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Abstract 
This paper describes an implemented integrated sys- 

t e m  allowing a mobile robot t o  plan its  actions, taking 
into account temporal constraints, and t o  control their 
execution in real t ime. The general architecture has 
three levels and the approach is related t o  hierarchical 
planning: the plan produced by the temporal planner is 
further refined at the control level that in turn super- 
vises its execution by a functional level. The frame- 
work of the french Mars Rover project VAP is used as 
an illustration of the various aspects discussed in the 
paper. 

1 Introduction 
Intervention robots are machines that have to per- 

form non-repetitive and time-constrained tasks in ill- 
known environments which are often remote or of dif- 
ficult or dangerous access, with specific constraints on 
communication (delays, bandwidth . In this context 

approaches with a human operator in the control loop 
are not adequate [9]. 

Some authors argue that planning is not useful, and 
that reactivity is the necessary and sufficient ingredi- 
ent of robot intelligence [4]. Furthermore, collective 
intelligence would emerge as a result of the simple in- 
teractions of reactive robots which have complete au- 
tonomy but limited behavior [5, 71. Being not able of 
predicting their actions and their outcome, wich is one 
aspect of planning, such robots are more data than 
goal driven, and if ever able to accomplish a given 
task, they would certainly lack efficiency. 

The challenge is to design an autonomous robot en- 
dowed with the capacities of planning its own actions 
in order to accomplish specified tasks, and having a re- 
active behavior with respect to is environment. Such 
a robot would be both goal and data driven. The 
work presented in this paper is a contribution to this 
objective . 

Plans are produced by a temporal planner at the 
higher level. They are then refined into actions ac- 
cording to specified execution modalities and to the 
actual execution context [2, 181. The robot control 
structure includes the systems necessary for task in- 
terpretation and autonomous execution. The system 

classical teleoperation as well as te I erobotics-like [21j 
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is aimed to be generic and applicable to several domain 
instances of intervention robots: planetary rovers [6], 
underwater vehicles [12], disaster reaction [18], etc. 

The paper is organized as follows: section 2 presents 
the functional architecture of the overall system; sec- 
tion 3 focuses on planning and section 4 plan execu- 
tion supervision. Finally, section 5 presents the task 
refinement and execution levels. 

In order to illustrate the approach we will consider 
a Mars Rover as an example of intervention robots 
troughout this paper. This case study is motivated by 
the french national project VAP1[6]. 

2 System Architecture 
The global system architecture is organized into 

three levels (figure 1). A higher temporal planning 
level - with its own supervision. The planning time is 
unbounded. 

Figure 1: Global architecture 

The second “refinement” level receives tasks that it 
transforms into sequences of actions using its own in- 
terpretation and planning capacities, and supervises 

‘VAP: Autonomous Planetary Vehicle, a project of the 
french national space agency CNES. 
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the execution of these actions while being reactive 
to asynchronous events and environment conditions. 
This level comprises a task supervisor that is in 
charge of receiving the plan from the higher level and 
interacting with the second component, the task re- 
finement planner which refines tasks into actions, 
taking into account the execution modalities specified 
with the plan, and the actual situation of the robot. 
The response time of this level is bounded as the re- 
finement planning is in fact very much context-driven 
selection of actions in a precompiled structure. 

The functional “execution” level is composed of a 
set of modules embedding the functions for sensing 
and acting, including various specific processings nec- 
essary for perception and motion control [2, 20, 101. 
This level is managed and controlled by a central Ex- 
ecutive in order to execute the actions requested by 
the task supervisor. The response time of these mod- 
ules that implement polynomial time algorithms is 
bounded. 

A module embeds primitive robot functions which 
share common data or resources 1, 81. An internal 
control process called the “modu I e manager” is re- 
sponsible for receiving requests to perform these func- 
tions from the robot controller, and for otherwise man- 
aging the module. Each function being well defined, 
its activation or termination must respect certain con- 
ditions that the module manager verifies. 

Modules interact by message passing or by reading 
data exported by other modules, and by putting their 
own processing results into exported data structures 
(EDS). At a given time, a module can be executing 
several functions. All of the functions of a given mod- 
ule are pre-defined at the system design stage. 

In the context of a Mars rover, the planner could 
be on Earth, while the plan supervisor in charge of 
controlling its execution and the two other levels are 
on-board the robot. 

3 Planning 
3.1 Temporal Planning 

The planning level is based on general action plan- 
ning techniques, including temporal reasoning, since 
it is necessary to take into account time constraints in 
robots that have to act in the real world. 

The explicit representation of time allows for an 
operator representation that is richer than STRIPS 
operators or their usual extensions as summarized in 
[16]. It is possible, for instance, to specify informa- 
tion concerning the duration of operators, the relative 
time when the postconditions of an operator become 
true, the conditions which must remain true during 
action execution, joint effects of operators with other 
operators executed in parallel, and the like. This has 
been partly addressed in temporal planners like D E  
VEER [22] and in event based planners like GEM- 
PLAN [17) or, more recently, CHICA [19]. GEM- 
PLAN also makes a difference between temporal and 
causal orderings of operators. FORBIN [ll], as a time 
map based planner, involves most of these issues. 

We have developed a temporal planning system 
called IzTeT (Indexed Time Table) [13, 151 which can 
reason on symbolic and numeric temporal relations 

between time instants. It produces a set of partially 
ordered tasks with temporal constraints. 

IxTeT’s representation is based on reified logic. It 
relies on a 2-dimensional array (called Indexed Time 
Table) with rows corresponding to logical assertions 
and columns to time points (instants). Cells in the ta- 
ble are temporal qualifications of the assertions. Tem- 
poral constraints between instants are represented by 
a time lattice. A temporal relation manager maintains 
the lattice and propagates temporal constraints [14]. 

The descriptions of the world, the goals and 
the decomposition operators are given using sym- 
bolic and/or numeric temporal relations between time 
points instants) or a set of temporal relations between 

same and the inverse relations) [3] which can be trans- 
formed into relations between instants. 

Ixtet involves two levels of description for decom- 
position operators: the Task and the Procedure. 

Tasks in IxTeT correspond to the lowest level of de- 
scription. The ‘effects’ of a task are assertions which 
change as a direct result of performing that task. 
Hence, a task is described through its ‘effects’, tem- 
porally linked to the interval of execution of the task. 
Minimal and maximal duration of a task may also be 
specified. 

For example, in the task description given in figure 
2, (Data-Available ?data ?site ?target) becomes true 
at the end of the task while (Sending-Data ?target) 
becomes and remains true during task execution. 

interva \ s (s tart ,  meet, finish, during, overlap, before, 

:args (?data ?site ?target) 
:effects ( (:meets Data-Available ?data ?site ?target) 

(:equal Sending-Data ?target)) 
:duration-min (length ?data) 
:duration-max (length ?data)) 

Figure 2: A task description 

Procedures are the decomposition operators. They 
are defined in terms of a context (a set of conditions 
needed in order to apply the procedure), a set of tem- 
porally constrained tasks required to achieve a partic- 
ular goal, together with additional effects which are 
due to the combined execution of the tasks involved 
by the procedure. 

In the example given in figure 3, in order to ap- 
ply the procedure SEND-PANORAMA, the robot will 
have to wait until Sunlight becomes true before ex- 

for a visibility window with the target (Earth or Or- 
biter) and the rover, with a sufficient duration for per- 
forming TASK-SEND-DATA(panorama, ?site, ?tar- 

Planning in IxTeT proceeds from an initial context 
called ‘initial situation’ containing an initial state, ex- 

ecuting TASK-GE 4 L  -PANO AMA(?site),  and to wait 

get). 
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(i iUMSEND-PANORAM,4 
:up (?site ?target) 
:goal @ata-Available panorama ?site ?target) 
:contat ( (:during sl (:on (Sunlight))) 

(:during sl (:on (VAP-Site bite))) 
(:during s2 (:on (Visibility ?target)))) 

:B~CPB (81 (TASKGl3-PANORAMA kite) 
82 (TASKSENDDATA panorama ?site ?target)) 

:sueh-that ((:beforesl s2)) 
:&ea 0) 

Figure 3: A Procedure description 

pected events and goals which are linked (directly or 
indirectly) to an initial time-point by numerical or 
symbolic temporal relations. The occurence dates may 
be specified more or less precisely (ranging from an ex- 
act absolute or relative occurence date, to a numerical 
interval, to a simple symbolic ordering). 

The planner performs goal decomposition by 
heuristically selecting procedures and inserting them 
in the time lattice together with constraints addition 
and propagation. 
3.2 Example 

Here we describe an example based on the VAP 
mars Rover mission scenario. If on-board comput- 
ing capacities are limited, planning may take place on 
Earth, and the plan be sent to the rover for refinement 
and execution. 

The mission of VAP consists in sending to the or- 
biter a panoramic view of a zone called site-2 and in 
collecting geological samples from sate-3. 

The initial time-point is noted 1. At this time 
the rover is localized in a geographic zone called site- 
1. Besides, there are three expected events that are 
known to occur in the future: (Sunlight) will become 
true at instant 2, a visibility window will start with 
the orbiter at instant 18 and with Earth at instant 17. 
This initial situation is represented by the time lattice 
in figure 4. 

b 
Figure 4: The initial situation 

The procedure Vap-Navigate(asite1, ?sitel?) can 
only be applied during day-time (sunlight). Besides, 
Collect-samples(?site) can be applied only after the 
panoramic view of ?site was transmitted. 

Figure 5 illustrates the plan as produced by IxTeT. 
The upper part of the table shows the validity in time 
of the predicates describing the world state and the 
effects of the robot's actions (values before instant 1 
are not relevant). The lower part shows the the tasks 

I 4 I t 3 4 S 6 7 6 9 I4 I? 1) I1 1) 13 I4 IS 16 

I- 
Figure 5: The indexed time table. The upper parts 
shows predicate validity in time and the lower part 
the tasks in the plan. 

composing the plan and their beginning and end in- 
stants. Note that the identifiers of the time instants 
are purely arbitrary and are not ordered in figure 5. 
The temporal relations between the instants (partial 
order) are given in figure 6. 

We see that in order to achieve the mission goal, 
the rover must navigate from site-1 to site-2, acquire a 
panoramic view, and then send it to the orbiter, nav- 
igate from sate-% to site-9, acquire a new panoramic 
view which is sent to Earth, and finally collect sam- 
ples. Note also that the rover will wait until Sun- 
light (instant 2) becomes true before moving and that 
it will wait for visibility with the orbiter or Earth 
in order to communicate with them. Furthermore, 
the tasks Send-data(Panorama, site-2, orbiter) and 
Navigate(site-2, site-3) may be executed in parallel 
(instants 7 and 9). 

4 Plan Supervision 
4.1 Introduction 

A Plan, as produced by IxTeT, is a set of partially 
ordered tasks, together with temporal constraints such 
as minimal and maximal expected durations, and syn- 
chronisation with expected external events or absolute 
dates. 
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and whose planned occurence date is compatible 
with the current time. 

0 It requires the execution of a new task when it 
reaches the instant which corresponds to its be- 
ginning. 

0 While processing incoming events, the supervisor 
verifies that they correspond to planned instants 
and that they satisfy the planned ordering and 
numerical time constraints. If it  is the case, the 
absolute date corresponding to the occurence of 
the events is considered, inducing a progressive 
‘linearisation’ of the time lattice (see figure 8). 

0 In the current implementation, the only ‘stan- 
dard’ reaction performed by the plan supervisor 
in case of non-nominal situations is to stop the 
current tasks, and update the world state accord- 
ing to events incoming from task execution, until 
all tasks are stopped. This is performed by in- 
serting new time instants in the time lattice cor- 
responding to the transitions as defined by the 
automata. 

Figure 8 shows the plan at two different stages of 
interpretation. The first time lattice represents a sit- 
uation wherein the rover is navigating from si te -2  to 
site-9 (indeed, instant 9 is in the past while instant 
10 is still in the future). It has previously acquired a 
panoramic view of site-2 (between instants 5 and 6), 
however it has to wait for instant 18 (visibility with the 
orbiter) in order to send the data (between instants 7 
and 8). 

In the second lattice, instant 18 has occured; the 
rover is performing two tasks in parallel (navigating 
and sending data to the orbiter). 

Figure 6: The lattice of time instants. 

The plan supervisor is in charge of monitoring the 
execution of the tasks involved in the plan. It has 
therefore to verify that the tasks produce indeed the 
expected effects, and must react in case of discrepancy. 
Execution will be globally managed by the robot su- 
pervisor, that schedules the tasks, sending them to the 
action supervisor that controls their execution, possi- 
bly after refinement. 
4.2 Plan Execution Monitoring 

Instants in the time lattice correspond to different 
event types: beginning or end of task execution, inter- 
mediate events produced by tasks during their execu- 
tion, expected external events (which occur indepen- 
dently from robot actions). Besides, numerical bounds 
for dates and durations may be attached to some time- 
points or intervals. 

The plan execution control process interacts with 
a clock by requiring messages to be sent at given ab- 
solute dates, and with the robot action supervisor by 
requiring task execution or cancellation (fig 7). 

kTeT Phn 

3 

i 

i.. ................................................ t 

Figure 7: The Plan supervisor 

Messages received from the clock authorize the s y s  
tem to state the occurence of dated expected events 
and to monitor the tasks minimal and maximal ex- 
pected durations. 

Messages received from the robot action supervisor 
are ‘filtered’ by the associated automata (see below 
54.3) and transformed into events which correspond 
either to instants planned in the time lattice (in case 
of nominal execution) or to unexpected instants oth- 
erwise. 

The plan supervisor starts from a given instant in 
the time lattice and ‘executes’ the time lattice by per- 
forming the following actions: 

0 At any moment, it considers only the time in- 
stants whose predecessors have been processed 

Figure 8: Plan execution 

4.3 Using Automata To Monitor Task Ex- 
ecut ion 

In order to allow the plan supervisor to monitor 
task execution and to act on them while they are exe- 
cuted each task is modelled by a finite state automa- 

T e F A associated to a task not only models the 
nominal task execution (as defined in the task de- 
scription manipulated by the planner) but also non- 
nominal situations exceptions), as well as the differ- 

supervisor. 

ton t s ~ ~ .  

ent actions which s 6 ould be taken then by the plan 
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In the finite state automata we use, state transi- 
tions can be caused by ‘internal events’ (i.e. events 
generated by the task execution process and trans- 
mitted to the plan interpreter) or by ‘external events’ 
(i.e. events due to an action of the plan supervisor on 
the task while it is executed). 

Typical internal events are: RUN (beginning 
of execution), RETURN (nominal end of execu- 
tion , STOP-ON-FAILURE (end due to a failure), 
ST d PPED (end of execution caused by an external 
STOP request). A Typical external event is STOP 
(corresponding to a stop request issued by the plan 
interpreter). Other external events are related to the 
task and force a state transition in the execution. 

For each task, an automaton class is provided. An 
example is given in figure 9. Note that each automaton 
state change produces transitions in the world state 
as it is maintained by IxTeT. The example in figure 
9 shows a decription of automaton associated to the 
task TASK-NAVIGATE. Whenever a task execution 
is started by the plan supervisor, an automaton of the 
associated class is instanciated and initialized. It will 
then represent the execution of the task as it is viewed 
by the plan supervisor. 

Figure 9: Automaton for TASK-NAVIGATE 

5 Refinement and Execution Control 
5.1 Task Refinement 

Task Refinement transforms a task into specific ac- 
tions that are adapted to the actual context. As an 
example, a motion task may be executed in different 
ways: 

0 a displacement using only dead-reckoning systems 
to guide the movement. 

0 a closed-loop motion using a perceptual feature 
of the environment (landmark tracking, ed e fol- 
lowing of a large object, rim following, etc! 

These two modes correspond to the execution of dif- 
ferent scripts see [18] for details associated with the 

ditions using the acquired data. Scripts have variables 
as arguments, that are instanciated at execution time. 
The execution of a script is similar to the execution of 
a program. 
5.2 Task Execution 

Action execution are represented by activities. The 
execution of a script corresponds to a global activity. 
An activity is thus equivalent to the execution of a 
program, and is analogous to the notion of process in 
an computer operating system. A simple activity is 
the execution of a function by a module. An activity 
may cause the emission of requests to other modules, 
starting children activities. The module in the par- 
ent activity is then a client of the module in the child 
activity. An activity may be the parent of many chil- 
dren, but may be the child of only one other activity. 
A set of rules and mechanisms were developed to cre- 
ate and manage activities. Two basic mechanisms are 
activity creation and message transmission between 
two activities. 

At a given moment, the set of activities represent 
the functions being executed in the robot system. The 
activity structure is a tree with a parent-child relation- 
ship. The tree evolves while the robot is executing. An 
activity communicates with its (single) parent activity 
via “up-signals” and with its (eventual) child activi- 
ties via “down-signals” . The activity hierarchy is not 
predefined and depends on the current task. 

Regardless of the specific processing it performs, 
an activity must be able to react to signals sent by its 
parent or its children. In particular, it must be able 
to react to asynchronous signals within a pre-defined 
bounded time delay. 

An activity is also represented by a finite automa- 
ton. Its state changes are dependent on external or 
internal signals. Control flow between a mother and 
child activities is implemented as typed messages that 
cause a state change. Specifc mechanisms permit the 
propagation of a state change along the activity tree. 

Important features of the notion of activity are: 
0 Activities provide for the management of a hier- 

archy of actions without imposing a fixed number 
of layers. 

0 All activities, regardless of level, may be treated 
in the same way. 

0 No assumptions are made about the nature of the 
inter-connec t ions bet ween activities: the activity 

task “move”. L cript selection is k ased on testing con- 
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hierarchy is not pre-defined. We might require 
that a “high level” activity starts and manages a 
“low level” activity at any level. This knowledge 
must however exist in the modules. 
All mechanisms for managing activities (starting, 
terminating, etc.) and the communication be- 
tween them do not depend upon any program- 
ming language constructs; in this sense, they re- 
semble part of an operating system. 
The concept of activity permits reactivity at 
all levels: a t  any moment, each activity in the 
tree structure is able to respond to asynchronous 
events. 

Figure 10 represents an example of activity tree at 
one stage of the execution of a go-to(1ocation) task. 
The “root” box represents the mother activity of this 
task, within the executive. The “monitor-11” box is 
the mother activity of a main child-activity (monitor- 
12) and of an associated monitoring activity (timer- 
200: a time-out for this task). When the corre- 
sponding event occurs, the main activity is stopped. 
“Monitor-12’’ is a monitoring activity also: the trav- 
eled distance should not exceed a given maximum 
(here 60 meters). Sequence in the “sequence-6” box 
means that the following children are to be executed 
in sequence (this defines a sub-activity block). “go- 
to-xy” and “exec-traj” are the two sequential activi- 
ties. The first is the “go to” coordinate location, and 
the second is the trajectory execution phase within 
it. Other possible phases are “build-model” (envi- 
ronment modelling) and “build-traj” (trajectory plan- 
ning). The last box “move-5” is the primitive action 
move being executed. 

Figure 11 shows the execution of the go-to(1ocation) 
task in a laboratory experiment, where the robot dis- 
covers its environment and builds a model of it while 
it navigates to reach the assigned location. 

6 Conclusion 
We presented in this paper a global approach to 

task planning and execution for intervention robots. 
Such robots are characterized by the fact that they 
have to be able to autonomously execute their actions 
in a partially and poorly known environment in order 
to accomplish missions and tasks specified and pro- 
grammed by a human user. The robot have to inter- 
pret the tasks according to the context and its evolu- 
tion, and to achieve autonomous execution. The main 
interest of the plan execution supervision as it is pro- 
posed in this paper is to maintain and update a com- 
plete history of the plan execution not only in nominal 
cases but also when a failure occurs. This is performed 
using automata which model tasks execution and their 
interaction with the plan supervisor. However other 
representations may be used. Indeed, we are working 
on an extension using on a compiled rule-based system 
which should allow not only to model task execution 
but also combined effects due to the simultaneous ex- 
ecution of several tasks as well as domain dependent 
knowledge allowing to infer new transitions starting 
from a set of observed events. While it is still neces- 
sary to further deepen some aspects, the experimental 

distace-M) k“ 

Figure 10: Activity tree during execution of a GOT0 
task 

results show that this approach is sound and applica- 
ble. 
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Building the free space 

Build ing the environment model 

Planning a trajectory 

Goal reached after three steps of 
perceptionflocalization/planning/execution 

Figure 11: Experimental Execution of a godo(loca2ion) task. 
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