LAAS CNRS

Discussion on S-variable based static-output feedback design heuristics

Dimitri Peaucelle - LAAS-CNRS

Acknowledgements: D. Arzelier, F. Dabbene, Y. Ebihara, T. Holicki, S. Formentin, M. Sadabadi, R. Tempo, L. Zaccarian

```
Torino - October 20, }202
```

Find a gain $K \in \mathbb{R}^{m \times p}$ such that $\dot{x}=(A+B K C) x$ is stable
\Rightarrow Without having an initial guess
\neq Knowing $A+B K_{o} C$ stable, find a better gain (with some criterion)
\Rightarrow Without having indications of a range of admissible values no possibility to test on a grid
\Rightarrow Robust w.r.t. uncertainties in A, B and C eg. matrices in a polytope
\Rightarrow Structured : eg. K diagonal (decentralized control)

Structured Static Output Feedback - a generic problem

Assume a linear plant $\quad \dot{x}=A\left(K_{1}, \ldots, K_{\bar{k}}\right) x$ rational in the design parameters $K_{k=1 \ldots \bar{k}}$
\Rightarrow Linear plant : First step before considering nonlinear dynamics
$\Rightarrow K_{k}$: gains of a dynamic control, filter param., decentralized control ... or plant parameters
\Rightarrow Rational in the parameters : or in 'gains' with one-to-one NL maps to true design parameters
It can always be reformulated (Linear Fractional Transformation) as a feedback control loop

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array} \quad u=K y=\left[\begin{array}{ccc}
I_{r_{1}} \otimes K_{1} & & 0 \\
0 & \ddots & 0 \\
0 & & I_{r_{\bar{k}}} \otimes K_{\bar{k}}
\end{array}\right] y\right.
$$

where K is structured (block-diagonal), parameters may be repeated: $I_{r_{k}} \otimes K_{k}$.
\Rightarrow with $y:=y-D u$ one may consider $D=0$
\Rightarrow All these design problems look 'simple': find a (structured) K s.t. $A+B K C$ is Hurwitz

Find a (structured) K s.t. $A+B K C$ is Hurwitz \Leftarrow minimization of a non-linear, non-smooth function
\Rightarrow [Apkarian, Noll 2003] optimize an H_{∞} gain (and more) - hinfstruct - Clark's sub-gradient
\Rightarrow [Overton et al. 2006] optimize an H_{∞}, H_{2} gains, spectral abscissa - Hifoo - gradient sampling
\Rightarrow [Peretz 2013] optimize the spectral abscissa - randomized approximation
$\Delta \Delta$ Very efficient in practice
∇ Randomized flavour (random initial conditions, randomization in the algorithm)
∇ No extensions to robust design
Lyapunov based approches with matrix inequalities may handle robustness

$$
\begin{gathered}
P \succ 0, \quad(A+B K C)^{*} P+P(A+B K C)=\{P(A+B K C)\}^{\mathcal{H}} \prec 0 \\
Q \succ 0, \quad\{(A+B K C) Q\}^{\mathcal{H}} \prec 0
\end{gathered}
$$

∇ Bilinear matrix inequalities (not convex)

Find a (structured) K s.t. $A+B K C$ is Hurwitz is sometimes convex (up to a transformation)
$\Rightarrow B=C=I$ State-Injection : $\{P A+L\}^{\mathcal{H}} \prec 0$ gives $K=P^{-1} L$
$\Rightarrow B=I$ Output-Injection : $\{P A+L C\}^{\mathcal{H}} \prec 0$ gives $K=P^{-1} L$
$\Rightarrow C=I$ State-Feedback : $\{A Q+B F\}^{\mathcal{H}} \prec 0$ gives $K=F Q^{-1}$
\Rightarrow Almost commutative on the input : $\{P A+B L C\}^{\mathcal{H}} \prec 0, P B=B \hat{P}$ gives $K=\hat{P}^{-1} L$
\Rightarrow Almost commutative on the output : $\{A Q+B F C\}^{\mathcal{H}} \prec 0, C Q=\hat{Q} C$ gives $K=F \hat{Q}^{-1}$
∇ Applies only to special cases
Δ Robustness can be considered
(eg. test on all vertices with common decision variables proves stability of the polytope)
Structured K cannot be considered
unless one considers structured P and Q (very conservative)

Simple P - K-iterative algorithm

```
Initialization Choose a positive definite \(P\)
    K-iteration For fixed \(P\) find \(K=\arg \min \alpha\) under \(\{P(A+B K C)\}^{\mathcal{H}} \prec \alpha I\)
    P-iteration For fixed \(K\) find \(P=\arg \min \alpha\) under \(\{P(A+B K C)\}^{\mathcal{H}} \prec \alpha l\)
    Stop Repeat until \(\alpha<0\) (success) or varies too slowly (failure)
```

\triangle Easy to implement
Δ Strictly decreasing sequence of α
Very sensitive to initialization
Little progress after very few steps
∇ Not effective in practice

$$
\exists S: M \prec\left\{X_{1}^{*} S X_{2}\right\}^{\mathcal{H}} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
N_{X_{1}}^{*} M N_{X_{1}} \prec 0 \\
N_{X_{2}}^{*} M N_{X_{2}} \prec 0
\end{array} \quad: X N_{X}=0, \quad \operatorname{Rank}\left(N_{X}\right)=\operatorname{dim}(\operatorname{Ker}(X))\right.
$$

Applied to the SOF problem [Scherer, Iwasaki...] it gives

$$
\exists K:\left\{\begin{array} { l }
{ \{ P (A + B K C) \} ^ { \mathcal { H } } \prec 0 } \\
{ \{ (A + B K C) Q \} ^ { \mathcal { H } } \prec 0 } \\
{ P Q = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
N_{C}^{*}\{P A\}^{\mathcal{H}} N_{C} \prec 0 \\
N_{B_{*}^{*}}^{*}\{A Q\}^{\mathcal{H}} N_{B^{*}} \prec 0 \\
P Q=1
\end{array}\right.\right.
$$

Δ May be converted to pure LMIs (of small dimensions) ... ∇ with a rank constraint
\triangle Many dedicated iterative algorithms
∇ Sensitive to initial guesses, not very effective in practice
∇ Cannot take into account structured K

$$
\exists S: M \prec\left\{X_{1}^{*} S X_{2}\right\}^{\mathcal{H}} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
N_{X_{1}}^{*} M N_{X_{1}} \prec 0 \\
N_{X_{2}}^{*} M N_{X_{2}} \prec 0
\end{array} \quad: \quad X N_{X}=0 \quad \operatorname{Rank}\left(N_{X}\right)=\operatorname{dim}(\operatorname{Ker}(X))\right.
$$

Assume P proves stability for both an output-feedback gain $K_{\text {of }}$ and a state-feedback gain $K_{s f}$ (always true with $K_{s f}=K_{o f} C$)

$$
\begin{aligned}
\left.P\left(A+B K_{o f} C\right)\right\}^{\mathcal{H}} & =\left[\begin{array}{c}
I \\
K_{o f} C
\end{array}\right]^{*}\left[\begin{array}{cc}
\{P A\}^{\mathcal{H}} & P B \\
B^{*} P & 0
\end{array}\right]\left[\begin{array}{c}
I \\
K_{o f} C
\end{array}\right] \prec 0 \\
\left.P\left(A+B K_{s f}\right)\right\}^{\mathcal{H}} & =\left[\begin{array}{c}
I \\
K_{s f}
\end{array}\right]^{*}\left[\begin{array}{cc}
\{P A\}^{\mathcal{H}} & P B \\
B^{*} P & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
K_{s f}
\end{array}\right] \prec 0
\end{aligned}
$$

Equivalent to the existence of S such that

$$
\left[\begin{array}{cc}
\{P A\}^{\mathcal{H}} & P B \\
B^{*} P & 0
\end{array}\right] \prec\left\{\left[\begin{array}{c}
K_{s f^{*}} \\
-I
\end{array}\right] S\left[\begin{array}{ll}
K_{o f} C & -I
\end{array}\right]\right\}^{\mathcal{H}}
$$

$$
\exists P \succ 0, S, K_{s f}, K_{o f} \quad: \quad\left[\begin{array}{cc}
\{P A\}^{\mathcal{H}} & P B \\
B^{*} P & 0
\end{array}\right] \prec\left\{\left[\begin{array}{c}
K_{\text {sf }}{ }^{*} \\
-I
\end{array}\right] S\left[\begin{array}{ll}
K_{o f} C & -I
\end{array}\right]\right\}^{\mathcal{H}}
$$

∇ Still not LMI, matrix inequalities of larger size, more decision variables
Δ More degrees of freedom, P and $K_{o f}$ separated one for the other
Δ Simple to code $K_{s f}-K_{\text {of }}$-iterative algorithm

$$
\begin{aligned}
& K_{\text {sf }} \text {-iteration } \quad K_{o f}=S^{-1} L_{o f} \quad \arg \min \alpha:\left[\begin{array}{cc}
\{P A\}^{\mathcal{H}}-\alpha I & P B \\
B^{*} P & 0
\end{array}\right] \prec\left\{\left[\begin{array}{c}
K_{\text {sf }}{ }^{*} \\
-I
\end{array}\right]\left[\begin{array}{ll}
L_{o f} C & -S
\end{array}\right]\right\}_{\mathcal{H}}^{\mathcal{H}} \\
& K_{\text {of }} \text {-iteration } \quad K_{\text {sf }}=S^{-1} L_{\text {sf }} \quad \arg \min \alpha:\left[\begin{array}{cc}
\{P A\}^{\mathcal{H}}-\alpha I & P B \\
B^{*} P & 0
\end{array}\right] \prec\left\{\left[\begin{array}{c}
L_{s f} * \\
-S
\end{array}\right]\left[\begin{array}{cc}
K_{o f} C & -I
\end{array}\right]\right\}^{\mathcal{H}}
\end{aligned}
$$

Δ Smart initial guess of $K_{s f}$ (finding $K_{s f}$ is a convex problem)
Δ Strictly decreasing sequence of α
Δ Much more efficient than the P - K-iterative algorithm (P is free at each step)
Implicitly the algorithm searches for $K_{s f} \rightarrow K_{o f} C$.

S-variable approach - variant (dual)

Variant of the same result based on output-injection gain $K_{o i}$

$$
\exists Q \succ 0, S, K_{o i}, K_{o f} \quad: \quad\left[\begin{array}{cc}
\{A Q\}^{\mathcal{H}} & Q C^{*} \\
C Q & 0
\end{array}\right] \prec\left\{\left[\begin{array}{c}
B K_{o f} \\
-I
\end{array}\right] S\left[\begin{array}{ll}
K_{o i}{ }^{*} & -I
\end{array}\right]\right\}^{\mathcal{H}}
$$

Δ Simple to code $K_{o i}-K_{o f}$-iterative algorithm
Δ Smart initial guess of $K_{o i}$ (finding $K_{o i}$ is a convex problem)
Δ Strictly decreasing sequence of α
Δ Much more efficient than the P - K-iterative algorithm (P is free at each step) Implicitly the algorithm searches for $K_{o i} \rightarrow B K_{o f}$.
Δ Robustness can be dealt with easily (eg. solve the constraints for all vertices of a polytope)
∇ yet conservative (common Lyapunov certificate P or Q for all uncertainties)
Δ Structured SOF : achievable with constraints on S, not on P of Q
∇ yet conservative

S-variable approach - variant (Lyapunov certificate)

Variant [Peres et al. 2020] assuming two Lyapunov certificates P_{1} and P_{2} for $A+B K C$

$$
\exists P_{1} \succ 0, P_{2} \succ 0, S=S^{*}, K \quad: \quad\left[\begin{array}{cc}
0 & (A+B K C)^{*} \\
A+B K C & 0
\end{array}\right] \prec\left\{\left[\begin{array}{c}
P_{2} \\
-I
\end{array}\right] S\left[\begin{array}{ll}
P_{1} & -I
\end{array}\right]\right\}^{\mathcal{H}}
$$

\triangle Matrix inequalities of larger size
\triangle Simple to code $P_{1}-P_{2}$-iterative algorithm
∇ No smart initial guess of P
Δ Robustness can be dealt with easily (eg. solve the constraints for all vertices of a polytope)
\triangle No difficulty to include structure constraints on K
∇ Seems less efficient than the $K_{s f}-K_{o f}$-iterative algorithm

$$
\left[\begin{array}{lll}
0 & 0 & Q \\
0 & 0 & 0 \\
Q & 0 & 0
\end{array}\right] \prec\left\{\left[\begin{array}{c}
-I \\
L C+M \\
A
\end{array}\right] S_{1}+\left[\begin{array}{c}
0 \\
-S_{2} \\
B F
\end{array}\right]\left[\begin{array}{lll}
0 & -1 & H^{*}
\end{array}\right]\right\}^{\mathcal{H}}
$$

\Rightarrow If $L=0$ then $K_{s i}=H M$ is a stabilizing state-injection gain ($A+K_{s i}$ is stable)
\Rightarrow If $L=0$ then $K_{\text {sf }}=F S_{2}^{-1} M$ is a stabilizing state-feedback gain ($A+B K_{\text {sf }}$ is stable)
\Rightarrow If $M=0$ then $K_{o i}=H L$ is a stabilizing output-injection gain ($A+K_{o i} C$ is stable)
\Rightarrow If $M=0$ then $K_{o f}=F S_{2}^{-1} L$ is a stabilizing output-feedback gain ($A+B K_{o f} C$ is stable)
\triangle Stabilizing state-injection property: Good for initialization
\triangle All matrices Q, A, B and C decoupled:
OK for robustness with parameter-dependent Lyapunov certificates
Δ Results are new (and efficient) even for robust $K_{s f}$ and $K_{o i}$ design
\triangle No need to structure the Lyapunov certificate for structured SOF
\checkmark Algorithm is less trivial than the previous ones (contains a line search)
$\Rightarrow\left(S_{1}, K_{s f}\right)-K_{s i}$-iterative algorithm shows to be efficient with low number of iterations
\Rightarrow During the algorithm $K_{s i} \rightarrow K_{o i} C$ and $K_{s f} \rightarrow K_{o f} C$
\Rightarrow Several results for SOF using the S-variable approach
\triangle Rather efficient to deal with robust structured SOF
∇ No guarantee of success
$\Delta \nabla$ Results with more or less intuitive initialization
\Rightarrow Latest result - In Honor of Roberto Tempo
\triangle Promising numerical experiments
\triangle Elegant combination of the SI, OI, SF, OF problems
Δ Variations of the algorithms for
Deterministic robust design
Probabilistic robust design
With comparisons of the two
"Robust static output feedback design with deterministic and probabilistic certificates",
D. Arzelier, F. Dabbene, S. Formentin, D. Peaucelle, L. Zaccarian

Birkhäuser Mathematics - Springer Nature Chapter for "Uncertainty in Networked Systems"

