Supervision and Control of the AMR Intervention Robot

Renaud Laurette
Arnaud de Saint Vincent

Matra-Espace
31 rue des cosmonautes
31077 Toulouse Cedex - France

L INTRODUCTION

The Eureka project AMR (Advanced Mobile Robots) aims
at prototyping two intervention robots, for public safety
applications in hostile environments. One of them is
devoted to outdoors operations, while the second one is for
indoors interventions. The project, started in 1987,
involves companies and research laboratories from France,
Italy and Spain [1].

One of the characteristics of the AMR missions is that the
radio link with the mobile unit cannot be maintained
during the whole intervention. Hence, providing the robot
with the on-board capabilities to achieve an autonomous
behavior is a major issue of the project. These capabilities
include autonomous task management, environment
modeling, motion planning, auto-localization, obstacle
avoidance, etc.. [2]. Whenever the link is available, the
same capabilities will allow the operator to interact with
the robot at a high level of abstraction that will secure the
use of the mobile unit (quicker reactions, minimum risk of
human mistake) and improve the mission efficiency.

Hence, two main operating modes are foreseen : a
teleoperated mode in which the operator keeps a close
control on the robot at action or effector level, and an
autonomous mode, in which the operator gives a goal to
the robot, which in turn sequences and monitors by itself
its activities according to predefined strategies.

Transforming the goals into simpler tasks, choosing the
most adequate way to perform the tasks, controlling their
execution and handling external events and internal failures,
is under the responsability of the robot's Supervision Unit,
described in this paper. After introducing the general
architecture of the Unit, we focus on task execution, and
then on the architectural impacts on the design of the
robot's sub-systems.

Manuscript received April 3rd, 1991

Rachid Alami
Raja Chatila
Victor Pérébaskine

LAAS/CNRS
7 avenue du colonel Roche
31077 Toulouse Cedex - France

The Supervisor was designed in cooperation between Matra
Espace and Laas. It is inspired from the work conducted at
Laas in the more general frame of intervention robot
control and teleprogramming [3]{4]{5], and also from the
TCA architecture developed at CMU [6].

II. THE SUPERVISION ARCHITECTURE
A. Overview

The operator communicates with the robot at three different
levels, ranging from effector level (direct control of the
robot's effectors) to action level (local movement or
manipulation tasks for which the robot coordinates by
itself its subsystems), and up to goal level (the robot finds
a sequence of tasks to achieve the goal). These three levels
correspond to three entities in the architecture of the
Supervisor. Respectively : the Executive, the Task
Manager and the Mission Manager. The architecture we
have chosen (Fig. 1) is organized around the Executive,
which receives orders from the operator, interfaces the
robot's subsystems, maintains a representation of the on-
going activities and of the allocated resources. An effector
level order (a routine) is expanded and transmitted by the
Executive to the concerned subsystems. An action level
order (a task), is routed to the Task manager, which will
refine it into routines, and sequence these routines back to
the Executive. A goal level order (a mission) is routed to
the Mission manager, that operates as the Task manager
does, but at mission level. Conversely, completion
statuses are transmitted the other way up from the
subsystems to the operator. The rationale for this
architecture is twofold : the availability of a unique central
representation of the robot's activities and resources
together with that of specialized entities to handle different
abstraction levels.

B. The Executive Level

The Executive interfaces the robot's subsystems and is
responsible for coordinating them so that, at any moment,
the robots exhibits a coherent behavior. It receives orders,
check their appropriateness, transforms and dispatches

7803-0078/91/0600-1057$01.00 ©1991 IEEE

them, and monitors their execution. This coordination is
made efficient by organizing the architecture of the sub-
systems into functional modules, as described further. The
processing performed on each order by the Executive is
organized according to the following steps :

1) Resource allocation: By consulting an internal model of
actions, the Executive checks which are the resources
involved in the execution of the received order, whether
they are available, and allocates them.

2) Activity management: If the resources are successfully
allocated, the robot is able to unterdake the activities
corresponding to the received order, and the activity tree is
updated. This tree describes the instantaneous hierarchy of
the on-going activities, and mentions for each one the
originator, the receiver and the status. If any activity is
further generated, it will be linked to its mother activity by
a mother-daughter link.

3) Monitoring: One possible type of order is the
monitoring of a logical condition. In such a case, at this
step, the Executive stores the condition to be monitored,
decomposes it into elementary conditions to be monitored
at subsystem level, and stores a reflex action to be executed
when the condition is verified.

4) Activation: At last, the order is routed to its receiver(s).
Note that in the case of behaviour level orders, a single
received order may map onto several activities at subsystem
level. Therefore, several messages may be output by this
level.

Conversely, the Executive receives status messages from
the subsystems, evaluates the monitored conditions,
updates the activity tree, frees the resources and reports to
the originator of the activity. The Executive also handles
an internal status which is updated by subsystem messages.
This architecture allows for a great flexibility : The
originator and the receiver may be any entity connected to
the Executive. However, in the AMR context, only the
operator, the Mission manager and the Task manager are
foreseen as originators.

C. The Task Level

When an order is recognized as a task in the Executive
model of actions, it is sent to the Task manager. A task
corresponds to a possibly complex sequence of local
actions (short range movement, data acquisition, ..)
described by predefined procedures [7]. In many cases,
several alternative procedures will correspond to a single
task. For instance, a movement to a close goal may be
performed either by modeling the environment and
planning a trajectory, or by servoing the motion on a
nearby wall, or by tracking a salient visual feature. Hence,
a Selector will first choose the most appropriate procedure
according to the robot's internal status (resource
availability) and to environmental parameters. Some other

tasks, such as effector level tasks, map onto a single
procedure, and no selection need to be performed.

Using procedures instead of planning the actions on-line
was chosen at task level in our application for time
efficiency and because the number of alternative strategies
for a given task did not call for a planner. However, should
the need appear, the architecture allows to substitute the
Selector for a Planner without any further change.

The procedure contains the description of the actions to be
undertaken to achieve the task, as well as the reactions to
perform in response to asynchronous events. Actions and
reactions are described in a unified formalism called the
script of the procedure. A script contains the usual
constructs of high level languages : testing, branching,
iterating, nesting, as well as synchronization mechanisms
for parallel execution. Moreover, it handles a special
construct to deal with asynchronous events : the
surveillance. A surveillance consists in a logical condition
to be monitored on internal or sensed data, a reflex action
to be performed immediatly when the condition fires, and a
control action, expressed as a subscript. The reflex action
guaranties the safety of the robot, while the control action
indicates how to cope with the event. The sequencing of
the script is performed by the Interpreter, which sends
actions and surveillances to the Executive.

1058

Ground Interface

EXECUTIVE

Resource allocation
Activity management
Monitoring
Activation

g TASK
HIMANAGER

[Robot's subsystems]

Fig.1. General Architecture of the Supervision Unit

D. The Mission Level

The Mission manager deals with a high-level description of
the robot's activities, and of the environment. At mission
level, tasks may be represented in terms of state operators.
Thus, mission refinement is performed using general action
planning techniques, while task refinement is performed
using a procedure based approach. In the AMR context,
mission refinement only concerns long range movement
orders (e.g. reach distant place X, moving through different
topological "places"). The mission interpretation will
determine sub-goals to be reached by the robot, and the
corresponding movement tasks. The subgoal search is made
using an a-priori approximative topological description of
the environment provided by the user. This model is
enhanced by landmarks (objects that the robot may
recognize autonomously) and by qualitative information

(terrain roughness, risk, availability of communications,
...) When the movement tasks are planned, the mission
level sequences them to the Executive, and not directly to
the Task manager in order to keep the consistency in
activity representation.

III. ROBOT SUBSYSTEMS

In order to improve the efficiency of the control structure
and robot operation, we defined the basic functions in a
systematic and formal way so that they can be controlled
according to their specific features, while being easy to
combine, modify or redesign. We therefore defined in [8]
and extended in [9] the notion of robot module and
introduced primitive function types .

A module embeds a set of primitive robot functions which
share common data or resources. An internal control task
called the "module manager” is responsible for receiving
requests to perform these functions from the Executive,
and for otherwise managing the module.It also manages the
specific activation and termination conditions of each type
of module. A module may read data exported by other
modules, and may output its own processing results to
Exported Data Structures (EDS). At a given time, a module
can be executing several functions. All of the functions of
each module are pre-defined at the robot design stage. The
robot primitive functions fall into four different rypes
according to their functioning mode (Fig. 2).

1) Servers: This type of function is executed upon
request. The result of the processing is put into an EDS to
be accessed by the requesting module.

2) Filters: Such functions are started by a request and then
run continuously at a given rate (some filters may run
automatically as soon as the robot is switched on). Their
results are output at the given rate in an EDS.

3) Servo-Processes: These functions implement a closed-
loop between a perception function (related to processing
sensory data) and an "action” function (related to the robot
effectors). The servo-process has known parameters that
must be respected when connecting the input and output
modules. For example, a wall following servo-process
function might be defined to control the robot's motion,
using information provided in an EDS associated with a
filter which interprets data from the ultrasonic sensors, and
that is read by the adequate locomotion module function.

4) Monitors: These functions are used to detect a given
situation, expressed by a logical condition, and to react by
generating an event for the supervisor. The logical
condition is evaluated regularly, at a predefined rate.

Both filters and servo-processes may be stopped, but
cannot stop by themselves, unless they detect an abnormal
condition ; in such a case, an appropriate event is sent to

the supervisor. An example of a routine involving the
interaction of several modules is wall following (Fig. 3).

Fig.2 Function symbology.

SUPERVISOR o
surveillance

on position
Localization

Sonars ()._» OI:ICI’W
Wi

GNC

M PILOT

motors o

Fig.3 Function decomposition of the wall-following process.
IV. TASK EXECUTION

We present here the task execution mechanisms, and we
illustrate them through the task "Go to landmark" (goto-
ldmk). The goal of this task is to take the robot from its
current location to the vicinity of a landmark previously

1059

defined in the topological model of the environment. This
landmark may be located anywhere in the current
topological place. Hence, the task involves autonomous
navigation among possible obstacles, landmark
recognition, and landmark approach.

A. Knowledge representation

To execute such a task, the supervision subsystem relies
on different types of knowledge. The operational
knowledge is a static representation of tasks . It describes
how tasks map into procedures, and which steps the
procedure consists of. It also contains information for fault
diagnosis and error recovery (Table I). This knowledge is
given to the robot before the mission starts. Apart from
this static information, the robot maintains dynamic data,
organised in three main models. The internal state
describes the state of the different sub-systems. Part of this
data is reported periodically to the Supervisor, while the
other part is available from each sub-system upon request.
The external state gather information relative to the robot's
situation with respect to the topological model, such as
the current topological place, and also data collected by or
derived from the sensors' outputs: the robot's position
and attitude, environmental conditions such as the
temperature or the radiation level. The robot activity
encompasses the description of all the activities currently
undertaken by the robot (the current task, the selected
procedure, the action inside the procedures, the active
surveillances, and so on).

TABLE L. TYPICAL DATA STRUCTURES
CONTAINED IN THE OPERATIONAL KNOWLEDGE BASE.

Task Procedure

post-conditions preconditions

list of pairs script
- procedures
- cost elements

cost function

B. The selection mechanism

When a task is sent to the Task Manager, a Selector is
called (Fig. 4). This module aims at choosing the better
suited procedure to achieve the task's goal. In the goto-
ldmk example, several procedures may be chosen from
(Table II). One involves an iterative process including
environment modeling, subgoal and path generation and
execution. Another one is eligible only if the terrain is
smooth and if the movement may be servoed to a nearby
wall through ultra-sonic sensors. The former procedure
involves the most efficient capabilities of the robot, and
has the highest probability of success. An approach could
be to always use this procedure to perform a goto-ldmk.
On the other hand, if the preconditions of the latter

procedure are satisfied, the former takes much more time,
for it needs to construct the environment model and to
generate a trajectory. Hence, the goal of the Selector is to
determine which procedure is likely to be the most
effective in the current context.

task v
ternal

‘Operational State
SELECTOR

Knowledge
Base External
State

script v

Fig.4. The Selection mechanism

TABLE II. PROCEDURES FOR THE GOTO-LDMK TASK

task goto-ldmk (the-1dmk)

postcond. (robot inside approach-zone of the-ldmk)

procedures | follow-corridor-to-ldmk ; cost=2
plan-and-follow-path-to-ldmk ; cost=4
follow-wall-to-ldmk ; cost=3
follow-simple-path-to-ldmk ; cost=1

procedure follow-corridor-to-1dmk (the-ldmk)

precond (robot inside corridor ?x) and
(the-ldmk inside corridor ?x) and
(distance between robot and the-ldmk > dmin)
and (laser range finder available)

description | Use laser sensor to servoe the robot's movement to the
irection of the corridor

procedure plan-and-follow-path (the-ldmk)

precond (laser range finder available)

description | Use the laser to build a map of the environment, and
the path generator to compute a path to a subgoal. Iterates
till the goal is reached.
procedure follow-wall-to-ldmk (the-ldmk)
precond. (laser range finder available) and
(the-ldmk close to wall ?x) and
(distance between robot and the-ldmk > dmin)
and (us sensors available) and
(terrain smooth)
description | Use the ultrasonic sensors to servoe the robot's
movement to the direction of a nearby wall.
procedure follow-simple-path-to-ldmk (the-ldmk)
precond (laser range finder available) and

(distance between robot and the-ldmk < dmax)

description | Generates a simple path (straight moves and rotations)

to go to the landmark, assuming that the terrain is
smooth. Performs local obstacle avoidance base on the
LRF. Short range moves only.

First, the post-conditions of the task are evaluated. They
encode the goal the task achieves. If they are satisfied, the
Selector, and then the Task Manager, return a successful

completion status. Otherwise, the Selector proceeds to
choose the best procedure to perform the task. A list of
candidate procedures is attached to each task in the
operational knowledge base. A candidate procedure is
eligible if its pre-conditions are satisfied. The final choice
between all eligible procedures is made by evaluating a
cost function attached to the task.

C. Interpretation and Execution

Once the procedure has been selected, its script is
interpreted and executed by the Interpreter. The formalism
of the script allows for both the actions and the reactive
behaviour of the robot to be described. An action may be
either a subtask or a routine. A substask will be
recursively expanded into a (sub)script, using the selection
mechanism described above. A routine corresponds to an
actual robot action. This action is further decomposed and
monitored by the Executive which is in charge of
coordinating the subsystem activities to perform the
action. The reactive behaviour is described by the
surveillances.

Follow-wall-to-ldmk (the-ldmk, the-wall)()
begins

l predict-observation-zone (the-ldmk)(obs-zone) l

A

begin
I follow-wall (the-wall) () l"' -
end

| identify-ldmk (the-}dmk)() |

begin
| follow-wall (the-wall)]<-
end

procedure ends
sucessfully

[proceed-to-next-step OQ)]

Fig.5. A script exemple : the follow-wall-to-landmark procedure

Assuming that the procedure follow-wall-to-ldmk has been
selected, the script would look like in fig. 5. In the main
script, we see that both routines (zone predictions) and

substasks (Follow-wall, identify-landmark) appear.
Since wall-following is a mode that does not end in itself,
surveillances (in the grey boxes) are used to proceed to the
next action when the robot reaches the target zones.
Different procedures (not presented here) may be used to
perform identify-landmark, depending whether the robot
needs to move, whether laser or video need to be used, etc.
On the other hand, Follow-wall is a specific task which
maps onto a single procedure (not presented here).

When a new step is started, the Executive first receives the
surveillances whose scope start with the step, and then,
the routine to be executed at that step. The routine will be
expanded into primitive orders for the concerned
subsystem(s).

_ When the routine ends, the associated surveillances are

destroyed. Then we proceed to the next step. When a
monitored condition fires, the Executive immediatly
executes the reflex action. The Interpreter is then notified,
and the control action, expressed as a script, is undertaken
(Fig. 6). Should the surveillance be issued by another
entity than the Interpreter, the notification would be sent
to the originator.

INTERPRETER

execution of the control action

‘evaluation of the logical conditions
surveillance inhibition
reporting of the firing

execution of the reflex action

ROBOT SUB-SYSTEM
firing of an elementary condition

Fig.6. Surveillance firing mechanism
D. Failure recovery

The robot activity is organized hierarchically : tasks are
expanded into procedures that may contain subtasks.
When a failure occurs, the Interpreter calls a Failure
Recovery Unit, which will first determine the type of
failure and the hierarchical level at which it should be
treated (Table IIT). The strategy of the Recovery Unit is to
modify the current activity as little as possible. It will
first attempt to recover at the level where the failure
appeared. For example, if a tracking routine fails, it will
try to find a predefined recovery procedure, such as "move
the sensor to acquire the target again”, to overcome the
problem locally. If no solution is found at one level, the
failure is propagated to the upper hierarchical level. At the

higher level, the operator is prompted for a solution.
Should communications be unavailable, the robot
attempts to recover them, either by going to a reference
place, or by searching in the inmediate neighborhood. No
further detail is given on this recovery aspect which is
currently under investigation,

TABLE III. FAILURE CLASSIFICATION

V. CONCLUSION

We have presented here the major concepts of the AMR
Supervision. The architecture is summarized in fig. 7.
Breadboards of the Task and Executive level are being
developped and will be experimented in 1991, both on
HILARE II platform (at Laas) and on a specific AMR
platform (at Matra). This demonstration will conclude the

Detected as an event Routine Failure phase two of the project. Further work during phase three
coming from the executive | Constraint violation include the Mission level and Failure recovery
Detected by Unsatisfied precondition implementation. By the end of phase three, two
the Interpreter Unsatisfied post-condition demonstrators (indoor and outdoor) will be built using the
— : concepts presented here.
Explicit procedure failure
Route Generation Unit Perception S/S
(Movement planner)
Geometrical Path
Sequencer Generation S/S
Guidance Navigation
Selector Executive & Control S/S
Interpreter Locomotion S/S
Ultrasonic Sensors
Recovery Unit
Laser Range Finder
Fig. 7. General architecture of the AMR supervision unit.

REFERENCES
(1] M.Deplanté, D.Mornas, J.L.Ollier. "Le programme
AMR de robots mobiles avancés pour la sécurité civile.”
Séminaire EC2, Les Robots mobiles, La Défense, France,
1989.
A. de Saint Vincent."Téléopération au niveau tiche et
intelligence artificielle embarquée pour le robot mobile
AMR." Séminaire EC2, Les Robots mobiles, La
Défense, France, 1989.
G.Giralt, R.Alami, R.Chatila : "Autonomy versus
teleoperation for intervention robots ? A case for

2

&)

task-level teleprogramming” - in Proc. 2nd Conf. on
Intelligent Autonomous Systems - Amsterdam , Dec
1989

[4] F. Noreils, R. Chatila. "Control of mobile robot
actions." JEEE Int'l Conf. on Robotics and Automation,

pp 701-712, Scotisdale, Arizona, 1989

R.Alami, R.Chatila, P.Freedman. “Task-level
teleprogramming for Intervention robots." Ist IARP
Workshop on Mobile Robots for Subsea environment.
L.Lin, R. Simmons, C. Fedor. "Experience with a task
control architecture for mobile robots.” in Technical
Report CMU-RI-TR-90-04, The Robotics Institute,
Camegie Mellon University, 1990.

M. Georgeff : "Reasonning about Procedural Knowledge”,
in AAAL 1985

R. Alami, R. Chatila, M. Devy and M. Vaisset.
"System architecture and processes for robot control.”
Technical Report (unpublished), LAAS-CNRS, 1990

R. Chatila, R. Feraz De Camargo. "Open architecture
design and intertask / intermodule communication for an
autonomous mobile robot.” IEEE Int'l Workshop on
Intelligent Robots and Systems, Tsuchiura, Japan, July
1990

(6]

8]

9

1062

