Robust passification via static output feedback - LMI results Dimitri PEAUCELLE[†] & <u>Alexander FRADKOV</u>[‡] & Boris ANDRIEVSKY[‡] † LAAS-CNRS - Toulouse, FRANCE ‡ IPME-RAS - St Petersburg, RUSSIA

Passification and Passivity-based techniques :

- → linear and nonlinear control
- \rightarrow simplicity and physical meaning
- → robustness
- \rightarrow applications to adaptive control, control of partially linear composite systems,

flight control, process control...

Passification of LTI systems :

- → SISO and MIMO
- \rightarrow SOF for Strict Positive Real \Leftrightarrow hyper-minimum-phaseness
- → Proof of robustness w.r.t. parametric uncertainty (norm-bounded)
- → Passification of non square systems: G-passification

Let an LTI uncertain system:

$$W(s,\Delta) \sim \begin{cases} \dot{x} = A(\Delta)x + Bu\\ y = Cx \end{cases}$$

rational with respect to Δ

$$A(\Delta) = A + B_{\Delta} \Delta (\mathbf{I} - D_{\Delta} \Delta)^{-1} C_{\Delta}$$

uncertain constant real or complex norm-bounded:

And let $G \in \mathbb{C}^{m \times p}$ be given, where $B \in \mathbb{C}^{n \times m}$ and $C \in \mathbb{C}^{p \times n}$

Robust G-Hyper-Minimum-Phaseness

The system is robustly G-HMP if $\forall \Delta \in \Delta$

$$\phi(s,\Delta) = \det(s\mathsf{I} - A(\Delta)) \det GW(s,\Delta) = \det \begin{bmatrix} s\mathsf{I} - A(\Delta) & -B \\ GC & \mathsf{O} \end{bmatrix}$$

is Hurwitz and the high-frequency gain of $GW(s, \Delta)$ is a square symmetric positive definite matrix: $GCB = B^*C^*G^* > 0$.

- \rightarrow Generalizes HMP to non-square systems.
- \rightarrow Robustness: infinite number of conditions to test.

Parameter-dependent and unique static output-feedback

$$\mathsf{PD}\text{-}\mathsf{SOF}: u = \mathbf{K}(\Delta)y + v \qquad \mathsf{SOF}: u = \mathbf{K}y + v$$

Robust *G*-Passive control

The closed-loop system is robustly strictly *G*-passive if $\forall \Delta \in \Delta$ there exists a quadratic PD storage function $V(x, \Delta) = x^* \mathbf{H}(\Delta) x > 0$ and a scalar $\rho(\Delta) > 0$ such that

$$V(x(t),\Delta) \le V(x(0),\Delta) + \int_{0}^{t} \left[v(\theta)^{*} Gy(\theta) - \rho(\Delta) |x(\theta)|^{2} \right] d\theta$$

→ Generalizes strict passivity for non-square systems

 \rightarrow G-passification : find K that makes the closed-loop G-passive

 ${\blue}$ ${\blue}$ ${\blue}$ G -passification of W(s) ${\blue}$ Passification of GW(s)

Theorem 1 : [Fradkov 1976-2003] Equivalence of

 $\textcircled{1} W(s, \Delta)$ is robustly $G\text{-}\mathsf{HMP}$

 $\circledast W(s, \Delta)$ is robustly $G\text{-}\mathsf{passifiable}$ by PD-SOF $\mathbf{K}(\Delta)$

 $\circledast \exists \mathbf{K}$ unique that robustly $G\text{-}\mathsf{passificates}\; W(s,\Delta)$

Proof (Sketch)

G-HMP \Rightarrow High gain control for any Δ :

 $\mathbf{K}(\Delta) = -\mathbf{k}(\Delta) G ~:~ \mathbf{k}(\Delta) > 0 ~,~ \text{sufficiently large}$

Well-posedness of uncertain modeling: $\mathbf{K} = -\max_{\Delta \in \Delta} \mathbf{k}(\Delta) G$

Outline

1 LMI results for robust $G\text{-}\mathsf{HMP}$ analysis

 $\ensuremath{\textcircled{3}}$ LMI results for robust $G\ensuremath{-}\ensuremath{\mathsf{passifying}}$ SOF design

 \rightarrow Numerical example : cruise missile model.

Theorem 1 Let the following matrices

$$N = (GC)^{\perp}$$
, $M = (NN^* + BB^*)^{-1}$, $\tilde{A} = N^*MAN$.

 $W(s, \Delta), \Delta \in \Delta^{\mathsf{C}}$ is robustly *G*-HMP if and only if $GCB > \mathsf{O}$ and $\exists \mathbf{P} > \mathsf{O} \in \mathsf{C}$

$$\begin{bmatrix} \mathbf{P}\tilde{A} + \tilde{A}^*\mathbf{P} & \mathbf{P}N^*MB_{\Delta} \\ B_{\Delta}^*MN\mathbf{P} & -\mathbf{I} \end{bmatrix} + \begin{bmatrix} N^*C_{\Delta}^* \\ D_{\Delta}^* \end{bmatrix} \begin{bmatrix} N^*C_{\Delta}^* \\ D_{\Delta}^* \end{bmatrix}^* < \mathbf{O}$$

where $N = (GC)^{\perp}$ and $M = (NN^* + BB^*)^{-1}$.

In case $\Delta \in \Delta^{\mathsf{R}}$, $\mathbf{P} \in \mathsf{R}$; LMI conditions are only sufficient.

Proof

Robust G-HMP is reformulated as

the robust Hurwitz stability of a reduced order system.

Theorem 2 $W(s, \Delta)$ is uniformly robustly strictly *G*-passifiable via SOF if and only if $\exists \mathbf{H} > \mathbf{O} \in \mathsf{C}$, $\exists \mathbf{K} \in \mathsf{C}$:

$$\begin{aligned} \mathbf{H}B &= C^* G^* \\ \begin{bmatrix} \mathbf{H}A + A^* \mathbf{H} + C^* (G^* \mathbf{K} + \mathbf{K}^* G) C & \mathbf{H}B_{\Delta} \\ B_{\Delta}^* \mathbf{H} & -\mathbf{I} \end{bmatrix} + \begin{bmatrix} C_{\Delta}^* \\ D_{\Delta}^* \end{bmatrix} \begin{bmatrix} C_{\Delta}^* \\ D_{\Delta}^* \end{bmatrix}^* < \mathbf{0} \end{aligned}$$

Proof

Classical LMI results for 'quadratic' stability

→ Uniform storage function $V(x, \Delta) = V(x) = x^* \mathbf{H} x$.

Theorem 3 $W(s, \Delta)$ is uniformly robustly strictly *G*-passifiable via SOF if and only if $\exists \mathbf{H} > \mathbf{O} \in \mathsf{C}$, $\exists \mathbf{K} \in \mathsf{C}$:

$$\begin{aligned} \mathbf{H}B &= C^* G^* \\ \begin{bmatrix} \mathbf{H}A + A^* \mathbf{H} + C^* (G^* \mathbf{K} + \mathbf{K}^* G) C & \mathbf{H}B_{\Delta} \\ B_{\Delta}^* \mathbf{H} & -\mathbf{I} \end{bmatrix} + \begin{bmatrix} C_{\Delta}^* \\ D_{\Delta}^* \end{bmatrix} \begin{bmatrix} C_{\Delta}^* \\ D_{\Delta}^* \end{bmatrix}^* < \mathbf{0} \end{aligned}$$

Remarks

Thm 2 \Rightarrow Thm 1 with $\mathbf{P} = N^* \mathbf{H} N$ (conjecture : converse also holds)

 \bigcirc PB : design K and G simultaneously ?

LMI problem if $\exists S$ such that PB = BS (conservative)

• Always possible to take $\mathbf{K} = -\mathbf{k}G$ if feasible.

 $\ensuremath{\mathfrak{O}}$ Possible to add LMI constraints on K, e.g. find K with minimum norm.

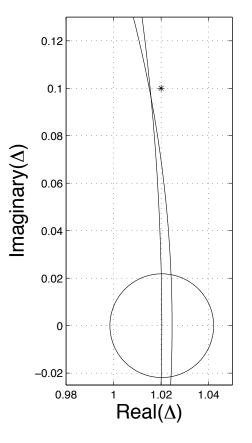
Model definiion

- \rightarrow 4th order model of lateral dynamics for cruise missile + actuator dynamics
- \rightarrow Dynamics depend on altitude $h \in [\underline{h} \ \overline{h}] \subset \mathsf{R}^+$ (converted into $\Delta \in \Delta^R$)
- → Measured outputs:

yaw angle $\varphi(t)$, yaw angular rate r(t) and the rudder deflection angle $\delta_r(t)$

- → Control input: rudder servo command signal
- \rightarrow *G* is chosen *a priori* such that *GCB* > **O**.

Robust G-HMP analysis

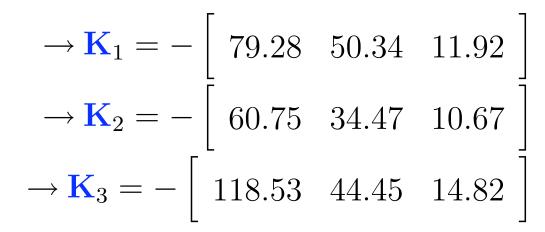


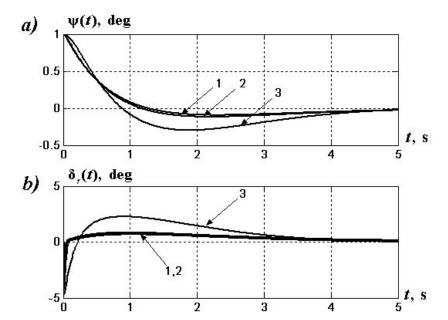
 \rightarrow Exists a SOF for $h \in [0 \ 10.2105]$, cannot be found with Thm 2.

Robust G-passifying SOF design Assume $h \in [0 \ 10]$

Thm 2

- **⊘** Thm 2, min **||K||**:
- \odot Thm 2, $\min_{\mathbf{K}=-\mathbf{k}G} \mathbf{k}$, :





Yaw angle and rudder deflection for control ${\bf K}_2$ and for $h=0.1\ ,\ 5\ ,\ 9$

- → Non-conservative (complex case) LMI conditions of robust strict G-passification
- → Conservative LMI design method
- $\ensuremath{\mathfrak{O}}$ Design simultaneously K and G
- **O** Design of robust *G*-passifying adaptive control $u(t) = \mathbf{K}(t)y(t)$

