
Roceedingc of the 1992IEEE
h m ~ t i a n r l Canfemme QI Robotics md Autamtim

Nice. Rrna - h y 1992

Integrated Planning and Execution Control of Autonomous Robot
Actions

Raja Chatila Rachid Alami Bernard Degallaix’ Hew6 Laruellet

LA AS-CNRS
7, Ave. du Colonel Roche, 31077 Toulouse cedex - France

Abstract
This paper describes an implemented integrated sys-

t e m allowing a mobile robot t o plan its actions, taking
into account temporal constraints, and t o control their
execution in real t ime. The general architecture has
three levels and the approach is related t o hierarchical
planning: the plan produced by the temporal planner is
further refined at the control level that in turn super-
vises its execution by a functional level. The frame-
work of the french Mars Rover project VAP is used as
an illustration of the various aspects discussed in the
paper.

1 Introduction
Intervention robots are machines that have to per-

form non-repetitive and time-constrained tasks in ill-
known environments which are often remote or of dif-
ficult or dangerous access, with specific constraints on
communication (delays, bandwidth . In this context

approaches with a human operator in the control loop
are not adequate [9].

Some authors argue that planning is not useful, and
that reactivity is the necessary and sufficient ingredi-
ent of robot intelligence [4]. Furthermore, collective
intelligence would emerge as a result of the simple in-
teractions of reactive robots which have complete au-
tonomy but limited behavior [5, 71. Being not able of
predicting their actions and their outcome, wich is one
aspect of planning, such robots are more data than
goal driven, and if ever able to accomplish a given
task, they would certainly lack efficiency.

The challenge is to design an autonomous robot en-
dowed with the capacities of planning its own actions
in order to accomplish specified tasks, and having a re-
active behavior with respect to is environment. Such
a robot would be both goal and data driven. The
work presented in this paper is a contribution to this
objective .

Plans are produced by a temporal planner at the
higher level. They are then refined into actions ac-
cording to specified execution modalities and to the
actual execution context [2, 181. The robot control
structure includes the systems necessary for task in-
terpretation and autonomous execution. The system

classical teleoperation as well as te I erobotics-like [21j

‘Supported by IFREMER
tsupported by a “CIFRE” with MATRA

is aimed to be generic and applicable to several domain
instances of intervention robots: planetary rovers [6],
underwater vehicles [12], disaster reaction [18], etc.

The paper is organized as follows: section 2 presents
the functional architecture of the overall system; sec-
tion 3 focuses on planning and section 4 plan execu-
tion supervision. Finally, section 5 presents the task
refinement and execution levels.

In order to illustrate the approach we will consider
a Mars Rover as an example of intervention robots
troughout this paper. This case study is motivated by
the french national project VAP1[6].

2 System Architecture
The global system architecture is organized into

three levels (figure 1). A higher temporal planning
level - with its own supervision. The planning time is
unbounded.

Figure 1: Global architecture

The second “refinement” level receives tasks that it
transforms into sequences of actions using its own in-
terpretation and planning capacities, and supervises

‘VAP: Autonomous Planetary Vehicle, a project of the
french national space agency CNES.

2689
0-8186-2720-4/92 S3.00 81992 IEEE

the execution of these actions while being reactive
to asynchronous events and environment conditions.
This level comprises a task supervisor that is in
charge of receiving the plan from the higher level and
interacting with the second component, the task re-
finement planner which refines tasks into actions,
taking into account the execution modalities specified
with the plan, and the actual situation of the robot.
The response time of this level is bounded as the re-
finement planning is in fact very much context-driven
selection of actions in a precompiled structure.

The functional “execution” level is composed of a
set of modules embedding the functions for sensing
and acting, including various specific processings nec-
essary for perception and motion control [2, 20, 101.
This level is managed and controlled by a central Ex-
ecutive in order to execute the actions requested by
the task supervisor. The response time of these mod-
ules that implement polynomial time algorithms is
bounded.

A module embeds primitive robot functions which
share common data or resources 1, 81. An internal
control process called the “modu I e manager” is re-
sponsible for receiving requests to perform these func-
tions from the robot controller, and for otherwise man-
aging the module. Each function being well defined,
its activation or termination must respect certain con-
ditions that the module manager verifies.

Modules interact by message passing or by reading
data exported by other modules, and by putting their
own processing results into exported data structures
(EDS). At a given time, a module can be executing
several functions. All of the functions of a given mod-
ule are pre-defined at the system design stage.

In the context of a Mars rover, the planner could
be on Earth, while the plan supervisor in charge of
controlling its execution and the two other levels are
on-board the robot.

3 Planning
3.1 Temporal Planning

The planning level is based on general action plan-
ning techniques, including temporal reasoning, since
it is necessary to take into account time constraints in
robots that have to act in the real world.

The explicit representation of time allows for an
operator representation that is richer than STRIPS
operators or their usual extensions as summarized in
[16]. It is possible, for instance, to specify informa-
tion concerning the duration of operators, the relative
time when the postconditions of an operator become
true, the conditions which must remain true during
action execution, joint effects of operators with other
operators executed in parallel, and the like. This has
been partly addressed in temporal planners like D E
VEER [22] and in event based planners like GEM-
PLAN [17) or, more recently, CHICA [19]. GEM-
PLAN also makes a difference between temporal and
causal orderings of operators. FORBIN [ll], as a time
map based planner, involves most of these issues.

We have developed a temporal planning system
called IzTeT (Indexed Time Table) [13, 151 which can
reason on symbolic and numeric temporal relations

between time instants. It produces a set of partially
ordered tasks with temporal constraints.

IxTeT’s representation is based on reified logic. It
relies on a 2-dimensional array (called Indexed Time
Table) with rows corresponding to logical assertions
and columns to time points (instants). Cells in the ta-
ble are temporal qualifications of the assertions. Tem-
poral constraints between instants are represented by
a time lattice. A temporal relation manager maintains
the lattice and propagates temporal constraints [14].

The descriptions of the world, the goals and
the decomposition operators are given using sym-
bolic and/or numeric temporal relations between time
points instants) or a set of temporal relations between

same and the inverse relations) [3] which can be trans-
formed into relations between instants.

Ixtet involves two levels of description for decom-
position operators: the Task and the Procedure.

Tasks in IxTeT correspond to the lowest level of de-
scription. The ‘effects’ of a task are assertions which
change as a direct result of performing that task.
Hence, a task is described through its ‘effects’, tem-
porally linked to the interval of execution of the task.
Minimal and maximal duration of a task may also be
specified.

For example, in the task description given in figure
2, (Data-Available ?data ?site ?target) becomes true
at the end of the task while (Sending-Data ?target)
becomes and remains true during task execution.

interva \ s (s tart , meet, finish, during, overlap, before,

:args (?data ?site ?target)
:effects ((:meets Data-Available ?data ?site ?target)

(:equal Sending-Data ?target))
:duration-min (length ?data)
:duration-max (length ?data))

Figure 2: A task description

Procedures are the decomposition operators. They
are defined in terms of a context (a set of conditions
needed in order to apply the procedure), a set of tem-
porally constrained tasks required to achieve a partic-
ular goal, together with additional effects which are
due to the combined execution of the tasks involved
by the procedure.

In the example given in figure 3, in order to ap-
ply the procedure SEND-PANORAMA, the robot will
have to wait until Sunlight becomes true before ex-

for a visibility window with the target (Earth or Or-
biter) and the rover, with a sufficient duration for per-
forming TASK-SEND-DATA(panorama, ?site, ?tar-

Planning in IxTeT proceeds from an initial context
called ‘initial situation’ containing an initial state, ex-

ecuting TASK-GE 4 L -PANO AMA(?site), and to wait

get).

2690

(i iUMSEND-PANORAM,4
:up (?site ?target)
:goal @ata-Available panorama ?site ?target)
:contat ((:during sl (:on (Sunlight)))

(:during sl (:on (VAP-Site bite)))
(:during s2 (:on (Visibility ?target))))

:B~CPB (81 (TASKGl3-PANORAMA kite)
82 (TASKSENDDATA panorama ?site ?target))

:sueh-that ((:beforesl s2))
:&ea 0)

Figure 3: A Procedure description

pected events and goals which are linked (directly or
indirectly) to an initial time-point by numerical or
symbolic temporal relations. The occurence dates may
be specified more or less precisely (ranging from an ex-
act absolute or relative occurence date, to a numerical
interval, to a simple symbolic ordering).

The planner performs goal decomposition by
heuristically selecting procedures and inserting them
in the time lattice together with constraints addition
and propagation.
3.2 Example

Here we describe an example based on the VAP
mars Rover mission scenario. If on-board comput-
ing capacities are limited, planning may take place on
Earth, and the plan be sent to the rover for refinement
and execution.

The mission of VAP consists in sending to the or-
biter a panoramic view of a zone called site-2 and in
collecting geological samples from sate-3.

The initial time-point is noted 1. At this time
the rover is localized in a geographic zone called site-
1. Besides, there are three expected events that are
known to occur in the future: (Sunlight) will become
true at instant 2, a visibility window will start with
the orbiter at instant 18 and with Earth at instant 17.
This initial situation is represented by the time lattice
in figure 4.

b
Figure 4: The initial situation

The procedure Vap-Navigate(asite1, ?sitel?) can
only be applied during day-time (sunlight). Besides,
Collect-samples(?site) can be applied only after the
panoramic view of ?site was transmitted.

Figure 5 illustrates the plan as produced by IxTeT.
The upper part of the table shows the validity in time
of the predicates describing the world state and the
effects of the robot's actions (values before instant 1
are not relevant). The lower part shows the the tasks

I 4 I t 3 4 S 6 7 6 9 I4 I? 1) I1 1) 13 I4 IS 16

I-
Figure 5: The indexed time table. The upper parts
shows predicate validity in time and the lower part
the tasks in the plan.

composing the plan and their beginning and end in-
stants. Note that the identifiers of the time instants
are purely arbitrary and are not ordered in figure 5.
The temporal relations between the instants (partial
order) are given in figure 6.

We see that in order to achieve the mission goal,
the rover must navigate from site-1 to site-2, acquire a
panoramic view, and then send it to the orbiter, nav-
igate from sate-% to site-9, acquire a new panoramic
view which is sent to Earth, and finally collect sam-
ples. Note also that the rover will wait until Sun-
light (instant 2) becomes true before moving and that
it will wait for visibility with the orbiter or Earth
in order to communicate with them. Furthermore,
the tasks Send-data(Panorama, site-2, orbiter) and
Navigate(site-2, site-3) may be executed in parallel
(instants 7 and 9).

4 Plan Supervision
4.1 Introduction

A Plan, as produced by IxTeT, is a set of partially
ordered tasks, together with temporal constraints such
as minimal and maximal expected durations, and syn-
chronisation with expected external events or absolute
dates.

269 1

and whose planned occurence date is compatible
with the current time.

0 It requires the execution of a new task when it
reaches the instant which corresponds to its be-
ginning.

0 While processing incoming events, the supervisor
verifies that they correspond to planned instants
and that they satisfy the planned ordering and
numerical time constraints. If it is the case, the
absolute date corresponding to the occurence of
the events is considered, inducing a progressive
‘linearisation’ of the time lattice (see figure 8).

0 In the current implementation, the only ‘stan-
dard’ reaction performed by the plan supervisor
in case of non-nominal situations is to stop the
current tasks, and update the world state accord-
ing to events incoming from task execution, until
all tasks are stopped. This is performed by in-
serting new time instants in the time lattice cor-
responding to the transitions as defined by the
automata.

Figure 8 shows the plan at two different stages of
interpretation. The first time lattice represents a sit-
uation wherein the rover is navigating from si te -2 to
site-9 (indeed, instant 9 is in the past while instant
10 is still in the future). It has previously acquired a
panoramic view of site-2 (between instants 5 and 6),
however it has to wait for instant 18 (visibility with the
orbiter) in order to send the data (between instants 7
and 8).

In the second lattice, instant 18 has occured; the
rover is performing two tasks in parallel (navigating
and sending data to the orbiter).

Figure 6: The lattice of time instants.

The plan supervisor is in charge of monitoring the
execution of the tasks involved in the plan. It has
therefore to verify that the tasks produce indeed the
expected effects, and must react in case of discrepancy.
Execution will be globally managed by the robot su-
pervisor, that schedules the tasks, sending them to the
action supervisor that controls their execution, possi-
bly after refinement.
4.2 Plan Execution Monitoring

Instants in the time lattice correspond to different
event types: beginning or end of task execution, inter-
mediate events produced by tasks during their execu-
tion, expected external events (which occur indepen-
dently from robot actions). Besides, numerical bounds
for dates and durations may be attached to some time-
points or intervals.

The plan execution control process interacts with
a clock by requiring messages to be sent at given ab-
solute dates, and with the robot action supervisor by
requiring task execution or cancellation (fig 7).

kTeT Phn

3

i

i.. .. t

Figure 7: The Plan supervisor

Messages received from the clock authorize the s y s
tem to state the occurence of dated expected events
and to monitor the tasks minimal and maximal ex-
pected durations.

Messages received from the robot action supervisor
are ‘filtered’ by the associated automata (see below
54.3) and transformed into events which correspond
either to instants planned in the time lattice (in case
of nominal execution) or to unexpected instants oth-
erwise.

The plan supervisor starts from a given instant in
the time lattice and ‘executes’ the time lattice by per-
forming the following actions:

0 At any moment, it considers only the time in-
stants whose predecessors have been processed

Figure 8: Plan execution

4.3 Using Automata To Monitor Task Ex-
ecut ion

In order to allow the plan supervisor to monitor
task execution and to act on them while they are exe-
cuted each task is modelled by a finite state automa-

T e F A associated to a task not only models the
nominal task execution (as defined in the task de-
scription manipulated by the planner) but also non-
nominal situations exceptions), as well as the differ-

supervisor.

ton t s ~ ~ .

ent actions which s 6 ould be taken then by the plan

2692

In the finite state automata we use, state transi-
tions can be caused by ‘internal events’ (i.e. events
generated by the task execution process and trans-
mitted to the plan interpreter) or by ‘external events’
(i.e. events due to an action of the plan supervisor on
the task while it is executed).

Typical internal events are: RUN (beginning
of execution), RETURN (nominal end of execu-
tion , STOP-ON-FAILURE (end due to a failure),
ST d PPED (end of execution caused by an external
STOP request). A Typical external event is STOP
(corresponding to a stop request issued by the plan
interpreter). Other external events are related to the
task and force a state transition in the execution.

For each task, an automaton class is provided. An
example is given in figure 9. Note that each automaton
state change produces transitions in the world state
as it is maintained by IxTeT. The example in figure
9 shows a decription of automaton associated to the
task TASK-NAVIGATE. Whenever a task execution
is started by the plan supervisor, an automaton of the
associated class is instanciated and initialized. It will
then represent the execution of the task as it is viewed
by the plan supervisor.

Figure 9: Automaton for TASK-NAVIGATE

5 Refinement and Execution Control
5.1 Task Refinement

Task Refinement transforms a task into specific ac-
tions that are adapted to the actual context. As an
example, a motion task may be executed in different
ways:

0 a displacement using only dead-reckoning systems
to guide the movement.

0 a closed-loop motion using a perceptual feature
of the environment (landmark tracking, ed e fol-
lowing of a large object, rim following, etc!

These two modes correspond to the execution of dif-
ferent scripts see [18] for details associated with the

ditions using the acquired data. Scripts have variables
as arguments, that are instanciated at execution time.
The execution of a script is similar to the execution of
a program.
5.2 Task Execution

Action execution are represented by activities. The
execution of a script corresponds to a global activity.
An activity is thus equivalent to the execution of a
program, and is analogous to the notion of process in
an computer operating system. A simple activity is
the execution of a function by a module. An activity
may cause the emission of requests to other modules,
starting children activities. The module in the par-
ent activity is then a client of the module in the child
activity. An activity may be the parent of many chil-
dren, but may be the child of only one other activity.
A set of rules and mechanisms were developed to cre-
ate and manage activities. Two basic mechanisms are
activity creation and message transmission between
two activities.

At a given moment, the set of activities represent
the functions being executed in the robot system. The
activity structure is a tree with a parent-child relation-
ship. The tree evolves while the robot is executing. An
activity communicates with its (single) parent activity
via “up-signals” and with its (eventual) child activi-
ties via “down-signals” . The activity hierarchy is not
predefined and depends on the current task.

Regardless of the specific processing it performs,
an activity must be able to react to signals sent by its
parent or its children. In particular, it must be able
to react to asynchronous signals within a pre-defined
bounded time delay.

An activity is also represented by a finite automa-
ton. Its state changes are dependent on external or
internal signals. Control flow between a mother and
child activities is implemented as typed messages that
cause a state change. Specifc mechanisms permit the
propagation of a state change along the activity tree.

Important features of the notion of activity are:
0 Activities provide for the management of a hier-

archy of actions without imposing a fixed number
of layers.

0 All activities, regardless of level, may be treated
in the same way.

0 No assumptions are made about the nature of the
inter-connec t ions bet ween activities: the activity

task “move”. L cript selection is k ased on testing con-

2693

hierarchy is not pre-defined. We might require
that a “high level” activity starts and manages a
“low level” activity at any level. This knowledge
must however exist in the modules.
All mechanisms for managing activities (starting,
terminating, etc.) and the communication be-
tween them do not depend upon any program-
ming language constructs; in this sense, they re-
semble part of an operating system.
The concept of activity permits reactivity at
all levels: a t any moment, each activity in the
tree structure is able to respond to asynchronous
events.

Figure 10 represents an example of activity tree at
one stage of the execution of a go-to(1ocation) task.
The “root” box represents the mother activity of this
task, within the executive. The “monitor-11” box is
the mother activity of a main child-activity (monitor-
12) and of an associated monitoring activity (timer-
200: a time-out for this task). When the corre-
sponding event occurs, the main activity is stopped.
“Monitor-12’’ is a monitoring activity also: the trav-
eled distance should not exceed a given maximum
(here 60 meters). Sequence in the “sequence-6” box
means that the following children are to be executed
in sequence (this defines a sub-activity block). “go-
to-xy” and “exec-traj” are the two sequential activi-
ties. The first is the “go to” coordinate location, and
the second is the trajectory execution phase within
it. Other possible phases are “build-model” (envi-
ronment modelling) and “build-traj” (trajectory plan-
ning). The last box “move-5” is the primitive action
move being executed.

Figure 11 shows the execution of the go-to(1ocation)
task in a laboratory experiment, where the robot dis-
covers its environment and builds a model of it while
it navigates to reach the assigned location.

6 Conclusion
We presented in this paper a global approach to

task planning and execution for intervention robots.
Such robots are characterized by the fact that they
have to be able to autonomously execute their actions
in a partially and poorly known environment in order
to accomplish missions and tasks specified and pro-
grammed by a human user. The robot have to inter-
pret the tasks according to the context and its evolu-
tion, and to achieve autonomous execution. The main
interest of the plan execution supervision as it is pro-
posed in this paper is to maintain and update a com-
plete history of the plan execution not only in nominal
cases but also when a failure occurs. This is performed
using automata which model tasks execution and their
interaction with the plan supervisor. However other
representations may be used. Indeed, we are working
on an extension using on a compiled rule-based system
which should allow not only to model task execution
but also combined effects due to the simultaneous ex-
ecution of several tasks as well as domain dependent
knowledge allowing to infer new transitions starting
from a set of observed events. While it is still neces-
sary to further deepen some aspects, the experimental

distace-M) k“

Figure 10: Activity tree during execution of a GOT0
task

results show that this approach is sound and applica-
ble.

2694

References [14] M. Ghallab and A. Mounir Alaoui. Managin
[l] R. Alami, R. Chatila, M. Devy, and M. Vais- Efficiently Temporal Relations Through Indexez

set. System architecture and processes for Spanning Trees. In 11th International Joint Con-
robot control. Technical report, Labora- ference on Artificial Intelligence (IJCAI), De-
toire d’Automatique et d’dnalvse des Svstkmes troit, Michigan (USA), pages 1297-1303, 1989.
(C.N.R.S.) , Toulobe (France), “June 199b.
R. Alami, R. Chatila, and P. Freedman. Task
level programming for intervention robots. In
IARP 1st Workshop on Mobile Robots for Sub-
sea Environments, Monterey, California (USA),
pages 119-136, October 1990.
J . F. Allen. Towards a general theory of ac-
tion and time. Artificial Intelligence, 23:123-154,
1984.
R.A. Brooks. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and
Automation, RA-2(1):14-23, 1986.
C. M. Angle and R. A. Brooks. Small planetary
rovers. In IEEE International Workshop on Intel-
ligent Robots and Systems (IROS ’go), Tsuchiura
(Japan), pages 383-388, July 1990.
L. Boissier and G. Giralt. Autonomous Planetary
Rover VAP): The robotics concepts. In I.A.R.P.
91 on k obotics in Space, Pisa (Italy),1991.
R. A. Brooks, P. Maes, and G. Moore. Lu-
nar base construction robots. In IEEE Interna-
tional Workshop on Intelligent Robots and Sys-
tems (IROS ’go), Tsuchiura (Japan), pages 389-
392, July 1990.
R. Ferrae De Camargo, R. Chatila, and R. Alami.
A distributed evolvable control architecture for
mobile robots. In ’91 International Conference
on Advanced Robotics (ICAR),Pisa (Italy), pages

R. Chatila, R. Alami, and G. Giralt. Task-level
programmable intervention autonomous robots.
In Mechatronics and Robotics I, P. A. Mac-
Conaill, P. Drews and K.-H. Robrock Eds, IOS
Press, pages 77 - 87, 1991.
R. Chatila and R. Ferraz De Camargo. Open
architecture design and inter-task/intermodule
communication for an autonomous mobile robot.
In IEEE International Workshop On Intelligent
Robots and Systems, Tsuchiura, Japan, July
1990.
T. Dean, R.J. Firby, and D. Miller. Hierarchical
Planning Involving Deadlines, Travel Time, and
Resources. Comput. Intell., 1988.
L. Floury and R. Gable. The Wireline Reen-
try in Deep Ocean DSDP/ODP Holes. Technical
Report DITI/ICA-91/172-LF/DB, IFREMER -
Centre de Brest, July 1991.
M. Ghallab, R. Alami, and R. Chatila. Dealing
with Time in Planning and Execution Monitor-
ing. In R. Bolles, editor, Robotics Research: The
Fourth International Symposium. MIT Press,
Mass., 1988.

1646-1649, 1991.

[15] M. Ghallab and A. Mounir Alaoui. Relations
temporelles symboliques: reprksentations et al-
gorithmes. Revue d’Intelligence Artificielle, 3(3),
February 1990.

[16] J. Hendler, A. Tate, and M. Drummond. AI Plan-
ning: Systems and Techniques. Artificial Intelli-
gence Magazine, 11(2):61-77, Summer 1990.

[I71 A.L. Lansky. A Representation of Parallel Ac-
tivity Based on Events, Structure, and Causality.
In Reasoning about Actions and Plans. Proc. of
the 1986 Workshop, Timberline, pages 123-159,
1987.

[18] R. Laurette, A. de Saint Vincent, R. Alami,
R. Chatila, and V. Pkrkbaskine. Supervision
and Control of the AMR Intervention Robot. In
’91 (ICAR), Pisa (Italy), pages 1057-1062, June
1991.

[19] L. Missiaen. Localized Abductive Planning with
the Event Calculus. PhD thesis, Dept. of Comput.
Science, KU Leuven (Belgium), 1991.

[20] F. R. Noreils, R. Chatila. Control of Mobile
Robot Actions. In IEEE Int. Con5 on Robotics
and Automation, 1989.

[21] T. Sheridan. Telerobotics. In IEEE Int. Conf. on
Robotics and Automation (Workshop on Integra-
tion of AI and Robotic Systems, 1989.

[22] S.A. Vere. Planning in time: Windows and du-
rations for activities and goals. IEEE nunsac-
tions on Pattern Analysis and Machine Intelli-
gence, 5(3), May 1983.

2695

Building the free space

Build ing the environment model

Planning a trajectory

Goal reached after three steps of
perceptionflocalization/planning/execution

Figure 11: Experimental Execution of a godo(loca2ion) task.

2696

