From passivity-based adaptive control to LMI tuned adaptive control
or how Alexander Fradkov convinced me that direct adaptive control can be robust

Dimitri Peaucelle

FRontiers of ADaptive and nonlinear CONtrol (FRADCON 2018)
ECC Workshop, Limassol, June 12, 2018
Robust | Direct Adaptive

[Peaucelle 2000]

\[\mathcal{L}(P) \prec 0 \]

\[\dot{x} = A(\Delta)x \] is robustly stable

[Frakov 1974]

\[\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \] is Hyper Minimum Phase

Closed-loop \(x \)-strictly passive with

\[u = Ky, \quad \dot{K} = -yy^T \Gamma, \quad \forall \Gamma \succ 0 \]
LMIs for passivity

\[\dot{x} = A_c x + B u, \quad y = C x \] strictly passive iff

\[\exists P \succ 0 : \quad A_c^T P + P A_c \prec -\epsilon I, \quad P B = C^T \]

\(F \) static output feedback \((A_c = A + B F C)\), closed loop strictly passive iff

\[P \succ 0 \]

\[\exists \epsilon > 0 : \quad (A + B F C)^T P + P (A + B F C) \]

\[= A^T P + C^T F^T C + P A + C^T F C \prec -\epsilon I, \quad P B = C^T \]

\[\Uparrow \] SOF design for strict passivity is an LMI problem

\[\Uparrow \dot{x} = A x + B u, \quad y = C x \] is Hyper Minimum Phase

iff it is "almost passive" (ie \(\exists F \) s.t. closed-loop strictly passive)
LMIs for passivity based adaptive control

\[\dot{x} = Ax + Bu, \quad y = Cx \] HMP, then it is \(x \)-strictly passive with adaptive control:

\[u = Ky, \quad \dot{K} = -yy^T \Gamma, \quad \forall \Gamma > 0 \]

- Proof with Lyapunov function \(V(x, K) = x^T P x + 2 \text{tr}(K - F)^T \Gamma^{-1}(K - F) \)
- LMI implies along trajectories with \(u = Ky \)

\[\frac{d}{dt} (x^T P x) + 2y^T (F - K)y < -\epsilon \|x\|^2 \]

- and \(\frac{d}{dt} (2 \text{tr}(K - F)^T \Gamma^{-1}(K - F)) = -2y^T (F - K)y \)
- Hence \(V(x, K) < -\epsilon \|x\|^2 \), i.e. asymptotic convergence of \(x \) to 0
Robust & Direct Adaptive?

\[\mathcal{L}(P, F) < 0 \]

\[\therefore \]

\[\begin{cases}
\dot{x} = A(\Delta)x + B(\Delta)u \\
y = C(\Delta)x
\end{cases} \] is robustly HMP

\[\therefore \]

Closed-loop robustly stable with \(u = Ky, \quad \dot{K} = -yy^T\Gamma, \quad \forall \Gamma > 0 \)

\[\uparrow \]

LMI-based results to prove robustness of adaptive control.
Closed-loop robustly stable with $u = Fy$

\[\mathcal{L}(P, F) < 0 \]

\[\left\{ \begin{array}{l}
\dot{x} = A(\Delta)x + B(\Delta)u \\
y = C(\Delta)x
\end{array} \right. \]

is robustly HMP

Closed-loop robustly stable with $u = Ky$, $\dot{K} = -yy^T\Gamma$, $\forall \Gamma > 0$

\[\text{\blacktriangledown Purpose of non-linear adaptive control if static output feedback (SOF) does the job?} \]

\[\text{\blacktriangledown } K \text{ is unbounded and shall diverge due to noise on measurements} \]

\[\text{\blacktriangle Special case where robust SOF design is LMI!} \]
Robust & Direct Adaptive?

Closed-loop robustly stable with $u = Fy$

\[\mathcal{B}(P, F, G) \prec 0 \]

\[
\begin{aligned}
\dot{x} &= A(\Delta)x + B(\Delta)u \\
y &= C(\Delta)x \\
z &= Gy
\end{aligned}
\]

is robustly HMP w.r.t. (u, z)

Closed-loop robustly stable with $u = Ky$, $\dot{K} = -zy^T\Gamma$, $\forall \Gamma \succ 0$

\[\downarrow \]

BMI conditions (but with heuristic to solve it locally \(\uparrow\))

\(\downarrow\) K is unbounded and shall diverge due to noise on measurements

\(\downarrow\) Purpose of non-linear adaptive control if SOF does the job?
Robust & Direct Adaptive?

Closed-loop robustly stable with $u = F y_s$

\[\mathcal{B}(P, F, G, D) < 0 \]

\[
\begin{align*}
\dot{x} &= A(\Delta)x + B(\Delta)u \\
y_s &= C(\Delta)x + Du \\
z &= Gy_s
\end{align*}
\]

is robustly HMP w.r.t. (u, z)

Closed-loop robustly stable with $u = K y_s$, $\dot{K} = -z y_s^T \Gamma$, $\forall \Gamma > 0$

\[\begin{aligned}
\n\n\end{aligned} \]

\begin{itemize}
\item BMI conditions (but with heuristic to solve it locally \(\uparrow \))
\item K is unbounded and shall diverge due to noise on measurements
\item Purpose of non-linear adaptive control if SOF does the job?
\item Purpose of controlling y_s?
\end{itemize}
The shunt is equivalent to a feedback on the control gain

▲ Even thought K is unbounded, the actual gain seen by the plant $K \ast D$ is bounded

■ Justifies the search for adaptive control with gains forced to be bounded
Robust & Direct Adaptive?

Closed-loop robustly stable with $u = Fy$

$\mathcal{B}(P, F, G, D) \prec 0$

\[
\begin{cases}
\dot{x} = A(\Delta)x + B(\Delta)u \\
y = C(\Delta)x \\
z = Gy + Du
\end{cases}
\]

is robustly HMP w.r.t. (u, z)

Closed-loop robustly stable with $u = Ky$, $\dot{K} = P_{\mathcal{E}(D)}[-Gyy^T]\Gamma$, $\forall \Gamma \succ 0$

where $P_{\mathcal{E}(D)}$ is a projection forcing K in a set with size proportional to D^{-1}

\[\nabla\] Purpose of non-linear adaptive control if SOF does the job?

\[\nabla\] BMI conditions (but with heuristic to solve it locally ∇)

\[\nabla\] Adaptive control with bounded gains
Closed-loop robustly stable with \(u = F(\Delta)y \)

\[\uparrow \]

\[\mathcal{B}^{[v]}(P^{[v]}, F^{[v]}, S, G, D, K_c) \preceq 0 \]

\[\downarrow \]

Closed-loop robustly stable with \(u = Ky, \dot{K} = P_{\mathcal{E}(D, K_c)}[-Gyy^T] \Gamma, \forall \Gamma \succ 0 \)

where \(P_{\mathcal{E}(D, K_c)} \) is a projection forcing \(K \) in a set with size proportional to \(D^{-1} \)

\[\downarrow \]

BMI conditions (but with heuristic to solve it locally ▲)

▲ There might not be any SOF that does the job (only a gain scheduled one)

▲ Adaptive control with bounded gains
Sketch of the proof

- Robustness is for linear systems with uncertainties

\[
\dot{x} = A_{\zeta} x + B_{\zeta} u, \quad y = C x
\]

where affine polytopic uncertainty is assumed for simplicity

\[
\begin{bmatrix}
A_{\zeta} & B_{\zeta}
\end{bmatrix} = \sum_{v=1}^{\bar{v}} \zeta_v \begin{bmatrix}
A^{[v]} & B^{[v]}
\end{bmatrix}, \quad \zeta_v \geq 0, \quad \sum_{v=1}^{\bar{v}} \zeta_v = 1.
\]

Other types of uncertainties easily handled with appropriate LMI-based robustness tools

- Matrix inequalities $\mathcal{B}^{[v]}(P^{[v]}, F^{[v]}, S, G, D, K_c) \prec 0$

 assumed to hold for all vertices $v = 1 \ldots \bar{v}$

▲ Thanks to S-variable type result,

inequalities hold true for all $\zeta \in \{ \zeta_v \geq 0, \quad \sum_{v=1}^{\bar{v}} \zeta_v = 1 \}$.

\[
\mathcal{B}_{\zeta}(X_{\zeta}, F_{\zeta}, S, G, D, K_c) \prec 0
\]
Sketch of the proof

\[\mathcal{B}_\zeta(P_\zeta, F_\zeta, S, G, D, K_c) < 0 \]

Implies the following inequalities along closed-loop trajectories

\[
2\dot{x}^T P_\zeta x + \epsilon x^T x + 2y^T(D - (K_c - K)^T(K_c - K) - G^T(K - F_\zeta))y \leq 0 \\
(K_c - F_\zeta)^T(K_c - F_\zeta) \leq D
\]

Adaptive law \(\dot{K} = P_{\mathcal{E}(D,K_c)}[-Gyy^T]\Gamma \) is conceived in order to satisfy

\[
(K_c - K)^T(K_c - K) \leq D \\
\text{Tr}(\dot{K}\Gamma^{-1} + Gyy^T)(K - F) \leq 0
\]

whatever \(F \) such that \((K_c - F)^T(K_c - F) \leq D\).

With these properties one gets

\[
2\dot{x}^T P_\zeta x + \epsilon x^T x + 2\text{Tr}\dot{K}^T\Gamma^{-1}(F_\zeta - K) \leq 0
\]
Sketch of the proof

Stability is proved with the parameter-dependent Lyapunov function

\[V_\zeta(x, K) = x^T P_\zeta x + \text{Tr}(F_\zeta - K)^T \Gamma^{-1}(F_\zeta - K), \quad \dot{V}_\zeta(x, K) \leq -\epsilon x^T x \]

Both \(P_\zeta \) and \(F_\zeta \) are parameter-dependent

\(F_\zeta \) is a stabilizing static output feedback

cannot be implemented without knowledge of \(\zeta \)

Adaptive control achieves the same robustness property without knowledge of \(\zeta \)

Methodology applies without difficulty for the design of structured adaptive gains

e.g. \(K \) can be constrained to be diagonal

Result extend to descriptor uncertain systems

thus applicable to systems rational in the uncertainties \(\zeta \)

The results are in terms of BMIs: Non-convex
Heuristic method for adaptive control design

- Design a controller $C(s)$ for the nominal plant $H_{\zeta=0}(s)$

- Convert the loop $H_{\zeta}(s) \ast C(s)$ into $G_{\zeta}(s) \ast K_o$ where K_o is diagonal and contains the gains to be adapted. $G_{\zeta}(s)$ has a descriptor state-space representation, affine in the uncertainties ζ

- Starting from $K_c = K_o$ and a small set of uncertainties $\zeta \in Z_o$ solve iteratively the BMIs while increasing the size of the set of uncertainties Z

▲ The algorithm converges on examples to sets Z containing values ζ for which $H_{\zeta}(s) \ast C(s)$ is unstable

▼ Does not mean that no robustly stabilizing LTI control exists
Applied to a satellite attitude control example

[Leduc 2017]

Uncertainties on the inertia (large variations during deployment of appendices)
Baseline LTI control designed for the fully deployed configuration

Adaptive control stable for all configurations

Adaptive & Robust!
To be continued...

Thank you!
and happy α^{70}!