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Problem statement

Passification and Passivity-based techniques :
➞ linear and nonlinear control
➞ simplicity and physical meaning
➞ robustness
➞ applications to adaptive control, control of partially linear composite systems,
flight control, process control...

Passification of LTI systems :
➞ SISO and MIMO
➞ SOF for Strict Positive Real⇔ hyper-minimum-phaseness
➞ Proof of robustness w.r.t. parametric uncertainty (norm-bounded)
➞ Passification of non square systems: G-passification
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Problem statement

Let an LTI uncertain system:

W (s, ∆) ∼






ẋ = A(∆)x + Bu

y = Cx

rational with respect to∆

A(∆) = A + B∆∆(I−D∆∆)−1C∆

uncertain constant real or complex norm-bounded:

∆∆C = {∆ ∈ Cm∆×l∆ : ∆∗∆ ≤ I} ,

∆∆R = {∆ ∈ Rm∆×l∆ : ∆T ∆ ≤ I} .

And letG ∈ Cm×p be given, where B ∈ Cn×m and C ∈ Cp×n
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Problem statement

RobustG-Hyper-Minimum-Phaseness

The system is robustlyG-HMP if ∀∆ ∈ ∆∆

φ(s, ∆) = det(sI− A(∆)) det GW (s, ∆) = det




sI− A(∆) −B

GC O





is Hurwitz and the high-frequency gain of GW (s, ∆) is a square symmetric
positive definite matrix: GCB = B∗C∗G∗ > O.

➞ Generalizes HMP to non-square systems.

➞ Robustness: infinite number of conditions to test.
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Problem statement

Parameter-dependent and unique static output-feedback

PD-SOF :u = K(∆)y + v SOF :u = Ky + v

RobustG-Passive control

The closed-loop system is robustly strictlyG-passive if ∀∆ ∈ ∆∆

there exists a quadratic PD storage function V (x, ∆) = x∗H(∆)x > 0

and a scalar ρ(∆) > 0 such that

V (x(t), ∆) ≤ V (x(0), ∆) +

t∫

0

[
v(θ)∗Gy(θ)− ρ(∆)|x(θ)|2

]
dθ

➞ Generalizes strict passivity for non-square systems
➞ G-passification : findK that makes the closed-loopG-passive
➞ G-passification ofW (s) '= Passification ofGW (s)
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Problem statement

Theorem 1 : [Fradkov 1976-2003] Equivalence of
① W (s, ∆) is robustlyG-HMP
② W (s, ∆) is robustlyG-passifiable by PD-SOFK(∆)

③ ∃K unique that robustlyG-passificatesW (s, ∆)

Proof (Sketch)
G-HMP⇒ High gain control for any∆:

K(∆) = −k(∆)G : k(∆) > 0 , sufficiently large

Well-posedness of uncertain modeling: K = −max∆∈∆∆ k(∆)G

Outline
① LMI results for robustG-HMP analysis
③ LMI results for robustG-passifying SOF design
➞ Numerical example : cruise missile model.
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RobustG-HMP analsyis

Theorem 1 Let the following matrices

N = (GC)⊥ , M = (NN∗ + BB∗)−1 , Ã = N∗MAN .

W (s, ∆) , ∆ ∈ ∆∆C is robustly G-HMP

if and only if GCB > O and ∃P > O ∈ C



PÃ + Ã∗P PN∗MB∆

B∗
∆MNP −I



 +




N∗C∗

∆

D∗
∆








N∗C∗

∆

D∗
∆





∗

< O

where N = (GC)⊥ and M = (NN∗ + BB∗)−1.

In case ∆ ∈ ∆∆R, P ∈ R ; LMI conditions are only sufficient.

Proof
RobustG-HMP is reformulated as
the robust Hurwitz stability of a reduced order system.
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RobustG-passifying design

Theorem 2 W (s, ∆) is uniformly robustly strictly G-passifiable via SOF

if and only if ∃H > O ∈ C, ∃K ∈ C:

HB = C∗G∗



HA + A∗H + C∗(G∗K + K∗G)C HB∆

B∗
∆H −I



 +




C∗

∆

D∗
∆








C∗

∆

D∗
∆





∗

< O

Proof
Classical LMI results for ’quadratic’ stability
➞ Uniform storage function V (x, ∆) = V (x) = x∗Hx.
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RobustG-passifying design

Theorem 3 W (s, ∆) is uniformly robustly strictly G-passifiable via SOF

if and only if ∃H > O ∈ C, ∃K ∈ C:

HB = C∗G∗



HA + A∗H + C∗(G∗K + K∗G)C HB∆

B∗
∆H −I



 +




C∗

∆

D∗
∆








C∗

∆

D∗
∆





∗

< O

Remarks
✪ Thm 2⇒ Thm 1 withP = N∗HN (conjecture : converse also holds)
✪ PB : designK andG simultaneously ?

LMI problem if ∃S such thatPB = BS (conservative)
✪ Always possible to takeK = −kG if feasible.
✪ Possible to add LMI constraints onK, e.g. findK with minimum norm.
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Numerical example : cruise missile

Model definiion

➞ 4th order model of lateral dynamics for cruise missile + actuator dynamics
➞ Dynamics depend on altitude h ∈ [h h̄] ⊂ R+ (converted into∆ ∈ ∆∆R)
➞ Measured outputs:
yaw angle ϕ(t), yaw angular rate r(t) and the rudder deflection angle δr(t)

➞ Control input: rudder servo command signal
➞ G is chosen a priori such thatGCB > O.
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Numerical example : cruise missile

RobustG-HMP analysis

✪ For h = 0 and h̄ = 10km : feasible

✪ For h = 9.9925km and h̄ = 10.2105km : feasible

✪ For h = 0 and h̄ = 10.2105km : infeasible

➞ h = 10.1 + 0.5i makes system nonG-HMP.

➞ Conservatism for real-valued uncertainty.
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➞ Exists a SOF for h ∈ [0 10.2105], cannot be found with Thm 2.
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Numerical example : cruise missile

RobustG-passifying SOF design Assume h ∈ [0 10]

✪ Thm 2 →K1 = −
[

79.28 50.34 11.92
]

✪ Thm 2,min ‖K‖: →K2 = −
[

60.75 34.47 10.67
]

✪ Thm 2,minK=−kG k, : →K3 = −
[

118.53 44.45 14.82
]

Yaw angle and rudder deflection

for controlK2

and for h = 0.1 , 5 , 9
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Conclusion

➞Non-conservative (complex case) LMI conditions of robust strict G-passification

➞ Conservative LMI design method

✪ Design simultaneouslyK andG

✪ Design of robustG-passifying adaptive control u(t) = K(t)y(t)
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