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1 Introduction

One century after the pioneering works on periodic differential equations with
periodic coefficients [23, 16, 19], the eighties have witnessed a renewed interest
in the modelling, analysis and control of periodic systems (see [10] and the
references therein). This interest is mainly due to the variety and the origi-
nality of the possible applications of a control theory dedicated to this class
of systems. One can first recall the classic examples of control of vibrations
in helicopters [7] as well as the attitude control of satellites equipped with
magnetorquers [22, 31].

Another interesting and original application of linear periodic systems control
theory concerns autonomous orbit control. During the last years, the prob-
lem of autonomous orbit control for spacecraft has been largely addressed for
various applications ranging from geostationary station keeping to formation
flying earth orbiters. For circular orbits, the synthesis problems (compute an
adequate control law) are generally tackled via the use of Hill’s equations
leading to a complete linear time-invariant formulation. On the contrary, for
elliptical orbits, the discrete-time approximation of the linearized equations
of relative motion of a spacecraft in the orbit plane yields discrete-time linear
periodic model. In [26], a time-invariant reformulation [5] is utilized to design
a discrete-time optimal periodic controller. Those results are completed in [27]
by considering pertubations resulting from atmospheric drag.

When dealing with such intrinsically periodic systems, it is natural to won-
der if the well-established analysis and synthesis framework for linear-time
invariant systems may be extended to this peculiar class of time-varying mod-
els. Indeed, time-invariant reformulations for discrete-time systems [5] paved
the way for the development of a broad variety of tools (periodic Lyapunov
and Riccati equations) directly extrapolated from the LTI set-up. Structural
properties, stability analysis as well as the most popular synthesis techniques
(pole placement, Linear Quadratic optimal control) were therefore extended
to discrete-time and continuous-time periodic systems [8, 6, 9, 31]. Surpris-
ingly, few results exist that extend the robust control framework to periodic
systems [18], [13], [20].

In this paper, a particular class of uncertain linear discrete-time periodic sys-
tems, similar to the one presented in [13], is considered. The contribution of
this study is the design of robustly stablizing state-feedback controllers for this
class of systems and focuses on H2 performance optimization. As presented in
[2], the H2 performance of a periodic system is measured through the gener-
alized H2 norm of the transfer between exogeneous inputs and outputs. This
norm characterizes the sensitivity of the system with respect to perturba-
tions (gaussian noise, impulses) on the input signals. An LMI formulation
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for the computation of this norm has been proposed in [30] for the case of
certain systems. Following a classical methodology in the robust LTI context,
a quadratic approach is first proposed to extend results of [30] to the case
of uncertain polytopic systems. Then, strongly related to results presented
in [11], a new extended framework based on periodic parameter-dependent
Lyapunov functions, is presented. Using additional variables as proposed by
[17, 12, 24], extended sufficient conditions for robust stabilization with H2

performance optimization are given. Those are always less conservative than
the ones developed in the quadratic context and improve the performance of
the controller. All stabilization methods presented in this paper are LMI
formulated and can therefore be solved in polynomial time with Semi-Definite
Programming (SDP) solvers. A numerical example illustrates the relevance of
these new conditions and discusses their efficiency.

Notations: The transpose of a matrix A is denoted A′. For symmetric matrices,
> (≥) denotes the Löwner partial order, i.e. A > (≥) B iff A− B is positive
(semi) definite. 1 stands for the identity matrix and 0 for the zero matrix with
the appropriate dimensions. Sn denotes the set of symmetric matrices of Rn×n.
N is the set of natural integers. The symmetric part of a square matrix A is
denoted 〈A〉, i.e. 〈A〉 = A + A′. co

{
A[1], · · · , A[N ]

}
is the convex hull of the

collection of N vertices A[1], · · · , A[N ] such that its elements are parameterized
by λ such that

A(λ) =
N∑

i=1

λiA
[i] , λ ∈ Λ =

{
λ ∈ RN : λi ≥ 0,

N∑
i=1

λi = 1

}

{Ak}k∈N is a sequence whose elements at time k are Ak. Such sequence is said
T -periodic if for all k ≥ 0 one has Ak+T = Ak. ∆k = ∆(t − k) denotes the
shifted unit pulse applied at some time k. ∆i

k is the vector signal ∆k which
has a shifted unit pulse in the i-th position and zeros in the other positions.
Σ[u] denotes the output of system Σ for a given input u.

2 Problem Statement

Let the linear uncertain discrete-time time-varying system Σ(λ) defined by
the following state-space realization:

xk+1

zk

 =

 Ak(λ) Bwk(λ) Buk(λ)

Czk(λ) Dzwk(λ) Dzuk(λ)




xk

wk

uk

 = Mk(λ)


xk

wk

uk

 (1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control vector, wk ∈ Rmw

is the disturbance vector, zk ∈ Rpz is the controlled output vector and λ ∈ Λ
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is a vector of parametric uncertainties. For each k, the parameter-dependent
system matrix Mk(λ) belongs to the convex polytope Mk defined by:

Mk = co
{
M

[1]
k , · · · , M

[N ]
k

}
, M

[i]
k =

A
[i]
k B

[i]
wk B

[i]
uk

C
[i]
zk D

[i]
zwk D

[i]
zuk


The sequence of polytopes {Mk}k∈N is assumed to be T -periodic. The resulting
uncertain system is said to be polytopic T -periodic.

The paper is devoted to giving constructive conditions for robust stabilizing
memoryless T -periodic state-feedback of the form uk = Kkxk that minimizes
the worst-case H2 norm of the uncertain closed-loop system Σcl(λ):xk+1

zk

 =

 Ak(λ) + Buk(λ)Kk Bwk(λ)

Czk(λ) + Dzuk(λ)Kk Dzwk(λ)


 xk

wk


=

 Acl
k (Kk, λ) Bwk(λ)

Ccl
zk(Kk, λ) Dzwk(λ)


 xk

wk

 = M cl
k (Kk, λ)

 xk

wk


(2)

The closed-loop matrices M cl
k (λ) belong to the T -periodic sequences of poly-

topes {Mcl
k }k∈N defined by Mcl

k = co
{
M

cl[1]
k , · · · , M

cl[N ]
k

}
and

M
cl[i]
k =

 A
[i]
k + B

[i]
ukKk B

[i]
wk

C
[i]
zk + D

[i]
zukKk D

[i]
zwk

 =

A
cl[i]
k B

[i]
wk

C
cl[i]
zk D

[i]
zwk



Robust stability and H2 performance are tackled using the extended Lya-
punov framework proposed in [4]. Robust stability is proved equivalent to
the existence of a positive quadratic parameter-dependent periodic Lyapunov
function:

Vk(xk, λ) = x′kPk(λ)xk , Pk+T (λ) = Pk(λ) > 0 (3)

decreasing along the trajectories of the system for all admissible uncertainties.
If a T -periodic state-feedback sequence {Kk}k∈N exists such that Σcl is robustly
stable then Σ is said to be robustly stabilizable via a T -periodic state-feedback.
Let K be the set of all robustly stabilizing state-feedback T -periodic sequences.
For a particular sequence {Kk}k∈N ∈ K, and a particular realization of the
uncertain vector λ ∈ Λ, the generalized H2 norm of the periodic system Σcl(λ)
as defined in [2, 30]) is:

‖Σcl(λ)‖2
2 =

1

T

T∑
k=1

mw∑
i=1

‖Σcl(λ)[∆i
k]‖2

2 (4)

i.e. the mean of all the responses corresponding to impulsive inputs applied at
each time k of the period on each of the mw channels. The H2 norm obviously

4



depends on the value of the vector of uncertain parameters λ. Therefore, the
squared worst-case H2 norm of Σcl may be defined as:

γwc({Kk}k∈N) = max
λ∈Λ

‖Σcl(λ)‖2
2 (5)

Which mean that for all uncertainties: ‖Σcl(λ)‖2
2 ≤ γwc({Kk}k∈N). The aim of

the paper is to compute a state-feedback controller that minimizes γwc({Kk}k∈N).

Problem 1 Worst-case H2 state-feedback stabilization:

{Kk}opt
k∈N = arg

{
min

{Kk}k∈N∈K
max
λ∈Λ

‖Σcl(λ)‖2
2

}
(6)

that is find {Kk}opt
k∈N ∈ K such that γwc({Kk}opt

k∈N) is minimum.

For a given {Kk}k∈N, the computation of the generalized H2 norm of periodic
systems has been formulated in terms of linear matrix inequalities in [30].
This formulation is extended here to handle polytopic uncertain systems. In
order to lighten the notation, the dependency of variables γ upon the sequence
{Kk}k∈N will be subsequently considered to be implicit except when explicitly
needed. For a given λ ∈ Λ, the computation of ‖Σcl(λ)‖2 may be recast as:

Lemma 1 The H2 cost ‖Σcl(λ)‖2 of system (2) for a given sequence {Kk}k∈N
and a given realization of the uncertain vector λ ∈ Λ is solution of the following
optimization problem:

‖Σcl(λ)‖2
2 = min

Xk(λ)∈Sn
γ (7)

constrained by the LMIs (with k ∈ {1 · · ·T})

Acl
k (λ)Xk(λ)Acl′

k (λ)−Xk+1(λ) + Bwk(λ)B′
wk(λ) < 0 (8)

Trace
T∑

k=1

{
Ccl

zk(λ)Xk(λ)Ccl′

zk (λ) + Dzwk(λ)D′
zwk(λ)

}
< Tγ (9)

Xk(λ) > 0 , XT+1(λ) = X1(λ) (10)

The existence of a solution to the matrix inequalities (8-10) simultaneously
proves the stability of the closed-loop system (attested by the parameter-
dependent Lyapunov function Vk(xk, λ) = x′kX

−1
k (λ)xk) and guarantees that

the square of H2 norm is less than a given γ. For a given λ ∈ Λ and a given
sequence {Kk}k∈N, the previous problem may be easily solved by usual SDP
Tools [21]. Applying a classical linearizing change of variables [3], a sequence
{Kk}k∈N minimizing the H2 norm for a given parametric realization of the
closed-loop system Σcl can be computed by solving again an LMI optimiza-
tion problem. When λ is considered to be unknown, even if the sequence
{Kk}k∈N is known (worst-case analysis), the problem is much harder since it
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amounts to solve the following max-min problem. Moreover, the considered
Problem 1 amounts to finding the controller that achieves χ∗wc:

γwc = max
λ∈Λ

min
Xk(λ)s.t. (8−10)

γ , χ∗wc = min
{Kk}k∈N∈K

γwc (11)

Throughout the paper, γ denotes a squared H2 cost obtained in analysis (solu-
tion or relaxation of a max-min optimization problem) and χ denotes a squared
H2 cost obtained in synthesis (solution or relaxation of a min-max-min opti-
mization problem). Even in the simpler case of LTI systems, this problem is
known to be hard to solve exactly. Except for special simple cases, one has
to resort to using some relaxations (corresponding to subsets of controllers
Ksub ∈ K) to get conditions with associated SDP numerical procedures giving
a suboptimal solution to problem 1.

Problem 2 Worst-case guaranteed H2 state-feedback stabilization:

{Kk}sub
k∈N = arg

{
min

{Kk}k∈N∈Ksub

max
λ∈Λ

‖Σcl(λ)‖2
2

}
(12)

where Ksub is a subset of robustly stabilizing controllers such that (12) is pos-
sibly described by LMI constraints.

Denote χsub = γ({Kk}sub
k∈N), the goal is to get the tightest possible gap between

χsub and χ∗wc. Next section is devoted to LMI analysis methods for computing
upper bounds on γwc for a given {Kk}k∈N. Then, in section 4, those analysis
tools are used to derive solutions to problem 2.

3 Robust H2 analysis

3.1 Quadratic H2 cost

Mimicking a well-known relaxation for robust stabilization of LTI uncertain
systems, the authors of [13] define the quadratic stability concept for uncertain
periodic linear discrete-time systems. In this section, we extend this result to
compute a bound for the H2 norm. Quadratic stability comes from the partic-
ular choice of periodic quadratic Lyapunov functions (3) that are independent
of the uncertain parameters: Pk(λ) = Pk. Using this restricted parameteriza-
tion of the Lyapunov function, and denoting Xk = P−1

k , we get the following
upper-bound for γwc when the sequence {Kk}k∈N is given.

Theorem 1 Let the following optimization problem:

γq
sub = min

Xk∈Sn, Zk∈Spz

(
1

T
Trace

T∑
k=1

Zk

)
(13)
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constrained by the LMIs (k ∈ {1 · · ·T}, i ∈ {1 · · ·N})

A
cl[i]
k XkA

cl[i]′

k −Xk+1 + B
[i]
wkB

[i]′

wk < 0 (14)

C
cl[i]
zk XkC

cl[i]′

zk + D
[i]
zwkD

[i]′

zwk < Zk (15)

Xk > 0 , XT+1 = X1 (16)

γq
sub is a the squared quadratic guaranteed H2 cost for (2) and γwc ≤ γq

sub.

Proof Suppose (Xk, Zk) solution of (15-16). Applying a Schur complement
argument [28], (15) and (14) may be respectively written as:

−Xk+1 A
cl[i]
k Xk B

[i]
wk

XkA
cl[i]′

k −Xk 0

B
[i]′

wk 0 −1

 < 0 ,


−Zk C

cl[i]
zk Xk D

[i]
zwk

XkC
cl[i]′

zk −Xk 0

D
[i]′

zwk 0 −1

 < 0 (17)

Computing k convex combinations of (17) and applying a Schur complement
argument leads for all k ∈ {1 · · ·T} and all λ ∈ Λ:

Acl
k (λ)XkA

cl′

k (λ) + Bwk(λ)B′
wk(λ) < 0 (18)

Ccl
zk(λ)Xk(λ)Ccl′

zk (λ) + Dzwk(λ)D′
zwk(λ) < Zk (19)

where Xk > 0 and XT+1 = X1. Noting γ =
1

T
Trace

T∑
k=1

Zk and summing up

inequalities (19) over a period, inequalities (8-10) are retrieved with Xk(λ) =
Xk. Finally, inequality γwc ≤ γq

sub comes from the relaxation of max-min by
min-max. 2

3.2 Polytopic H2 cost

Based on some recent results [17, 12, 24], a new optimization problem involving
additional slack variables is introduced and is shown to be always less con-
servative than the quadratic one. The conservatism of the quadratic stability
relaxation mainly comes from the use of a single periodic Lyapunov function
for the whole set of uncertainty. Overcoming this drawback requires to opti-
mize over parameter-dependent periodic Lyapunov functions. Even when the
uncertain model is known to have a polytopic structure, it is hardly possible to
a priori know the dependency of the Lyapunov function upon the unknown pa-
rameters. Nevertheless, a natural sub-optimal problem is to seek for polytopic
periodic Lyapunov functions of the form (3) where:

P−1
k (λ) = Xk(λ) =

N∑
i=1

λiX
[i]
k (20)
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Trivially, such a choice of Lyapunov function will lead to a tighter bound on
γwc than γq

sub. This new suboptimal bound can be called a polytopic H2 cost.
Next theorem gives an LMI method for computing an upper bound of the
polytopic H2 cost.

Theorem 2 Let the following optimization problem:

γe
sub = min

X
[i]
k
∈Sn, Zk∈Spz , Hk∈Rn×2n, Sk∈Rn×(pz+n)

(
1

T
Trace

T∑
k=1

Zk

)
(21)

constrained by the LMIs (k ∈ {1 · · ·T}, i ∈ {1 · · ·N})−X
[i]
k+1 + B

[i]
wkB

[i]′

wk 0

0 X
[i]
k

+

〈A
cl[i]
k

−1

Hk

〉
< 0 (22)

−Zk + D
[i]
zwkD

[i]′

zwk 0

0 X
[i]
k

+

〈C
cl[i]
zk

−1

Sk

〉
< 0 (23)

X
[i]
k > 0 , X

[i]
T+1 = X

[i]
1 (24)

then γe
sub is the squared extended guaranteed H2 cost for (2) and γwc ≤ γe

sub.

Proof Suppose a solution (X
[i]
k , Zk, Hk, Sk) to (23-24). Then, the compu-

tation of the convex combinations over the N vertices allows to write for
all uncertainties (the quadratic terms Bwk(λ)B′

wk(λ) in (8) are treated using
Schur transformation as in the proof of Theorem 1):−Xk+1(λ) + Bwk(λ)B′

wk(λ) 0

0 Xk(λ)

+

〈Acl
k (λ)

−1

Hk

〉
< 0

Applying elimination lemma [28] to the last inequality leads to:

[
1 Acl

k (λ)

] −Xk+1(λ) + Bwk(λ)B′
wk(λ) 0

0 Xk(λ)


 1

Acl′
k (λ)

 < 0

which are exactly (8). The same procedure applies to (23) to get (9). 2

The main reason to introduce slack variables consists in the decoupling be-
tween the periodic Lyapunov matrices X

[i]
k and the system matrices thus al-

lowing the use of parameter-dependent periodic Lyapunov functions of the
form (20) where X

[i]
k is defined at each vertex of the polytope Mcl

k . It is then
possible to show that:

Lemma 2 The new bound for H2 norm computed with theorem 2 is always
better than the one elaborated in the quadratic context: γwc ≤ γe

sub ≤ γq
sub.
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Proof The proof is straightforward. If there exist T matrices Xk and T
matrices Zk such that (14-16), then the set of matrices such that:

X
[i]
k = Xk , Hk =

[
0 Xk

]
, Sk =

[
0 Xk

]
, Zk

are solution of the LMIs (22-24). 2

4 Robust H2 synthesis

For the same reasons as developed in the analysis section, the sequence of
controllers {Kopt

k }k∈N ensuring that the closed-loop system has a minimal H2

norm γ∗wc cannot be computed in the general case. The objective of this sec-
tion is to extend analysis results to find a suboptimal sequence of controllers
such that the H2 norm of the closed-loop system is less than a particular
bound, as close as possible to γ∗wc. To do so, results based on theorem 2 are
expected to be better than design methods based on quadratic stability. The
adopted methodology for deriving LMI conditions is in accordance with the
linearizing change of variables of [3]. Moreover, as in [1] it needs some arbitrary
factorization of the Hk and Sk matrices which is in the present case param-
eterized by a couple of sequences Υ = ({A0

k}k∈N, {C0
zk}k∈N) whose elements

belong to Rn×n and Rpz×n respectively.

Theorem 3 Let Υ be a given couple of sequences as defined above and define
the following optimization problem:

χe
sub(Υ) = min

X
[i]
k
∈Sn, Zk∈Spz , Gk∈Rn×n, Yk∈Rm×n

(
1

T
Trace

T∑
k=1

Zk

)
(25)

constrained by the Υ dependent LMIs (k ∈ {1 · · ·T}, i ∈ {1 · · ·N})−X
[i]
k+1 + B

cl[i]
wk B

cl[i]′

wk 0

0 X
[i]
k

+

〈−A
[i]
k Gk −B

[i]
ukYk

Gk

[A0′
k −1

]〉
< 0 (26)

−Zk + D
[i]
zwkD

[i]′

zwk 0

0 X
[i]
k

+

〈−C
[i]
zkGk −D

[i]
zukYk

Gk

[C0′
zk −1

]〉
< 0 (27)

X
[i]
k > 0 , X

[i]
T+1 = X

[i]
1 (28)

then the T -periodic controller uk = Ke
k(Υ)xk defined by Ke

k(Υ) = YkG
−1
k for

k ∈ {1 · · ·T} is such that χe
sub(Υ) is a squared extended guaranteed H2 cost

for (2) and
χ∗wc ≤ γe

sub({Ke
k(Υ)}k∈N) ≤ χe

sub(Υ) .
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Proof Suppose a solution (X
[i]
k , Zk, Gk, Yk) to (27-28). Then the controller

definition implies that Yk = Ke
k(Υ)Gk, which allows to write:−X

[i]
k+1 + B

[i]
wkB

[i]′

wk 0

0 X
[i]
k

+

〈A
[i]
k + B

[i]
ukK

e
k(Υ)

−1

 (−Gk)
[
A0′

k −1

]〉
< 0

−Zk + D
[i]
zwkD

[i]′

zwk 0

0 X
[i]
k

+

〈C
[i]
zk + D

[i]
zukK

e
k(Υ)

−1

 (−Gk)
[
C0′

zk −1

]〉
< 0

Defining Sk = −Gk

[
C0′

zk −1

]
and Hk = −Gk

[
A0′

k −1

]
it gives

−X
[i]
k+1 + B

[i]
wkB

[i]′

wk 0

0 X
[i]
k

+

〈A
[i]
k + B

[i]
ukK

e
k(Υ)

−1

Hk

〉
< 0 (29)

−Zk + D
[i]
zwkD

[i]′

zwk 0

0 X
[i]
k

+

〈C
[i]
zk + D

[i]
zukK

e
k(Υ)

−1

Sk

〉
< 0 (30)

Theorem 2 proves that the optimization problem defined by equations (25,28)
and (29,30) implies that γe

sub({Ke
k(Υ)}k∈N) is a squared extended H2 cost

of the closed-loop system. Moreover, χe
sub(Υ) is always greater or equal to

γe
sub({Ke

k(Υ)}k∈N) because matrices Sk and Hk are not free but constrained by
Υ. 2

The main characteristic of Theorem 3 is the degrees of freedom offered by
the choice of matrices A0

k and C0
zk. Considering these matrices as decisions

variables renders the problem non-LMI. But appropriate choices of these allow
to efficiently take advantage of the LMI conditions. To manage this appropriate
choice the following result is obtained.

Lemma 3 χe
sub(Υ) ≥ γ0 where γ0 is the squared polytopic H2 cost of the

following stable T -periodic system:xk+1

zk

 =

 A0
k Bwk(λ)

C0
zk Dzwk(λ)


 xk

wk

 (31)

Proof Elimination lemma applied to LMIs (4) implies that matrices A0
k

and C0
zk must verify:

A0
kX

[i]
k A0′

k −X
[i]
k+1 + B

[i]
wkB

[i]′

wk < 0

C0
zkX

[i]
k C0′

zk + D
[i]
zwkD

[i]′

zwk < Zk
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for all k ∈ {1 · · ·T} and for all i ∈ {1 · · ·N}. Convex combinations over the N

vertices show that these LMIs coupled with (25-28) imply that
1

T
Trace

T∑
k=1

Zk

is an over-bound on the H2 cost of (31) for a choice of polytopic Xk(λ) Lya-
punov matrices. 2

This last result shows that {A0
k}k∈N must be chosen as a stable periodic se-

quence. Moreover, the pair of sequences Υ = ({A0
k}k∈N, {C0

zk}k∈N) generates
a lower bound to χe

sub(Υ) and should not be chosen too large. Consequently,
a natural choice of Υ consists in retaining a pair providing the lowest bound
γ0 = 0 and this can be obtained by the simple choice of a hyper-stable sys-
tem {A0

k = 0}k∈N with {C0
zk = 0}k∈N. Define Υρ as the particular choice of

sequences:
Υρ = ({A0

k = ρ1}k∈N, {C0
zk = 0}k∈N)

The intuitively interesting condition based on the use of Υ0 can be compared
to the quadratic framework approach as shown in the following Theorem.

Theorem 4 Let the following optimization problem:

χq
sub = min

Xk∈Sn, Zk∈Spz , Yk∈Rm×n

(
1

T
Trace

T∑
k=1

Zk

)
(32)

constrained by the LMIs (k ∈ {1 · · ·T}, i ∈ {1 · · ·N}) −Xk+1 + B
[i]
wkB

[i]′

wk A
[i]
k Xk + B

[i]
ukYk

(A
[i]
k Xk + B

[i]
ukYk)

′ −Xk

 < 0 (33)

 −Zk + D
[i]
zwkD

[i]′

zwk C
[i]
zkXk + D

[i]
zukYk

(C
[i]
zkXk + D

[i]
zukYk)

′ −Xk

 < 0 (34)

Xk > 0 , XT+1 = X1 (35)

then the T -periodic controller uk = Kq
kxk defined by Kq

k = YkG
−1
k for k ∈

{1 · · ·T} is such that χq
sub is the squared quadratic guaranteed H2 cost for (2)

and
χ∗wc ≤ χe

sub(Υ0) ≤ χq
sub = γq

sub({K
q
k}k∈N) (36)

Proof The proof is straightforward: First notice that LMIs (32-35) are a sub

case of (25-28) when taking A0
k = 0, C0

zk = 0, unique Lyapunov matrices X
[i]
k =

Xk, ∀ i ∈ {1 · · ·N} and choosing Gk = Xk. This proves that χe
sub(Υ0) ≤ χq

sub.
Second, notice that the change of variables Kq

kGk = Yk makes (32-35) exactly
equal to (13-16), which proves χq

sub = γq
sub({K

q
k}k∈N). 2

At this time, there is no other theoretical methodology to a priori make a good
choice in terms of conservatism of the obtained bound for the sequences in Υ
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but it is possible to show on examples that the proposed choice may not be
the best (see numerical experiments of section 5). One way to look for “good”
values would be to take Υρ with |ρ| < 1 to ensure the stability of (31). Then
the design amounts to perform multiple LMI optimizations along with a line
search over ρ. Unfortunately, such a design procedure is numerically heavy and
quite time-consuming. Such choice may be found in [14, 15] and examples of
a line search over ρ can be found in papers by E. Fridman and U. Shaked, for
example [29]. A discussion on this question for the case of uncertain time-delay
systems was published in [25].

Rather than restricting the search of {A0
k}k∈N matrices to the form of {ρ1}, a

simple algorithm based on iterative analysis and design steps is proposed:

Algorithm 1

• Step 0 - Compute a stabilizing controller (either {Kq
k}k∈N using Theorem 4

or {Ke
k(Υ0)}k∈N using Theorem 3).

• Step 1 - Perform the robust analysis of the closed-loop system using theorem
2 and get sequences {Hk}k∈N and {Sk}k∈N.

• Step 2 - Partition Hk and Sk such as Hk =
[
Fk Gk

]
, Sk =

[
Qk Rk

]
. Let

Υ such that A0
k = −F ′

kG
−T
k and C0

zk = −Q′
kG

−T
k .

• Step 3 - Compute a new controller {Ke
k(Υ)}k∈N from Theorem 3.

• Step 4 - Go back to step 1 to improve on the H2 cost or stop if the closed-loop
robust H2 cost is not significantly improved.

Under mild conditions on step 1, it is possible to prove that the sequence of
H2 costs generated by the algorithm is always decreasing.

5 Illustrative example

Consider the 3-periodic system presented in [13] defined by its state-space
matrices:

A1 =

−3− α 2

−3 3

 A2 =

−1− α 2

0.5 0

 A3 =

 1− α 2

2.5 3


Bu1 = Bw1 =

 1

β

 Bu2 = Bw2 =

 1

−3β+2
10

 Bu3 = Bw3 =

 0.5(β + 1)

1



Czk =
[
1 0

]
and Dzuk = Dzwk = 0 for all k = 1, 2, 3. The two uncertain

parameters |α| ≤ ᾱ and 0 ≤ β ≤ 1 define a polytope of system matrices with
4 vertices. Note that in [13] the example is treated without uncertainties on
the control input matrix Bu.
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Results from theorem 4 are applied to find H2 suboptimal robustly stabi-
lizing controllers for different upper-bounds ᾱ on the uncertain parameter
α. For each synthesis method, a robustly stabilizing controller ({Kk}q

k∈N or
{Ke

k(Υ0)}k∈N) is computed and the associated guaranteed H2 cost at the op-
timum of the optimization problem (χq

sub or χe
sub(Υ0)) is presented in the

following table. In addition, analysis of the closed-loop system is performed to
compute the closed-loop extended H2 cost γe

sub by applying the results of the-
orem 2. The table clearly confirms the advantages of the extended framework
proposed in this paper, both for robust synthesis and robust analysis.

PPPPPPPPPMethod
ᾱ

0 0.01 0.015775 0.1 0.3 0.497629

Theorem 4 χq
sub = 17.57 25.60 2.5 · 103 fail fail fail

Theorem 2 γe
sub = 7.43 9.14 11.64 5 5 5

Theorem 3 χe
sub(Υ0) = 1.56 1.57 1.58 1.71 2.49 1.3 · 103

Theorem 2 γe
sub = 1.28 1.29 1.29 1.38 1.61 2.04

Consider now a particular value of ᾱ = 0.015775. The following controllers are
computed with the quadratic and extended approaches respectively:

Kq
1 = 10−5 ·

[
0.1648 −0.1722

]
Ke

1(Υ0) =
[
3.0286 −2.3929

]
Kq

2 =
[
0.8529 −2.6864

]
Ke

2(Υ0) =
[
0.9825 −2.2140

]
Kq

3 =
[
−5.0225 −3.7207

]
Ke

3(Υ0) =
[
−2.3053 −2.3518

]
These controllers are then applied to the system and the H2 norm of the
closed-loop systems are computed for a grid on α and β. The result is plotted
on figure 1 and confirms the γe

sub values given in the table.

For the same value of ᾱ, previous results can be further improved using Theo-
rem 3. A grid of values from −0.9 to 0.9 every 0.1 is performed for ρ. Only the
values from −0.4 to 0.5 give feasible LMI conditions and the best χe

sub(Υρ) is
1.5308, obtained for ρ = 0.1 with the controller:

Ke
1(Υ0.1) =

[
3.0120 −2.3841

]
, Ke

2(Υ0.1) =
[
0.9747 −2.1660

]
Ke

3(Υ0.1) =
[
−2.1790 −2.3687

]
.

Robust analysis performed on the closed-loop system shows that this controller
improves the extended H2 bound up to γe

sub = 1.2489. This proves that the
choice Υ0 is not optimal. However finding ρ = 0.1 is far from trivial, it needed
to solve 19 LMIs in the present case.
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Fig. 1. H2 norm of the closed-loop system with {Kq
k}k∈N and {Ke

k(Υ0)}k∈N

Now apply the iterative algorithm 1 initialized with controller {Ke
k(Υ0)}k∈N.

At the first iteration it gives on step 2 another choice for Υ such that

A0
1 =

−0.1934 −0.1665

0.2320 0.3652

 A0
2 =

−0.1414 0.0276

0.3307 0.3407

 A0
3 =

−0.8606 0.0668

−0.4653 −0.0453


C0

1 =
[
−0.3883 0.9898

]
C0

2 =
[
0.6741 0.0635

]
C0

3

[
0.7784 −0.1610

]
and on step 3 a new controller:

Ke
1(Υ) =

[
3.0294 −2.3603

]
, Ke

2(Υ) =
[
0.9379 −2.1529

]
Ke

3(Υ) =
[
−2.3123 −2.4278

]
with an associated bound χe

sub(Υ) = 1.2914 < χe
sub(Υ0.1) = 1.5308. Starting a

second iteration one gets at the analysis step 1 γe
sub({Ke

k(Υ)}k∈N) = 1.2649. Re-
peating this procedure one gets after 9 additional iterations (i.e. after 19 LMI
optimization problems) a new controller such that γe

sub({Ke
k}k∈N) = 1.2137

illustrating that the algorithm does improve the H2 guaranteed cost.

6 Conclusion

The problem of state-feedback stabilization of linear discrete-time polytopic
systems along with H2 performance optimization is solved. First results are
obtained in the classical quadratic context, then a new extended framework
based on parameter-dependent Lyapunov functions is proposed. The use of
additional variables allows to decouple the computation of the state-feedback
from the computation of the Lyapunov matrices. It therefore leads to less
conservative conditions. A numerical example has illustrated the relevancy
of the results and discussed the efficiency of the different approaches. The
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advantages of the methods developed in the extended framework have been
pointed out. First, they allow to stabilize the system with respect to larger
set of uncertainties. Then, for a given set of uncertainties, they drastically
improve the performance of the controlled system. Extension of these results
to the case of H∞ performance is under investigation.
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