Robust H_2 perfomance of discrete-time periodic systems:

LMIs with reduced dimensions

<u>Dimitri PEAUCELLE[†]</u> & EBIHARA Yoshio[‡] & Denis ARZELIER[†]

† LAAS-CNRS - Université de Toulouse, FRANCE

‡ Department of Electrical Engineering, Kyoto University, JAPAN

Introduction

Linear discrete-time periodic systems

- N-periodic state-space systems $x_{k+1} = A_k x_k$ with $A_{k+N} = A_k$
- Used to model

- ▲ linear systems with periodic parametric changes
- ▲ sampled linearized dynamics of NL system along periodic trajectory
- ▲ multi-rate sampled-data systems

Periodic models also used for control of LTI systems

A Periodic control may have better performances than static control

• As for all linear models, uncertainties should be included:

$$x_{k+1} = A_k(\Delta_k)x_k$$

SALA!

Introduction

LMI-based results for uncertain periodic systems?

Extensions of existing results for LTI systems

[Bittanti, Colaneri, De Souza, Trofino, Farges...]

High numerical burden - can it be reduced ?

Conservatism - how can it be reduced ?

Outline

- **1** About modeling of N-periodic systems: lifted, descriptor, and other models
- **2** Existing H_2 -performance LMI analysis results
- 6 Contribution: less conservative with limited number of decision variables
- 4 A numerical example

2

IFAC World Congress, July 2008, Seoul

1 About modeling of N-periodic systems

Various models related to various state "definition"

lacksquare N-periodic system with performance inputs/outputs

$$x_{k+1} = A_k x_k + B_k w_k$$
, $z_k = C_k x_k + D_k w_k$

▲ Instantaneous state { $x_k \in \mathsf{R}^{n_k}$ }_{k=0,1...}

The instantaneous state may be of varying dimensions

Any $x_{i_0 \in \{1...N\}}$ can define initial condition

 \land The trajectory over period *i* is defined by

$$\hat{x}_{i_0,i} = \operatorname{vec} \left(\begin{array}{ccc} x_{i_0+Ni} & \cdots & x_{i_0+N(i+1)-1} \end{array} \right)$$

▲ Overall dimensions of system

$$x_k \in \mathsf{R}^{n_k} \ , \ n = \sum_{k=1}^N n_k$$

 $w_k \in \mathsf{R}^{m_k} \ , \ m = \sum_{k=1}^N m_k \ , \ z_k \in \mathsf{R}^{p_k} \ , \ p = \sum_{k=1}^N p_k$

Various models related to various state "definition"

• N-periodic : $x_{k+1} = A_k x_k + B_k w_k$, $z_k = C_k x_k + D_k w_k$

• "Lifted" LTI system with vectors of all instantaneous input/outputs over a period

- Smaller order model with products between data matrices
- A Model is dependent of the choice of $i_0 \in \{1 \dots N\}$

K-LAAS- 😤

IFAC World Congress, July 2008, Seoul

$$oldsymbol{0}$$
 About modeling of N -periodic systems

4

Various models related to various state "definition"

• N-periodic :
$$x_{k+1} = A_k x_k + B_k w_k$$
 , $z_k = C_k x_k + D_k w_k$

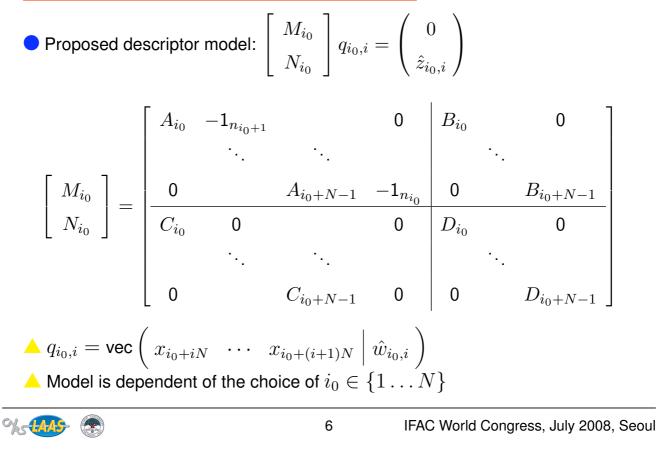
• "Cyclic LTI" model $\tilde{x}_{i_0,k+1} = \tilde{A}_{i_0}\tilde{x}_{i_0,k} + \tilde{B}_{i_0}\tilde{w}_{i_0,k}$

$$\tilde{A}_{i_0} = \begin{bmatrix} 0 & \cdots & 0 & A_{i_0+N-1} \\ A_{i_0} & 0 & 0 \\ & \ddots & & \vdots \\ 0 & A_{i_0+N-2} & 0 \end{bmatrix} \quad \tilde{x}_{i_0,k} = \begin{pmatrix} \tilde{x}_{i_0,k,1} \\ \vdots \\ \tilde{x}_{i_0,k,N-1} \end{pmatrix}$$

where $\tilde{x}_{i_0,k,j} = x_{i_0+k}$ if $j \equiv k[N]$ and otherwise $\tilde{x}_{i_0,k,j} = 0$ \land Switching state-vector containing all states over one period

$$\left\{ \sum_{k=iN}^{i(N+1)-1} \tilde{x}_{i_0,k} = \hat{x}_i \in \mathsf{R}^n \right\}_{i=0,1...}$$

 \land Model is dependent of the choice of $i_0 \in \{1 \dots N\}$



2 Existing H_2 -performance analysis results

Stability analysis results

- Exist for all types of models
- Stability tests independent of choice of i_0
- Most results with periodic Lyapunov function $V_k = x_k^T P_k x_k$, $P_{k+N} = P_k$.
- lacksim For "lifted" models one Lyapunov function $V=x_{i_0+Ni}^TPx_{i_0+Ni}$
 - ightarrow nb decisions variables proportional to $n_{i_0}^2$
 - ▲ "Lifted" models not suitable for robustness

• Proposed descriptor model makes robustness results possible with reduced decision variables of Lyapunov function $V = x_{i_0+Ni}^T P x_{i_0+Ni}$

Robust H_2 -performance results

igcap For polytopic uncertain periodic system $\sum_{v=1}^{\bar{v}} \zeta_v = 1\,$, $\,\zeta_v \geq 0\,$

$$A_{k}(\Delta) = \sum_{v=1}^{\bar{v}} \zeta_{v} A_{k}^{[v]} , \quad B_{k}(\Delta) = \sum_{v=1}^{\bar{v}} \zeta_{v} B_{k}^{[v]} \dots$$

ullet Upper bound on robust H_2 $\gamma_{qs} = \min \sum_{k=0}^{N-1} \operatorname{Trace}(T_k^{[v]})$

$$\begin{aligned} A_{k}^{[v]^{T}} P_{k+1} A_{k}^{[v]} - P_{k} + C_{k}^{[v]^{T}} C_{k}^{[v]} < \mathbf{0} \\ B_{k}^{[v]^{T}} P_{k+1} B_{k}^{[v]} - T_{k}^{[v]} + D_{k}^{[v]^{T}} D_{k}^{[v]} < \mathbf{0} \end{aligned}$$

A Based on "quadratic stability" framework

A Maybe very conservative because parameter-independent Lyapunov fct

8

IFAC World Congress, July 2008, Seoul

2 Existing H_2 -performance analysis results

Robust H_2 -performance results

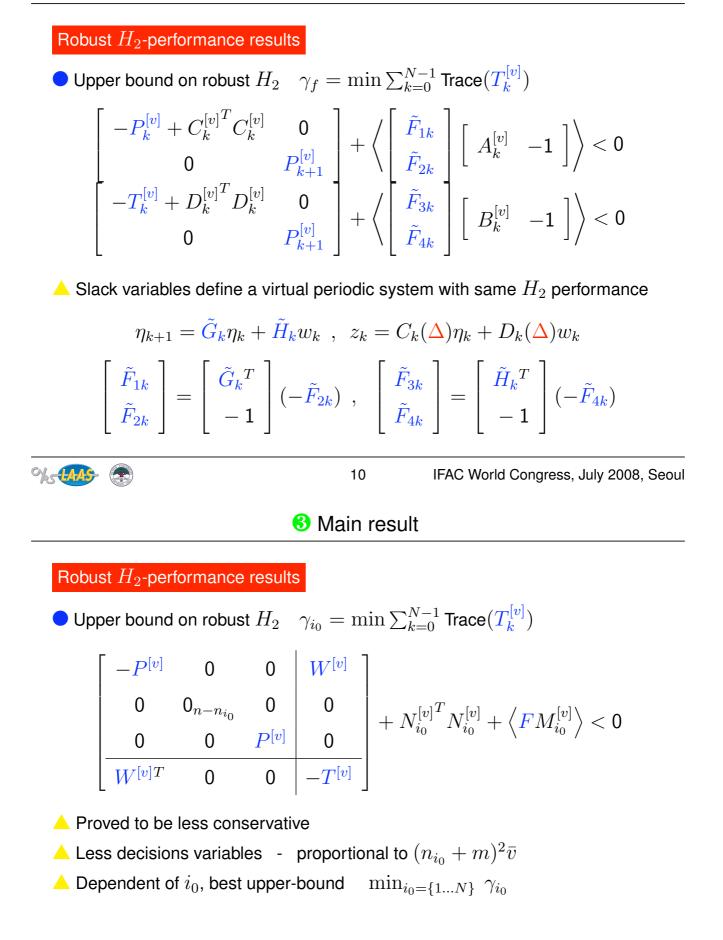
$$lacksquare$$
 Upper bound on robust H_2 $\gamma_f = \min \sum_{k=0}^{N-1} extsf{Trace}(T_k^{[v]})$

$$\begin{bmatrix} -P_{k}^{[v]} + C_{k}^{[v]^{T}} C_{k}^{[v]} & 0 \\ 0 & P_{k+1}^{[v]} \\ -T_{k}^{[v]} + D_{k}^{[v]^{T}} D_{k}^{[v]} & 0 \\ 0 & P_{k+1}^{[v]} \end{bmatrix} + \left\langle \begin{bmatrix} \tilde{F}_{1k} \\ \tilde{F}_{2k} \\ \tilde{F}_{3k} \\ \tilde{F}_{4k} \end{bmatrix} \begin{bmatrix} A_{k}^{[v]} & -1 \end{bmatrix} \right\rangle < 0$$

A Based on "slack variables" framework [Geromel 98, SCL 00], [Farges 05]

A Much less conservative

- ightarrow Many more decisions variables $\$ proportional to $n^2 ar{v}$
- \land Independent of an i_0



Robust H_2 -performance results

• Upper bound on robust $H_2 \quad \gamma_{i_0} = \min \sum_{k=0}^{N-1} \operatorname{Trace}(T_k^{[v]})$ $\mathcal{L}(P^{[v]}, W^{[v]}, T^{[v]}) + N_{i_0}^{[v]^T} N_{i_0}^{[v]} + \langle F M_{i_0}^{[v]} \rangle < 0$

 \land F defines a virtual <u>non-causal</u> periodic system with same H₂ performance

$$\begin{bmatrix} F \\ \hline C_{i_0} & 0 & 0 & D_{i_0} & 0 \\ \hline \vdots \\ 0 & C_{i_0+N-1} & 0 & 0 & D_{i_0+N-1} \end{bmatrix} \begin{pmatrix} x_{i_0+iN} \\ \vdots \\ \frac{x_{i_0+(i+1)N}}{\hat{w}_{i_0,i}} \end{pmatrix} = \begin{pmatrix} 0 \\ \hat{z}_{i_0,i} \end{pmatrix}$$
• Other upper-bounds that can be defined

 $igtriangleq \gamma^a_{i_0}$: with structure on F to make the virtual system causal, yet dynamic

 $igtriangleq \gamma^s_{i_0}$: with structure on F to make the virtual system static

Dimensions of the example $n_k=2, \, p_k=2, \, m_k=1, \, N=3, \, ar{v}=4$

 \bigcirc Lower bound on worst case H_2 performance evaluated on a grid

	γ_{qs}	γ_{f}	γ_{wc}
	19.8482	7.7257	6.8430
nb vars/rows	25/45	103/99	∞
i_0	γ_{nc}	γ_d	γ_s
1	7.4100	8.1173	8.2347
2	7.4003	8.1236	8.2607
3	7.1730	7.4646	8.3482
nb vars/rows	127/57	109/57	91/57

Key results

- New descriptor type modeling
- Less conservative LMI results
- Size of the LMI problem maintained

Future work

- ▲ Extensions for other performance criteria
- ▲ Usage of virtual non-causal system
- A Feedback control design

14

IFAC World Congress, July 2008, Seoul