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Problem statement

— linear and nonlinear control

— simplicity and physical meaning

— robustness

— applications to adaptive control, control of partially linear composite systems,

flight control, process control...

— SISO and MIMO
— SOF for Strict Positive Real << hyper-minimum-phaseness
— Proof of robustness w.r.t. parametric uncertainty (norm-bounded)

— Passification of non square systems: G-passification
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Problem statement

Let an LTI uncertain system:

(
r=A(\N)x + Bu
Wis, A) ~ < (2)

Y= Cx
rational with respect to

A(A) = A+ BaA(l — DAN)ICA
uncertain constant real or complex norm-bounded:

AC :{ c CmAXlA : * < I}7
AR =LA ¢ Rmaxla o ATA <)

And let G € C"™*P be given, where B € C"*™ and C' € CP*"
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Problem statement

The system is robustly G-HMP if VA € A

sl—A(A) —B
GC O

(s, AN) =det(sl — A(A)) det GW (s, ) = det

is Hurwitz and the high-frequency gain of GW(S, A) IS a square symmetric
positive definite matrix: GC'B = B*C*G* > O.

— Generalizes HMP to non-square systems.

— Robustness: infinite number of conditions to test.
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Problem statement

PD-SOF :u = K(A)y + v SOF :u = Ky + v

The closed-loop system is robustly strictly G-passive if V/\ € A\
there exists a quadratic PD storage function |/ (z, A) = 2*H(A)z > 0
and a scalar p(/\) > 0 such that

V(@(t), ) < V((0),2) + [ [06)'Gy(0) — p(2)]2(6)[?] db

— Generalizes strict passivity for non-square systems
— (5-passification : find KK that makes the closed-loop (G-passive
— (-passification of IV (s) # Passification of GW (s)
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Problem statement

® W (s, ) is robustly G-HMP
@ W (s, /\) is robustly G-passifiable by PD-SOF K (/)
@ JK unique that robustly GG-passificates W (s, /\)

'Proof| (Sketch)

(G-HMP = High gain control for any /\:

K(A) = —-k(A)G @ k(A) >0, sufficiently large

Well-posedness of uncertain modeling: K = — max ca k()G

@ LMI results for robust G-HMP analysis
@ LMI results for robust (-passifying SOF design

— Numerical example : cruise missile model.
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Robust (G-HMP analsyis

Theorem 1 Let the following matrices
N=(GC)* , M=(NN*+BB*)™* , A= N*MAN .

Wi(s,A), A € A is robustly G-HMP
ifand only if GCB > Oand dP > 0O € C

PA+ A*P PN*MBa N*C%
+ <O

BXMNP | D D%

where N = (GC)* and M = (NN* + BB*)™!.

In case /\ & Z&R, P € R ; LMI conditions are only sufficient.

Proof
Robust (G-HMP is reformulated as

the robust Hurwitz stability of a reduced order system.
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Robust (G-passifying design

Theorem 2 W(S, ) is uniformly robustly strictly (z-passifiable via SOF
ifandonlyif dH > O € C, dK € C:

HB = C*G*
HA 4+ A*H + C*(G*K + K*G)C HBa . Ci || Ca| _g
BiH — D% | | Di
Proof

Classical LMI results for ‘quadratic’ stability

— Uniform storage function V' (z, ) = V(z) = 2*Hu.
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Robust (G-passifying design

Theorem 3 1V (s, /\) is uniformly robustly strictly G-passifiable via SOF
ifandonlyif 3H > O € C, dK € C:

HB = C*G*
HA+ A*H + C*(G*K + K*G)C HBa . cx | | Cxk =5
BiH — D% | | Dx
Remarks

@ Thm 2 = Thm 1 with P = N*HN (conjecture : converse also holds)
@ PB : design K and G simultaneously ?

LMI problem if S such that P B = BS (conservative)
@ Always possible to take K = —k( if feasible.

@ Possible to add LMI constraints on K, e.g. find KK with minimum norm.
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Numerical example : cruise missile

Model definiion

— 4th order model of lateral dynamics for cruise missile + actuator dynamics
— Dynamics depend on altitude i € [h h] C R (converted into A € A*)
— Measured outputs:

yaw angle (), yaw angular rate r(¢) and the rudder deflection angle ¢,.(%)
— Control input: rudder servo command signal

— (5 is chosen a priori such that GCB > O.
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Numerical example : cruise missile

0.12

0.1

& For h = 0 and h = 10km : feasible

0.08

O For b = 9.9925km and h = 10.2105km : feasible |
O Forh = 0and h = 10.2105km : infeasible §
— h = 10.1 4 0.52 makes system non GG-HMP. o

Ok

— Conservatism for real-valued uncertainty.

-0.02
0.98 1 1.02 1.04

Real(A)

— Exists a SOF for h € [0 10.2105], cannot be found with Thm 2.
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Numerical example : cruise missile

FGBUECEFRREAG SORGRRGA Ao < 0 1

@ Thm 2 — Ky =—179.28 50.34 11.92
& Thm 2, min | K||: — Ko = —1 60.75 34.47 10.67
@ Thm 2, ming—_ra k, : — Kg = —| 118.53 44.45 14.82
d) 1 y (1), degI |
Yaw angle and rudder deflection R / """"""""""""" ;
for control K> N 1 2 3 4 5
andforh =0.1, 5, 9

11 IFAC’05, 4-8 July 2005, Prague



Conclusion

— Non-conservative (complex case) LMI conditions of robust strict G-passification

— Conservative LMI design method

@ Design simultaneously K and G

& Design of robust GG-passifying adaptive control u(t) = K(t)y(t)
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