a real-time operating system.

6 Conclusion

We have presented some key design issues of intelligent
control architectures for autonomous robots. We have
discussed the relevant attributes and showed how they
can be integrated in a coherent architecture which
provides a framework for implementing time-bounded
decision and reaction at different levels, from task-
oriented closed loops to situation-driven decision and
goal-driven plan generation. We have also briefly pre-
sented several tools which can be used to implement
instances of this generic architecture.
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