ADAPTIVE PASSIFICATION-BASED FAULT-TOLERANT FLIGHT CONTROL

A.L. Fradkov¹, B. Andrievsky¹, D. Peaucelle²

¹CCS Lab., Institute for Problems of Mechanical Engineering of RAS, St.Petersburg
http://www.ipme.ru/ipme/lab`s/ccs

²Laboratoire d'analyse et d'architecture des systèmes, LAAS-CNRS, Toulouse
http://www.laas.fr/~peaucell/

CNRS-RAS cooperative research project “Robust and adaptive control of complex systems: Theory and applications”
The adaptive passification-based method is used for fault-tolerant flight control design. Simulation results for HL-20 model and results of experiments with the “LAAS Helicopter Benchmark” are presented, showing efficiency and fault-tolerance of the proposed method.
OUTLINE

1. Introduction
2. Passification method and adaptive controllers with Implicit Reference Model
3. Adaptive fault-tolerant control for HL-20
 3.1 IRM adaptive controller for HL-20 angle of attack
 3.2 Simulation results
4. Adaptive fault-tolerant control for LAAS Helicopter benchmark
 4.1 IRM adaptive controller for the ‘Helicopter’ pitch angle
 4.2 Experimental results
Conclusions
2. Passification method and adaptive controllers with Implicit Reference Model

LTI SISO system

\[A(p)y(t) = B(p)u(t), \quad t \geq 0, \quad (1) \]

-Scalar control signal, \(y \) – controlled output;

\[A(p) = p^n + a_{n-1} p^{n-1} + \cdots + a_0 \]

\[B(p) = b_m p^m + b_{m-1} p^{m-1} + \cdots + b_0 \]

-Uncertain polynomials on \(p = d/dt \).

Plant model parameters are unknown.

Control problem:

tracking the reference (command) signal \(y_{\text{ref}}(t) \).
Implicit Reference Model (IRM)

Introduce $\sigma(t) = G(p)y(t) - D(p)y_{\text{ref}}(t)$ - the adaptation error signal,

$$G(p) = p^l + g_{l-1}p^{l-1} + \cdots + g_0, \quad D(p) = d_r p^r + d_{r-1} p^{r-1} + \cdots + d_0$$

given polynomials, specifying desired properties of the closed-loop system; $G(\lambda)$ - stable (Hurwitz) polynomial.

The signal $\sigma(t)$ – the equation error for the equation

$$G(p)y_*(t) = D(p)y_{\text{ref}}(t), \quad (2)$$

$\sigma(t) \equiv 0 \implies$ controlled variable $y(t)$ satisfies (2).

Hence (2) represents reference model implicitly; it is called the Implicit Reference Model (IRM).
Adjustable control law

Adjustable control law in the *main loop*:

\[u(t) = k_r(t)D(p)y_{ref}(t) + \sum_{i=0}^{l} k_i(t)(p^i y(t)), \]

\(k_r(t), \quad k_i(t), \quad (i = 0, 1, \ldots, l) \) - tunable parameters
Adaptation algorithm

The passification based design method leads to the following adaptation algorithm:

\[
\dot{k}_r(t) = \gamma \sigma(t) D(p) y_{ref}(t) - \alpha(k_r(t) - k_r^0), \quad k_r(0) = k_r^0, \quad (4a)
\]

\[
\dot{k}_i(t) = -\gamma \sigma(t) p^i y(t) - \alpha(k_i(t) - k_i^0), \quad k_i(0) = k_i^0, \quad (4b)
\]

\[
\gamma > 0 - \text{adaptation gain;}
\]

\[
\alpha \geq 0 - \text{parametric feedback gain;}
\]

\[k_r^0, k_i^0 - \text{prior estimates of the appropriate values of the tunable parameters, } i = 0, 1, \ldots, l.\]
Applicability conditions – Passification Theorem

The adaptive controller (3), (4) applicability conditions (Passification Theorem; Fradkov, 1974):

1. \(B(\lambda) \) is Hurwitz polynomial,
2. \(l = k - 1 \); where \(k = n - m \) - plant (1) relative degree.

The degree of \(D(p) \) is bounded by the amount of available derivatives of \(y_{ref}(t) \) and is subjected to designer’s decision. A matching condition (used for the Model Reference Systems) is not necessary for IRM adaptive controllers. The order of reference equation (2) is equal to \(l \) and can be significantly less than the plant model order \(n \).
1. Introduction
2. Passification method and adaptive controllers with Implicit Reference Model
3. Adaptive fault-tolerant control for HL-20
 3.1 IRM adaptive controller for HL-20 angle of attack
 3.2 Simulation results
4. Adaptive fault-tolerant control for LAAS Helicopter benchmark
 4.1 IRM adaptive controller for the ‘Helicopter’ pitch angle
 4.2 Experimental results
Conclusions
3. Adaptive fault-tolerant control for HL-20 spacecraft

[Matlab/Simulink Aerospace Blockset demo aeroblk_HL20.mdl]
IRM adaptive controller for HL-20 angle of attack

\[u(t) = k_I(t) \int_0^t e(t) \, dt + k_\alpha(t)e(t) - k_q(t)q(t). \]

\(\alpha \) - angle of attack, \(q \) - pitch rate, \(e = \alpha_{ref} - \alpha \) - reference error

\[
\begin{align*}
\dot{k}_I &= -\gamma_I \sigma_t \int_0^t e(t) \, dt + \lambda(k_I^0 - k_I(t)), \\
\dot{k}_\alpha &= -\gamma_\alpha \sigma_t e(t) + \lambda(k_\alpha^0 - k_\alpha(t)), \\
\dot{k}_q &= \gamma_q \sigma_t q(t) + \lambda(k_q^0 - k_q(t)), \\
\sigma_t &= g_I \int_0^t e(t) \, dt + e(t) - g_q q(t)
\end{align*}
\]
Simulation results for HL-20 flight control (nominal case)

Fig. 1. Tracking the reference signal. H_∞ controller (2-D scheduling). Nominal case.

Fig. 2. Tracking the reference signal. Adaptive controller. Nominal case.
Simulation results for HL-20 (actuator fault to 45%)

Fig. 4. Tracking the reference signal. H_{∞} controller (2-D scheduling).

Fig. 5. Tracking the reference signal. Adaptive controller.
Simulation results for HL-20. Controller gains time histories

Nominal case

Actuator effectiveness falls down to 45% from the nominal at $t_\star = 30 \text{ s}$
OUTLINE

1. Introduction
2. Passification method and adaptive controllers with Implicit Reference Model
3. Adaptive fault-tolerant control for HL-20
 3.1 IRM adaptive controller for HL-20 angle of attack
 3.2 Simulation results
4. Adaptive fault-tolerant control for LAAS Helicopter benchmark
 4.1 IRM adaptive controller for the ‘Helicopter’ pitch angle
 4.2 Experimental results
Conclusions
4. Adaptive fault-tolerant control for LAAS Helicopter benchmark

Quanser/LAAS “Helicopter” benchmark
Nomenclature

angles of:
θ – pitch,
λ – travel,
ε – elevation.

\[u_f, u_b - \text{motor voltages}; \]
\[\nu_x, \nu_z - \text{control signals}; \]
\[u_f = 0.5(\nu_z + \nu_x), \]
\[u_b = 0.5(\nu_z - \nu_x). \]
IRM adaptive PID-controller for ‘Helicopter’ pitch angle

\[
u(t) = k_P(t)\bar{e} + k_I(t) \int_0^t \bar{e}(\tau) \, d\tau - k_D(t)\dot{\theta}(t)
\]

\[
e(t) = \theta^*(t) - \theta(t), \quad \bar{e}(t) = \text{sat}_E(e(t)), \quad \text{sat}_E(\cdot) \in [-E, E]
\]

\[
\dot{k}_P(t) = -\gamma_P \sigma_t \bar{e}(t) - \alpha_P(k_P(t) - k_P^0),
\]

\[
\dot{k}_I(t) = -\gamma_I \sigma_t \int_0^t \bar{e}(\tau) \, d\tau - \alpha_I(k_I(t) - k_I^0)
\]

\[
\dot{k}_D(t) = \gamma_D \sigma_t \dot{\theta}(t) - \alpha_D(k_D(t) - k_D^0),
\]

\[
\sigma_t = T \dot{\theta}(t) - \bar{e}(t)
\]
Experimental results

Fig. 8. Step responses of the pitch angle for system with the APID-IRM controller. Nominal case – solid line, 50% motor fault – dashed line, 100% motor fault – dotted line.

Fig. 9. Controller gains time histories; 50% motor fault.
Movie. Rear motor 100% fault
CONCLUSIONS

The adaptive passification-based method is used for fault-tolerant flight control design. An important advantage of the proposed adaptive control is simplicity of the design procedure compared to conventional model based design. Results of simulation for HL-20 model and experiments with the “LAAS Helicopter Benchmark” are presented, showing efficiency of the proposed method. It is demonstrated that the passification-based adaptive control approach leads to the rapid adaptive tuning algorithms, which makes it possible to use this method for actuator faults compensation.
Thank you!