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Abstract

Many design problems in control can be recast as the search for static structured (diagonal) output-feedback gains
stabilizing an augmented and rearranged dynamical plant model. Moreover, in first approximation that plant may be
considered as linear, or at least, one will usually request the linearized plant to be stable before considering the more
complicated non-linear version. Because of the approximations leading to the linearized version, the plant parameters are
usually uncertain and time-varying. In the presentation we discuss the possibility to design such static diagonal
output-feedback gains for uncertain linear systems using a recently proposed matrix inequality based formulation. As
expected for this hard problem, the methodology does not provide a guaranteed to succeed result, but provides some
interesting promising paths for an efficient algorithm. If we have time we also mention an adaptive control strategy for
updating (learning) the structured static gains.
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Structured Robust Static Output Feedback

Stabilize ẋ = Ax + Bu
y = Cx

with a static output feedback u = Ky

Find a gain K ∈ Rm×p such that ẋ = (A+ BKC )x is stable

á Without having an initial guess
6= Knowing A+ BKoC stable, find a better gain (with some criterion)

á Without having indications of a range of admissible values
no possibility to test on a grid

á Robust w.r.t. uncertainties in Aδ, Bδ and Cδ
eg. matrices in a polytope

á Structured : eg. K diagonal (decentralized control)

"From Static Output Feedback to Structured Robust Static Output Feedback: A Survey",
M.S. Sadabadi, D. Peaucelle Annual Reviews in Control Volume 42, 2016
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Structured Static Output Feedback - a generic problem

Assume a linear plant ẋ = A(K1, . . . ,Kk̄)x rational in the design parameters Kk=1...k̄

á Linear plant : before considering nonlinear dynamics, or local properties of a NL control
á Kk : gains of a dynamic control, filter param., decentralized control ... or plant parameters
á Rational in the parameters : or in ’gains’ with one-to-one NL maps to true design parameters

It can always be reformulated (Linear Fractional Transformation) as a feedback control loop

{
ẋ = Ax + Bu
y = Cx + Du

u = Ky =

 Ir1 ⊗ K1 0

0
. . . 0

0 Irk̄ ⊗ Kk̄

 y

where K is structured (block-diagonal), parameters may be repeated: Irk ⊗ Kk .

á with y := y − Du one may consider D = 0
á All these design problems look ’simple’: find a (structured) K s.t. A+ BKC is Hurwitz
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Optimization based approaches

Find a (structured) K s.t. A+ BKC is Hurwitz ⇐ minimization of a non-linear, non-smooth function

á [Apkarian, Noll 2003] optimize an H∞ gain (and more) - hinfstruct - Clark’s sub-gradient
á [Overton et al. 2006] optimize an H∞, H2 gains, spectral abscissa - Hifoo - gradient sampling
á [Peretz 2013] optimize the spectral abscissa - randomized approximation

s s Very efficient in practice
t Randomized flavour (random initial conditions, randomization in the algorithm)
t No extensions to robust design

s Lyapunov based approches with matrix inequalities may handle robustness

P � 0 , (A+ BKC )∗P + P(A+ BKC ) = {P(A+ BKC )}H ≺ 0

Q � 0 , {(A+ BKC )Q}H ≺ 0

t Bilinear matrix inequalities (not convex)
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LMI cases

Find a (structured) K s.t. A+ BKC is Hurwitz is sometimes convex (up to a transformation)

SI á B = C = I State-Injection : {PA}H ≺ Z gives K s.t. {PK}H = Z
OI á B = I Output-Injection : {PA+ LC}H ≺ 0 gives K = P−1L
SF á C = I State-Feedback : {AQ + BF}H ≺ 0 gives K = FQ−1

á Almost commutative on the input : {PA+ BLC}H ≺ 0, PB = BP̂ gives K = P̂−1L
á Almost commutative on the output : {AQ + BFC}H ≺ 0, CQ = Q̂C gives K = FQ̂−1

t Applies only to special cases
s Robustness can be considered

(eg. test on all vertices with common decision variables proves stability of the polytope)
t Structured K cannot be considered

unless one considers structured P and Q (very conservative)
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Iterative LMI method

Simple P-K -iterative algorithm

Initialization Choose a positive definite P
K-iteration For fixed P find K = argminα under {P(A+ BKC )}H ≺ αI
P-iteration For fixed K find P = argminα under {P(A+ BKC )}H ≺ αI

Stop Repeat until α < 0 (success) or varies too slowly (failure)

s Easy to implement
s Strictly decreasing sequence of α
t Very sensitive to initialization
t Little progress after very few steps
t Not effective in practice
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Finsler (elimination) lemma

∃S : M ≺ {X ∗1 SX2}H ⇔
{

N∗X1
MNX1 ≺ 0

N∗X2
MNX2 ≺ 0 : XNX = 0 , Rank(NX ) = dim(Ker(X ))

Applied to the SOF problem [Scherer, Iwasaki...] it gives

∃K :

 {P(A+ BKC )}H ≺ 0
{(A+ BKC )Q}H ≺ 0
PQ = I

⇔

 N∗C{PA}HNC ≺ 0
N∗B∗{AQ}HNB∗ ≺ 0
PQ = I

s May be converted to pure LMIs (of small dimensions) ... t with a rank constraint
s Many dedicated iterative algorithms
t Sensitive to initial guesses, not very effective in practice
t Cannot take into account structured K
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Converse Finsler lemma : S-variable approach

∃S : M ≺ {X ∗1 SX2}H ⇔
{

N∗X1
MNX1 ≺ 0

N∗X2
MNX2 ≺ 0 : XNX = 0 Rank(NX ) = dim(Ker(X ))

Assume P proves stability for both an output-feedback gain Kof and a state-feedback gain Ksf

(always true with Ksf = Kof C )

{P(A+ BKof C )}H =

[
I

Kof C

]∗ [ {PA}H PB
B∗P 0

] [
I

Kof C

]
≺ 0

{P(A+ BKsf )}H =

[
I

Ksf

]∗ [ {PA}H PB
B∗P 0

] [
I

Ksf

]
≺ 0

Equivalent to the existence of S such that[
{PA}H PB
B∗P 0

]
≺
{[

Ksf
∗

−I

]
S
[
Kof C −I

]}H
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S-variable approach

∃P � 0,S ,Ksf ,Kof :

[
{PA}H PB
B∗P 0

]
≺
{[

Ksf
∗

−I

]
S
[
Kof C −I

]}H
t Still not LMI, matrix inequalities of larger size, more decision variables
s More degrees of freedom, P and Kof separated one for the other
s Simple to code Ksf -Kof -iterative algorithm

Ksf -iteration Kof = S−1Lof argminα :

[
{PA}H − αI PB

B∗P 0

]
≺
{[

Ksf
∗

−I

] [
Lof C −S

]}H
Kof -iteration Ksf = S−1Lsf argminα :

[
{PA}H − αI PB

B∗P 0

]
≺
{[

Lsf
∗

−S

] [
Kof C −I

]}H
s Smart initial guess of Ksf (finding Ksf is a convex problem)
s Strictly decreasing sequence of α
s Much more efficient than the P-K -iterative algorithm (P is free at each step)

Implicitly the algorithm searches for Ksf → Kof C .
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S-variable approach - variant (dual)

Variant of the same result based on output-injection gain Koi

∃Q � 0,S ,Koi ,Kof :

[
{AQ}H QC∗

CQ 0

]
≺
{[

BKof

−I

]
S
[
Koi
∗ −I

]}H
s Simple to code Koi -Kof -iterative algorithm
s Smart initial guess of Koi (finding Koi is a convex problem)
s Strictly decreasing sequence of α
s Much more efficient than the P-K -iterative algorithm (P is free at each step)

Implicitly the algorithm searches for Koi → BKof .

s Robustness can be dealt with easily (eg. solve the constraints for all vertices of a polytope)
t yet conservative (common Lyapunov certificate P or Q for all uncertainties)

s Structured SOF : achievable with constraints on S , not on P of Q
t yet conservative
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S-variable approach - variant (Lyapunov certificate)

Variant [Peres et al. 2020] assuming two Lyapunov certificates P1 and P2 for A+ BKC

∃P1 � 0,P2 � 0,S = S∗,K :

[
0 (A+ BKC )∗

A+ BKC 0

]
≺
{[

P2
−I

]
S
[
P1 −I

]}H
s Matrix inequalities of larger size
s Simple to code P1-P2-iterative algorithm
t No smart initial guess of P
s Robustness can be dealt with easily (eg. solve the constraints for all vertices of a polytope)
s No difficulty to include structure constraints on K
t Seems less efficient than the Ksf -Kof -iterative algorithm
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2S-variable approach - In Honor of Roberto Tempo

"Robust static output feedback design with deterministic and probabilistic certificates",
D. Arzelier, F. Dabbene, S. Formentin, D. Peaucelle, L. Zaccarian
Birkhäuser Mathematics - Springer Nature Chapter for "Uncertainty in Networked Systems", 2019

P � 0

 0 0 P
0 0 0
P 0 0

 ≺
S1

[
−I (BF +M) A

]
+

 0
−I
H∗

 [ 0 −S2 LC
]
H

Q � 0

 0 0 Q
0 0 0
Q 0 0

 ≺

 −I

LC +M
A

S1d +

 0
−S2d
BF

 [ 0 −I H∗
]
H

New conditions with interesting properties for initialization, robustness, and structure.
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2S-variable approach

P � 0

 0 0 P
0 0 0
P 0 0

 ≺
S1

[
−I (BF +M) A

]
+

 0
−I
H∗

 [ 0 −S2 LC
]
H

(1)

á If F = 0 then Ksi = MH is a stabilizing state-injection gain (A+ Ksi is stable)

Let η =

 ẋ
Hx
x

 then:

[
−I M A

]
η = −ẋ + (A+ Ksi )x = 0[

0 −I H
]
η = 0

η∗(1)η ⇒ ẋ∗Px + x∗Pẋ < 0
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2S-variable approach

P � 0

 0 0 P
0 0 0
P 0 0

 ≺
S1

[
−I (BF +M) A

]
+

 0
−I
H∗

 [ 0 −S2 LC
]
H

(1)

á If F = 0 then Koi = MS−1
2 L is a stabilizing output-injection gain (A+ KoiC is stable)

Let η =

 ẋ
S−1

2 LCx
x

 then:

[
−I M A

]
η = −ẋ + (A+ KoiC )x = 0[

0 −S2 LC
]
η = 0

η∗(1)η ⇒ ẋ∗Px + x∗Pẋ < 0
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2S-variable approach

P � 0

 0 0 P
0 0 0
P 0 0

 ≺
S1

[
−I (BF +M) A

]
+

 0
−I
H∗

 [ 0 −S2 LC
]
H

(1)

á If M = 0 then Ksf = FH is a stabilizing state-feedback gain (A+ BKsf is stable)

Let η =

 ẋ
Hx
x

 then:

[
−I BF A

]
η = −ẋ + (A+ BKsf )x = 0[

0 −I H
]
η = 0

η∗(1)η ⇒ ẋ∗Px + x∗Pẋ < 0

S-variable approaches 15 / 22



2S-variable approach

P � 0

 0 0 P
0 0 0
P 0 0

 ≺
S1

[
−I (BF +M) A

]
+

 0
−I
H∗

 [ 0 −S2 LC
]
H

(1)

á If M = 0 then Kof = FS−1
2 L is a stabilizing output-feedback gain (A+ BKof C is stable)

Let η =

 ẋ
S−1

2 Lx
x

 then:

[
−I BF A

]
η = −ẋ + (A+ BKof C )x = 0[

0 −S2 LC
]
η = 0

η∗(1)η ⇒ ẋ∗Px + x∗Pẋ < 0
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2S-variable approach - robustness

 0 0 Pδ
0 0 0
Pδ 0 0

 ≺
S1

[
−I (BδF +Mδ) Aδ

]
+

 0
−I
H∗

 [ 0 −S2 LCδ
]
H

á If F = 0 then Ksiδ = MδH is a stabilizing state-injection gain (Aδ + Ksiδ is stable)
á If F = 0 then Koiδ = MδS

−1
2 L is a stabilizing output-injection gain (Aδ + KoiδCδ is stable)

á If M = 0 then Ksf = FH is a stabilizing state-feedback gain (Aδ + BδKsf is stable)
á If M = 0 then Kof = FS−1

2 L is a stabilizing output-feedback gain (Aδ + BδKof Cδ is stable)

s In case of polytopic uncertainties: sufficient to test on vertices
s Robust stability proved with parameter-dependent Lyapunov certificate xTPδx
s Result is also new for robust state-feedback design
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2S-variable approach - Proposed iterative algorithm

 0 0 Pδ
0 0 0
Pδ 0 0

 ≺
S1

[
−I (BδF +Mδ) Aδ

]
+

 0
−I
H∗

 [ 0 −S2 LCδ
]
H

t Bilinear matrix inequalities in the decision variables
s Initialization: rather easy to find Ksiδ = MδH s.t. Aδ + Ksiδ stable (eg. Mδ = −Aδ − λI , H = I )
á Iteratively freeze (F ,Mδ,H) then (S1,S

−1
2 L)

á During the algorithm Mδ → 0, Ksiδ → BδKsf and Koiδ → BδKof

s Lyapunov certificate Pδ and matrices defining Kof = FS−1
2 L optimized at all steps

s Rather efficient even on non "hard" CompLib problems
t Includes a line search
t Non trivial tuning parameters (related to stopping criteria)
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2S-variable approach - Structured OF case

 0 0 Pδ
0 0 0
Pδ 0 0

 ≺
S1

[
−I (BδF +Mδ) Aδ

]
+

 0
−I
H∗

 [ 0 −S2 LCδ
]
H

t The structured case: initialization requires rank constrained state-injection gain
á Diagonal Kof = FS−1

2 L ∈ Dm×m requires diagonal F ∈ Dm×m, S2 ∈ Dm×m, L ∈ Dm×m

á Consequence: Mδ ∈ Rn×m and H ∈ Rm×n, i.e. Ksiδ = MδH is rank m

s Rather efficient heuristic:
Ê minTr(Z ) : {PAδ}H ≺ Z , P � 0, Z � 0
Ë If Z is rank m (or less) solve the Lyap. equality {PG}S = Z and let G = G1H with H ∈ Rm×n

Ì For given H min ‖PBδ − M̂δ‖ : {PAδ + M̂δH}S ≺ 0, P � 0
Í Choose Mδ = P−1M̂δ.
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2S-variable approach - Summary

P � 0

 0 0 P
0 0 0
P 0 0

 ≺
S1

[
−I (BF +M) A

]
+

 0
−I
H∗

 [ 0 −S2 LC
]
H

s Stabilizing state-injection property : Good for initialization
s All matrices P, A, B and C decoupled:

OK for robustness with parameter-dependent Lyapunov certificates
s Results are new (and efficient) even for robust Ksf and Koi design
s No need to structure the Lyapunov certificate for structured SOF
t Iterative algorithm is less trivial than for previous conditions
t Needs to be tested on more examples
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Conclusions

á Several results for SOF using the S-variable approach
s Rather efficient to deal with robust structured SOF
t No guarantee of success
s t Results with more or less intuitive initialization

á Latest result - 2S-varaible
s Promising numerical experiments
s Elegant combination of the SI, OI, SF, OF problems
s Variations of the algorithms for

Deterministic robust design
Probabilistic robust design
With comparisons of the two

"Robust static output feedback design with deterministic and probabilistic certificates",
D. Arzelier, F. Dabbene, S. Formentin, D. Peaucelle, L. Zaccarian
Birkhäuser Mathematics - Springer Nature Chapter for "Uncertainty in Networked Systems"
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About Adaptive Control

Static OF: Stabilize ẋ = Ax + Bu
y = Cx

with a static output feedback u = Ky , K̇ = 0

Direct Adaptive OF: Stabilize ẋ = Ax + Bu
y = Cx

with u = Ky where K̇ = f (y ,K )

á Adaptation ≡ learning rule
á Assumes that there exists a Static OF solution - guaranteed by finding one

Why implementing the non-linear adaptive control ?

s Can deal with non-linearities of the plant away from the equilibrium
See presentation at IFAC WC where adaptation helps to avoid saturation of actuators

Could improve robustness compared to parameter-independent Static OF u = Ky
s Matrix inequality conditions proving robust Adaptive OF assuming parameter-dependent u = K δy

t No example found: @u = Ky stabilizing ẋ = Aδx + Bδu
y = Cδx

but ∃ stabilizing adaptive control
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