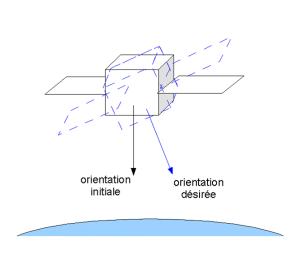
Commande périodique pour le contrôle d'attitude

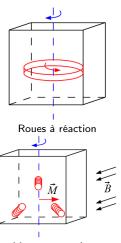
Jean-François Trégouët, Dimitri Peaucelle et Denis Arzelier

LAAS-CNRS travaux financés et encadrés par le CNES (Christelle Pittet) et Astrium (Alexandre Falcoz)

3 avril 2013

Contrôle d'attitude





Modélisation mathématique (pointage inertiel)

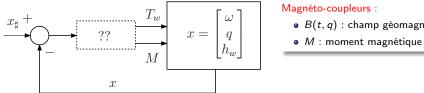
Equations du mouvement d'attitude

$$J\dot{\omega} + \omega^{\times}(J\omega + h_w) = -T_w - B^{\times}(t,q)M + T_{\text{ext}}$$
 (1a)

$$\dot{h}_w = T_w \tag{1b}$$

$$\dot{q} = \frac{1}{2} \begin{bmatrix} -\omega^{\times} & \omega \\ -\omega^{T} & 0 \end{bmatrix} q \tag{1c}$$

$$B^{\times} = \begin{bmatrix} 0 & -B_z & B_y \\ B_z & 0 & -B_x \\ -B_y & B_x & 0 \end{bmatrix}$$



Nomenclature

Satellite :

- \bullet ω : vitesse angulaire
- q: quaternion
- J: matrice d'inertie
- T_{ext}: couple extérieur de perturbation

Roues à réaction :

- h_w: moment cinétique
- T_w: couple de commande

Magnéto-coupleurs:

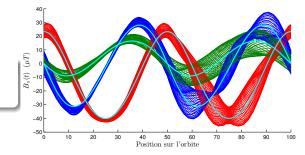
- B(t,q): champ géomagnétique

Difficulté du problème de commande

Roues à réaction

Si T_w est constant alors $h_w = T_w t$

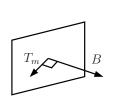
 \times risque de saturation de h_w



Magnéto-coupleurs

$$T_m = -B^{\times}(t,q)M = -(C(q)B_{\circ}(t))^{\times}M$$

- C(q): matrice de rotation
- ullet $B_{\circ}(t)$: champ géomagnétique dans le référentiel inertiel local
- \mathcal{K} C(q): modèle non-linéaire
- \nearrow $B_{\circ}(t)$: variation périodique et incertaine du modèle
- // ()* : commandabilité instantanée restreinte à 2 axes



X Possibles interactions néfastes entre les actionneurs

Analyse de l'état de l'art

Cas du couple de commande idéal

$$J\dot{\omega} + \omega^{\times}J\omega = T_{id}$$

• solutions disponibles dans la littérature [Mayhew, 2009]

$$T_{id} = u_T^{\star}(\omega, q)$$

X ne tient pas compte des limitations des actionneurs

Allocation [Forbes, 2010]

- ullet $\forall t$, \sum actionneurs $=u_T^\star(\omega,q)$
- √ convergence de l'attitude
- \nearrow possible divergence de h_w

Séparation fréquentielle [Camillo, 1980]

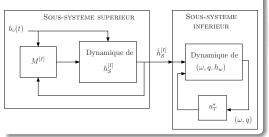
- ullet commande d'attitude assurée via T_w
- ullet régulation de h_w par M
- ullet découplage fréquentiel entre M et T_w
- perturbation de l'attitude par M

Approche basée sur le moment cinétique total

Découplage physique

- ullet roues : contrôle sur 3 axes mais pas d'action sur $h_{\mathcal{S}}^{[I]}$
- ullet magnéto-coupleurs : commandabilité réduite mais agit sur $h_{\mathcal{S}}^{[I]}$

Structure en cascade



Equation sous-sys. sup.

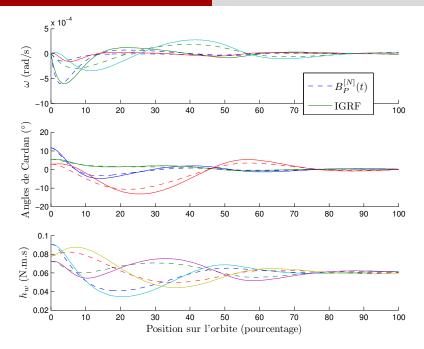
$$\dot{h}_{\mathcal{S}}^{[I]} = -B_{\circ}^{\times}(t)M^{[I]}$$

Preuve de stabilité (résumé)

- $M^{[I]} = -k_m \frac{B_{\circ}^{\times}(t)}{\|B_{\circ}(t)\|^2} h_{\mathcal{S}}^{[I]}$
- $T_w = -u_T^{\star}(\omega, q) \omega^{\times} h_w$ tel que sous-sys. inf. soit ISS

Hypothèse sur le champ

$$B_\circ(t)$$
 périodique de période $T_0/2$ et $\exists \gamma>0,\; -\frac{2}{T_0}\int_0^{T_0/2} rac{B_\circ^{ imes}(au)B_\circ^{ imes}(au)}{\|B_\circ(au)\|^2}d au\succeq \gamma \mathbf{1}_3$



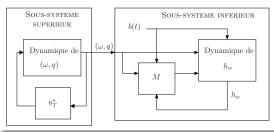
Approche par allocation

Démarche

• $\forall t$, \sum actionneurs = $u_T^{\star}(\omega, q)$

$$-T_{w}-(C(q)B_{\circ}(t))^{\times}M-\omega^{\times}h_{w}=u_{T}^{\star}(\omega,q)$$

structure en cascade



Eq. sous-sys. inf. pour $(\omega,q)_{\sharp}$

$$\dot{h}_{w} = -B_{\circ}^{\times}(t)M$$

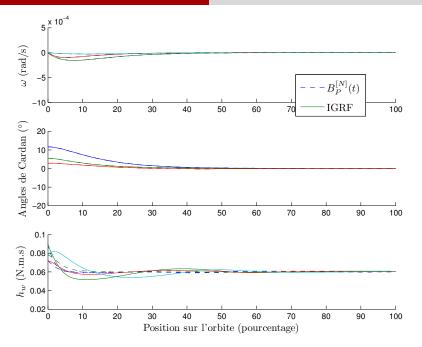
Preuve de stabilité (résumé)

•
$$T_w = -(C(q)B_{\circ}(t))^{\times}M - \omega^{\times}h_w - u_T^{\star}(\omega, q)$$

$$\bullet M = -k_m \frac{B_{\circ}^{\times}(t)}{\|B_{\circ}(t)\|^2} h_w$$

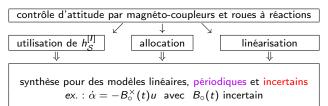
Bilan

- √ formalisation mathématique rigoureuse
- ✓ faible hypothèse sur $B_0(t)$ = robustesse
- √ pas de propriété ISS requise
- √ dynamique d'attitude indépendante de h_w



Amélioration de la performance

Bilan des solutions proposées



Problème général

boucle ouverte :
$$\begin{bmatrix} \dot{x} \\ z \end{bmatrix} = M(t, \theta) \begin{bmatrix} x \\ w \\ u \end{bmatrix} \text{ avec } M(t + T, \theta) = M(t, \theta)$$
correcteur :
$$u = K(t)x \text{ avec } K(t + T) = K(t)$$

Comment définir K(t) pour que le modèle asservi satisfasse certaines propriétés?

Cadre à temps discret

Enoncé général du problème

Cadre de l'étude

$$\Sigma(k,\theta)$$
 * $(u_k = K_k x_k) = \Sigma_{cl}(k,\theta,K_k)$

- période $N: \Sigma(k+N, \theta) = \Sigma(k, \theta)$ et $K_{k+N} = K_k$
- ullet incertitudes polytopiques invariantes dans le temps : ullet appartient au simplexe unitaire

Prob. d'analyse robuste : Pour un correcteur K_k donné, prouver que $\Sigma_{cl}(k, \theta, K_k)$ est stable robustement et calculer ses normes \mathcal{H}_2 et \mathcal{H}_{∞} :

$$\nu_{\mathrm{wc}} = \max_{\boldsymbol{\theta} \in \Theta} \| \Sigma_{cl}(k, \boldsymbol{\theta}, K_k) \|_{\infty}^2 \ , \qquad \gamma_{\mathrm{wc}} = \max_{\boldsymbol{\theta} \in \Theta} \| \Sigma_{cl}(k, \boldsymbol{\theta}, K_k) \|_2^2$$

Prob. de synthèse robuste : Calculer K_k stabilisant robustement $\Sigma_{cl}(k,K_k,\theta)$ tout en minimisant sa norme \mathcal{H}_2 ou \mathcal{H}_∞ :

$$\nu_{\mathrm{wc}} = \min_{K_k} \max_{\theta \in \Theta} \| \Sigma_{\mathit{cl}}(k, \theta, K_k) \|_{\infty}^2 \ , \qquad \gamma_{\mathrm{wc}} = \min_{K_k} \max_{\theta \in \Theta} \| \Sigma_{\mathit{cl}}(k, \theta, K_k) \|_2^2$$

variation temporelle
incertitudes
problème min – max pour la synthèse

Problèmes d'analyse et de synthèse NP-difficiles

Traitement de la périodicité (état de l'art)

Reformulation invariante dans le temps (lifting monodromique) [Meyer, 1975]

$$\Sigma_{cl}(k, \theta, K_k) \qquad \qquad \Gamma_{m}(\theta, K_k)$$

$$\begin{bmatrix} x_{k+1} \\ z_k \end{bmatrix} = \begin{bmatrix} A_k & B_k \\ C_k & D_k \end{bmatrix} \begin{bmatrix} x_k \\ w_k \end{bmatrix} \rightarrow \qquad \begin{bmatrix} \eta_{q+1} \\ \hat{z}_q \end{bmatrix} = \begin{bmatrix} \Psi & \mathfrak{B} \\ \mathfrak{C} & \mathfrak{D} \end{bmatrix} \begin{bmatrix} \eta_q \\ \hat{w}_q \end{bmatrix}$$

linéaire en θ et K_k polynomial en θ et K_k de degré N

- √ outils LTI applicables (moment, Pólya, SOS, variables de relaxation)
- difficulté numérique

Fonction de Lyapunov périodique [Bittanti, 1984]

$$V(k, x_k, \theta) = x_k^T P(k, \theta) x_k$$
 avec $P(k + N, \theta) = P(k, \theta)$

- \checkmark traitement direct de Σ_{cl} (linéaire en K_k et θ)
- √ solution au problème de synthèse grâce à la dualité des systèmes [De Souza, 2000 et Farges, 2006]
- Conditions LMI uniquement suffisantes
 - Comment réduire le conservatisme tout en maîtrisant l'effort de calcul?

Nouvelle démarche vers la réduction du conservatisme

Nouvelle reformulation invariante dans le temps

$$\begin{split} & \Sigma_{cl}(k,\theta,K_k) & \Gamma_{e}(\theta,K_k) \\ & \begin{bmatrix} x_{k+1} \\ z_k \end{bmatrix} = \begin{bmatrix} A_k & B_k \\ C_k & D_k \end{bmatrix} \begin{bmatrix} x_k \\ w_k \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} \mathcal{E} & \mathcal{A} \\ 0 \end{bmatrix} - \sigma \begin{bmatrix} \mathbf{0} & \mathbf{1}_{nl} \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \begin{bmatrix} \mathcal{C}_1 & \mathcal{C}_2 \end{bmatrix} & \mathcal{D} & -\mathbf{1}_{pN} \end{bmatrix} \begin{bmatrix} \hat{x}_q \\ \hat{w}_q \\ \hat{z}_q \end{bmatrix} = \mathbf{0} \end{split}$$

linéaire en θ et K_{ν}

• élaboration d'outils adaptés d'analyse

linéaire en θ et K_{ν}

- nouvelle condition d'analyse : conservatisme plus faible pour un effort équivalent
- ullet construction du dual de Γ_e
- √ condition de synthèse LMI

✓ Permet de considérer les correcteurs à mémoire

Correcteurs à mémoire (3-périodique)

Sans mémoire

$$\left\{ \begin{array}{lll} u_{3q} & = & K_{0,0}x_{3q} \\ u_{3q+1} & = & K_{1,0}x_{3q+1} \\ u_{3q+2} & = K_{2,0}x_{3q+2} \end{array} \right.$$

Avec mémoire

$$\begin{cases}
 u_{3q} = K_{0,0}x_{3q} + \dots + K_{0,\alpha_0}x_{3q-\alpha_0} \\
 u_{3q+1} = K_{1,0}x_{3q+1} + \dots + K_{1,\alpha_1}x_{3q+1-\alpha_1} \\
 u_{3q+2} = K_{2,0}x_{3q+2} + \dots + K_{2,\alpha_2}x_{3q+2-\alpha_2}
\end{cases}$$

 \rightarrow { $\alpha_0, \alpha_1, \alpha_2$ } définit la structure du correcteur

Les PFMC

$$\left\{ \begin{array}{lll} u_{3q} & = & K_{0,0} \times_{3q} + K_{0,1} \times_{3q-1} + K_{0,3} \times_{3q-2} \\ u_{3q+1} & = & K_{1,0} \times_{3q+1} + K_{1,1} \times_{3q} + K_{1,2} \times_{3q-1} + K_{1,3} \times_{3q-2} \\ u_{3q+2} & = K_{2,0} \times_{3q+2} + K_{2,1} \times_{3q+1} + K_{2,2} \times_{3q} + K_{2,3} \times_{3q-1} + K_{2,4} \times_{3q-2} \end{array} \right.$$

Conditions de synthèse de correcteurs à mémoire

Stabilisation robuste : S'il existe \mathcal{G} et $\check{\mathcal{Y}}$ telles que la condition suivante soit satisfaite quel que soit $i \in \{1 \cdots L\}$,

$$\exists \boldsymbol{W}^{[i]} \in \mathbb{S}_{+}^{nI}: \ \mathcal{X}\big(\boldsymbol{W}^{[i]}\big) + \operatorname{He}\left\{\left(\begin{bmatrix} \check{\mathcal{A}}^{op[i]} \\ \check{\mathcal{E}}^{op[i]} \end{bmatrix} \mathcal{G} + \begin{bmatrix} \check{\mathcal{B}}^{op[i]}_{u2} \\ \check{\mathcal{B}}^{op[i]}_{u1} \end{bmatrix} \check{\mathcal{Y}}\right) \begin{bmatrix} \boldsymbol{0} & \boldsymbol{1}_{nN} \end{bmatrix}\right\} \prec 0$$

alors il existe une solution au problème de stabilisation robuste. Les gains du correcteur sont calculés via la relation

$$\breve{\mathcal{K}}=\breve{\mathcal{Y}}\mathcal{G}^{-1}$$

 \checkmark Conditions de synthèse LMI : stabilité, \mathcal{H}_2 et \mathcal{H}_∞

Choix de $\breve{\mathcal{Y}}$ et \mathcal{G}

- structure de $\check{\mathcal{K}}$ fonction de α_k
- ullet Cas général : ${\cal G}$ diagonale par blocs et $reve{\cal Y}$ conforme à $reve{\cal K}$
- Cas des PFMC : idem avec \mathcal{G} triangulaire

Choix de la structure α_k du correcteur

Exemple de correcteurs 3-périodique

	α_k	Formes développées			
(a)	{1, 1, 1}	$\begin{cases} u_{3q} = K_{0,0}x_{3q} \\ u_{3q+1} = K_{1,0}x_{3q+1} \\ u_{3q+2} = K_{2,0}x_{3q+2} \end{cases}$			
(b)	{1, 2, 1}	$ \begin{cases} u_{3q} = K_{0,0} \times_{3q} \\ u_{3q+1} = K_{1,0} \times_{3q+1} + K_{1,1} \times_{3q} \\ u_{3q+2} = K_{2,0} \times_{3q+2} \end{cases} $			
(c)	{1, 2, 3}	$ \begin{cases} u_{3q} = K_{0,0}x_{3q} \\ u_{3q+1} = K_{1,0}x_{3q+1} + K_{1,1}x_{3q} \\ u_{3q+2} = K_{2,0}x_{3q+2} + K_{2,1}x_{3q+1} + K_{2,2}x_{3q} \end{cases} $			

Exemple académique

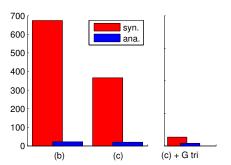
$$\begin{aligned} A_0^{ol} &= \begin{bmatrix} -3 - \theta_1 & 2 \\ -3 & 3 \end{bmatrix}, \ A_1^{ol} &= \begin{bmatrix} -1 - \theta_1 & 2 \\ 0.5 & 0 \end{bmatrix}, \ A_2^{ol} &= \begin{bmatrix} 1 - \theta_1 & 2 \\ 2.5 & 3 \end{bmatrix} \\ B_0 &= B_{u0} &= \begin{bmatrix} 1 \\ \theta_2 \end{bmatrix}, \ B_1 &= B_{u1} &= \begin{bmatrix} 1 \\ -0.3\theta_2 - 0.2 \end{bmatrix}, \ B_2 &= B_{u2} &= \begin{bmatrix} 0.5(\theta_2 + 1) \\ 1 & 1 \end{bmatrix} \end{bmatrix} \\ C_0^{ol} &= \begin{bmatrix} -0.5 - \theta_1 & 0 \\ 0 & -1 \end{bmatrix}, \ C_1^{ol} &= \begin{bmatrix} -\theta_1 & 0 \\ 0 & 2 \end{bmatrix}, \ C_2^{ol} &= \begin{bmatrix} 1.5 - \theta_1 & 0 \\ 0 & -2 \end{bmatrix} \\ D_0 &= D_1 &= D_2 &= \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ D_{u0} &= D_{u1} &= D_{u2} &= \begin{bmatrix} -\theta_2 \\ 0.2 \end{bmatrix} \end{aligned}$$

• $|\theta_1| \leq 0.6$ et $0 \leq \theta_2 \leq 1 \Rightarrow$ modèle polytopique 3-périodique à 4 sommets

• Enrichissement de la loi (\mathcal{G} diag.)

- Cas particulier des PFMC (G tri.)
- ightharpoonup Conditions de synthèse \mathcal{H}_{∞} non faisable sans mémoire

	lignes	variables	synthèse	analyse
(a)	64	31	-	_
(b)	64	33	673.9	20.7
(c)	64	37	366.3	20.3
(c) $+\mathcal{G}$ tri.	64	49	54.6	15.8



 \checkmark Ajouter des degrés de liberté et considérer $\mathcal G$ triangulaire peut réduire le conservatisme tout en maîtrisant l'effort de calcul

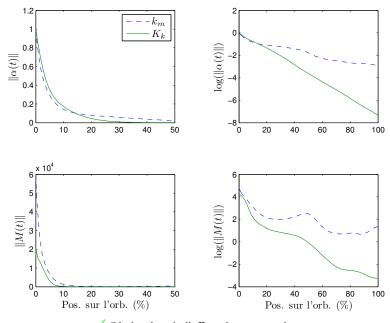
Utilisation des outils de synthèse pour le contrôle d'attitude

Modèle de synthèse

• intégrateur simple avec champ incertain

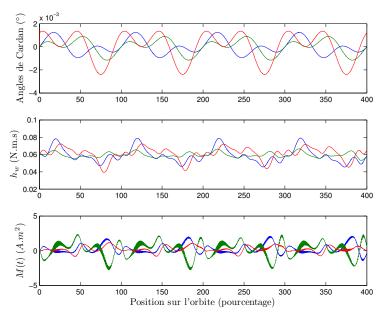
$$\dot{\alpha} = -(B_{\circ}(t) + \Delta B_{\circ}(t))^{\times} M$$

ullet synthèse d'un correcteur stabilisant qui minimise l'influence de ΔB_{\circ} sur lpha et M



/ Diminution de l'effort de commande

Simulation finale avec allocation + T_{ext}



Conclusions

Contrôle d'attitude

- √ deux nouvelles stratégies de commande
- pour la loi d'allocation : schéma d'asservissement en conformité avec les objectifs de commande

Perspectives:

- décloisonement du rôle des actionneurs (participation des magnéto-coupleurs au contrôle d'attitude)
- prendre en compte l'expression des perturbations dès la synthèse

Synthèse pour les modèles périodiques incertains

√ approche systématique pour l'analyse et la synthèse de correcteurs périodiques à mémoire

Perspectives:

- ullet liens avec les modèles périodiques polynomiaux en σ
- vérification d'exactitude
- retour de sortie

Merci de votre attention!

Analyse et synthèse via les outils LTI

- dimension du modèle test
 - n = 2, p = 6, m = 3, N = 3, L = 4
 - matrices polynomiales en θ de degré 3
- ullet analyse \mathcal{H}_{∞} :

$$\begin{bmatrix} \Psi^{T}(\theta)P(\theta)\Psi(\theta) - P(\theta) + \mathfrak{C}^{T}(\theta)\mathfrak{C}(\theta) & \Psi^{T}(\theta)P(\theta)\mathfrak{B}(\theta) + \mathfrak{C}^{T}(\theta)\mathfrak{D}(\theta) \\ \mathfrak{B}^{T}(\theta)P(\theta)\Psi(\theta) + \mathfrak{D}^{T}(\theta)\mathfrak{C}(\theta) & \mathfrak{B}^{T}(\theta)P(\theta)\mathfrak{B}(\theta) + \mathfrak{D}^{T}(\theta)\mathfrak{D}(\theta) - \nu\mathbf{1}_{mN} \end{bmatrix} \prec 0 \quad (2)$$

- 5 lignes
- $\Psi, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}$ polynomial de degré 3 en θ
- linéaire en $P(\theta)$
- $P(\theta)$ polynomiale de degré inconnu
- ullet synthèse \mathcal{H}_{∞} :
 - $\Psi = (A_2(\theta) + B_2(\theta)K_2) (A_2(\theta) + B_2(\theta)K_1) (A_2(\theta) + B_2(\theta)K_0)$
 - . . .

Synthèse du correcteur périodique

boucle ouverte

$$\dot{\alpha} = -(B_{\circ} + \Delta B_{\circ})^{\times}(t)M \tag{3}$$

correcteur

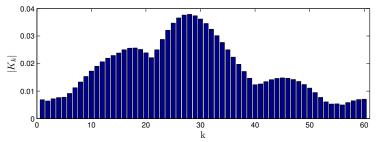
$$M(t,\alpha) = -\frac{b^{\times}(t)}{\|B(t)\|} M^{*}(t,\alpha)$$
(4)

$$M^{\star}(t,lpha)= \mathcal{K}_klpha_k$$
 avec $k\in\mathbb{N}$ satisfaisant $k\mathcal{T}_s\leq t<(k+1)\mathcal{T}_s$

modèle de synthèse

$$\dot{\alpha} = \frac{(B_{\circ}(t) + \Delta B_{\circ}(t))^{\times} (B_{\circ}(t) + \Delta B_{\circ}(t))^{\times}}{\|B_{\circ}(t) + \Delta B_{\circ}(t)\|^{2}} M^{*}$$
(6)

- discrétisation : $T_s = 48.9 \text{ sec.} \Rightarrow N = 60 \text{ échantillons par demi-orbite}$
- synthèse \mathcal{H}_{∞} : 18N + 7 = 1087 variables et 9N + 6 = 546 lignes



(5)

Approche par linéarisation

Démarche

• linéarisation du modèle autour de #

$$(\omega, q, h_{\mathsf{w}})_{\sharp} = (\mathbf{0}, \mathbf{1}, h_{\sharp})$$

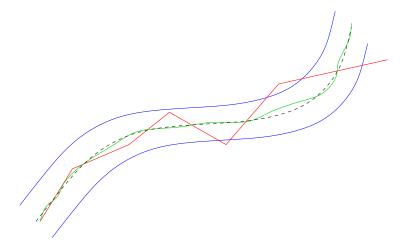
• synthèse d'un correcteur valide localement

Définition de la trajectoire de linérisation

- ullet dans le cas général, il n'existe pas (T_w, M) tels que \sharp soit un équilibre stable
- (exception si $T_{ext} = 0$ et pointage inertiel)
- interprétation via un rejet de perturbation fictive validant la linéarisation

Choix de la période d'échantillonage

- 🗡 le théorème de Nyquist-Shannon ne s'applique pas au modèle à temps variant
- \not u(t) constant pendant une période d'échantillonage : éloignement de la trajectoire de linéarisation



- $T_s = 147$ sec. $\Rightarrow N = 20$ et $T_s = 98$ sec. $\Rightarrow N = 30$
- 2100 variables et 780 lignes pour N = 20
- 3150 variables et 1170 lignes pour N=30

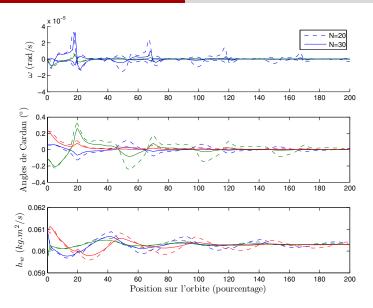


Figure: Résultats de l'approche locale avec $B_{m p}^{[m N]}(t)$ et $T_{m ext}(t)=m 0$

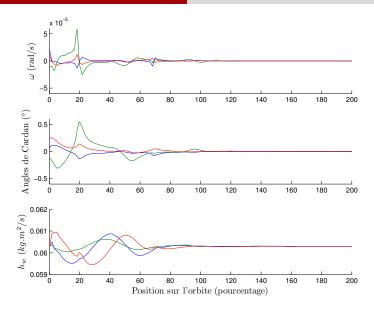


Figure: Résultats de l'approche locale avec le modèle de l'IGRF et $T_{\sf ext}(t) = {f 0}$

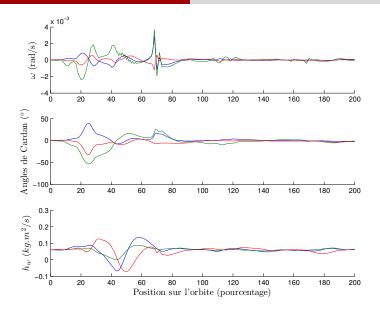


Figure: Résultats de l'approche locale avec le modèle de l'IGRF et avec perturbations