Robust Analysis using RoMulOC

for the Longitudinal Control of a Civil Aircraft

IEEE-MSC - Yokohama - September 8-10, 2010

Test robust analysis tools on aerospace industrial application

- LMIs for parameter-dependent Lyapunov functions results
- Two type of results based on two different uncertain models
- Stability and performances (pole location, H_{∞} , H_2 , impulse-to-peak)

RoMulOC

- Tests performed using the RoMulOC toolbox
- LMIs in YALMIP format, solved using SeDuMi and SDPT3
- Indications on the numerical performances of the toolbox
- Aircraft motion in the vertical plane (longitudinal)
- LTI uncertain modeling of the non-linear aircraft and the control
- Models that cover the flight envelope

Uncertain modeling

- 2 LMIs for parameter-dependent Lyapunov functions results
- 8 RoMulOC toolbox
- Oumerical results
- Conclusions

Aircraft motion in the vertical plane (longitudinal)

Actuators: elevators

Dynamics: angle of attack + pitch rate

Sensors: modeled as first order

Control: gain scheduled dynamic

Closed-loop system of order 9

Non-linear model + controller are linearized at 633 flight configurations

6 parameters:

weight, balance, speed,

Mach nb, altitude, motor thrust.

Analysis of each 633 LTI models

gives small information on robustness for the total flight envelope

LFT model can be build to have a parameter-dependent LTI representation of the whole flight envelope: uncertainty blocs of size 150!

Adopted strategy: build uncertain models valid around each flight configuration
Union of local uncertain models covers the flight envelope

Robust analysis gives upper bounds on performances achievable locally

Adopted strategy: build uncertain models valid around each flight configuration For a given flight configuration θ_i algorithm gives its neighbors in parametric space $\theta_{j \in N(i)}$. Heuristic algorithm combines Euclidian distance in the 6D space θ + search along parametric directions. Tuned to provide 8 to 12 neighbors with a mean value of 11.19. Uncertain model around θ_i is defined as the convex hull of models at $\theta_{j \in N(i)}$ $\begin{pmatrix} \dot{x} \\ z \end{pmatrix} = \begin{vmatrix} A_i(\zeta) & B_i(\zeta) \\ C_i(\zeta) & A_i(\zeta) \end{vmatrix} \begin{pmatrix} x \\ w \end{pmatrix} = \sum_{j \in N(i)} \zeta_j \begin{vmatrix} A_j & B_j \\ C_j & D_j \end{vmatrix} \begin{pmatrix} x \\ w \end{pmatrix}$: $\sum \zeta_i = 1$, $\zeta_i > 0$

Uncertain model around θ_i is defined as the convex hull of models at $\theta_{j\in N(i)}$

$$\begin{pmatrix} \dot{x} \\ z \end{pmatrix} = \begin{bmatrix} A_i(\boldsymbol{\zeta}) & B_i(\boldsymbol{\zeta}) \\ C_i(\boldsymbol{\zeta}) & A_i(\boldsymbol{\zeta}) \end{bmatrix} \begin{pmatrix} x \\ w \end{pmatrix} = \sum_{j \in N(i)} \boldsymbol{\zeta}_j \begin{bmatrix} A^{[j]} & B^{[j]} \\ C^{[j]} & D^{[j]} \end{bmatrix} \begin{pmatrix} x \\ w \end{pmatrix}$$

: $\sum \boldsymbol{\zeta}_j = 1 , \ \boldsymbol{\zeta}_j \ge 0$

Each uncertain model is also converted in LFT form

$$\begin{pmatrix} \dot{x} \\ z_{\Delta} \\ z \end{pmatrix} = \begin{bmatrix} A_i & B_{\Delta i} & B_i \\ C_{\Delta i} & \mathbf{0} & D_{\Delta w i} \\ C_i & D_{z\Delta i} & D_{\Delta i} \end{bmatrix} \begin{pmatrix} x \\ w_{\Delta} \\ w \end{pmatrix}, \quad w_{\Delta} = \sum_{j \in N(i)} \boldsymbol{\zeta}_j \Delta^{[j]} z_{\Delta} \\ \vdots \quad \sum \boldsymbol{\zeta}_j = 1 , \quad \boldsymbol{\zeta}_j \ge 0$$

Performances to be tested

Stability

H₂ norm - measure of control effort due to noise
(w additive noise on measurements, z = u control signal)
H_∞ norm - stability margin w.r.t. dynamic uncertainty
(w additive signal on control u, z = y measurements)
Impulse-to-peak - control peak to initial conditions
(w impulse on state vector, z = u control signal)

- Uncertain modeling
- 2 LMIs for parameter-dependent Lyapunov functions results
- 8 RoMulOC toolbox
- Oumerical results
- Onclusions

2 results for polytopic models

• Quadratic stability' - $V(x) = x^T P x$ independent of uncertain parameters

$$A^{[j]T}P + PA^{[j]} < \mathbf{0} , P > \mathbf{0}$$

• Polytopic PDLF - $V(x) = x^T \left(\sum \zeta_j P^{[j]} \right) x$ 'Slack variable' approach [SCL 00]

$$\begin{bmatrix} \mathbf{0} & P^{[j]} \\ P^{[j]} & \mathbf{0} \end{bmatrix} < F \begin{bmatrix} A^{[j]} & -\mathbf{1} \end{bmatrix} + \begin{bmatrix} A^{[j]T} \\ -\mathbf{1} \end{bmatrix} F^T , P^{[j]} > \mathbf{0}$$

1 result for LFT models

• Quadratic PDLF -
$$V(x) = x^T \begin{bmatrix} \mathbf{1} & \Delta^T \end{bmatrix} \hat{P} \begin{bmatrix} \mathbf{1} \\ \Delta \end{bmatrix} x, \quad \Delta = \sum \zeta_j \Delta^{[j]}$$

Г

'Quadratic separation' approach [Iwasaki 01]

$$\mathcal{L}(\hat{P},\Theta) < \mathbf{0} \ , \ \left[egin{array}{ccc} \mathbf{1} & \Delta^{[j]T} \end{array}
ight] \Theta \left[egin{array}{ccc} \mathbf{1} \ \Delta^{[j]} \end{array}
ight] \leq \mathbf{0} \ , \ \hat{P} > \mathbf{0}$$

Results of all three methods are extended to deal with the performance criteria (pole location, H_2 , H_∞ and impulse-to-peak)

- Uncertain modeling
- 2 LMIs for parameter-dependent Lyapunov functions results
- 8 RoMulOC toolbox
- Oumerical results
- Conclusions

Robust Multi-Objective Control toolbox

Freely distributed at www.laas.fr/OLOCEP/romuloc

Includes uncertain modeling features

- **Robust Multi-Objective Control toolbox**
- Freely distributed at www.laas.fr/OLOCEP/romuloc
- Includes uncertain modeling features

AAS-CNRS

```
>> usys_hinf
Uncertain model : LFT
 ----- WITH -----
            n=9 md=6 mw=1 mu=1
n=9 dx = A*x + Bd*wd + Bw*w + Bu*u
pd=7 zd = Cd*x + Ddw*w + Ddu*u
pz=3 z = Cz * x + Dzd * wd + Dzw * w
py=2 y = Cy \star x
continuous time ( dx : derivative operator )
 ---- AND
            _____
wd = #1 * zd
index size constraint
                                         name
#1
  6x7 polytope 11 vertices real
```

13 IEEE-MSC - Yokohama - September 8-10, 2010

Robust Multi-Objective Control toolbox

- Freely distributed at www.laas.fr/OLOCEP/romuloc
- LMI formulas pre-coded easy to generate

quiz = ctrpb('a',LyapType) + h2(usys_h2)

LyapType defines the method to be applied h2 or stability, dstability, hinfty, i2p: performance to test quiz contains the LMI constraints and variables in YALMIP format Solve the LMI problem with any solver

result = solvesdp(quiz, sdpsettings(...))

- Uncertain modeling
- 2 LMIs for parameter-dependent Lyapunov functions results
- 8 RoMulOC toolbox
- <u>Numerical results</u>
- 6 Conclusions

Table 1: LMI sizes and times for stability tests

	No. of vars	No. of rows	Mean time
quad-poly	45	110	0.25s
PDLF-poly	676	215	0.93s
PDLF-LFT	456	221	1.08s

Table 2: Results for settling time criterion

	$\sigma_\%$	Mean time per LMIs	Mean nb iter
quad-poly	15.27%	0.35s	7.29
PDLF-poly	2.38%	1.35s	1.95
PDLF-LFT	2.38%	1.45s	1.96

Robust upper bound on σ optimized by bisection (iterative LMI algorithm) $\sigma_{\%}$: Gap between robust upper bound and worst case on vertices

Table 3: Results for damping criterion

	$\psi_{\%}$	Mean time per LMIs	Mean nb iter
quad-poly	11.40%	0.46s	6.45
PDLF-poly	1.44%	1.76s	1.25
PDLF-LFT	1.62%	1.52s	1.75

Table 4: Damping criterion for two particular flight points

		$\psi^*(i)$		
i	$\psi_m(i)$	quad-poly	PDLF-poly	PDLF-LFT
15	0.7286	0.5408	0.7213	0.6650
517	0.4978	0.4200	0.4735	0.4766

Table 5: Results for robust \mathcal{H}_∞ cost

	$\gamma_\infty\%$	Mean time	Less conservative
quad-poly	39.64%	0.55s	
PDLF-poly	0.19%	2.38s	52
PDLF-LFT	0.26%	9.04s	2

Table 6: Results for robust impulse-to-peak criterion

	$\gamma_{i2p\%}$	Mean time	Less conservative
quad-poly	43.59%	0.81s	
PDLF-poly	27.98%	2.66s	500
PDLF-LFT	30.16%	6.39s	0

- Uncertain modeling
- 2 LMIs for parameter-dependent Lyapunov functions results
- 8 RoMulOC toolbox
- Oumerical results
- Conclusions

Parameter-dependent Lyapunov type results tested on an industrial application Overall test over 633 points takes 3 hours on a PC (negligible compared to Monte Carlo tests on high order non-linear model) May be used at the control design phase to pre-validate (or not) a control law Gives information on robust stability and performances Can be used to return LPV controllers in regions of the flight domain. PDLF results show very low conservatism PDLF-Poly always better than PDLF-LFT (can it be proved?) No severe numerical problem - Validates the coding of LMIs in RoMulOC

>www.laas.fr/OLOCEP/romuloc

