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Abstract

New LMI conditions are given for robust H2 analysis of polytopic systems based on polynomial
parameter-dependent Lyapunov functions. Results are derived using a ”slack variables” approach. Nu-
merical results illustrate the characteristics of the proposed results in terms of conservatism reduction
and numerical complexity.
Keywords: Polynomial parameter-dependent Lyapunov functions, polytopic systems, robustness, stabil-
ity, H2.

1 Introduction
Robust stability and performance analysis of polytopic systems via parameter-dependent Lyapunov func-
tions and LMI-based methods have been extensively studied in the past five years leading to four classes of
results:

”Slack variables” method.
Initiated by results presented by de Oliveira and Geromel in [4, 5] for disctrete-time systems and then
extended to continuous-time systems and robust pole location in [12], this methodology is based on a
convexification of polynomial parameter-denendent LMIs by the introduction of additional variables using
the elimination lemma backwards. The present paper adopts this same framework to solve robust analysis
problems by means of polynomial parameter-dependent Lyapunov functions (PPDLF). The augmentation
of the degree of the PPDLF is shown to reduce the conservatism of the derived LMI conditons. The results
are extensions of previous contributions in [7, 8] and in [14]. As it will be demonstrated, this technique is
quite effective on examples but has two major drawbacks: numerical complexity due to the large number
of additional ”slack” variables and no proof of convergence towards exact robustness results as the degree
of the PPDLF grows.

”Positive polynomials with positive coefficients” method.
This technique that first appeared in [13] and that was recently improved in [11] handles the positivity
of polynomial parameter-dependent LMIs over the set of positive uncertain parameters by testing that all
matrix coefficients are positive. In the case of affine PDLFs, a sequence of such conditions involving
exponentially many LMI constraints is proved to have asymptotic convergence properties. In [10] this
technique has been combined with the ”slack variables” method, therefore suffering from both the large
amount of decision variables and constraints. Impressive results have nevertheless been demonstrated for
random systems of small dimensions. At our knowledge, no results based on this method handles general
PPDLFs.
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”D-scalling” method.
This approach, initiated in papers [6, 9], tends to transform the original problem of stability of polytopic
systems into a more general modeling framework where the uncertain parameters enter the system as an
exogenous feedback connection. This reformulation allows to apply KYP-lemma, D-scaling, DG-scaling,
full block S-procedure or quadratic separation results which are yet another approach to convert polynomial
parameter-dependent LMIs into parameter-independent LMIs with additional variables. This methodology
was generalized for any PPDLF in [1, 15] and convergence towards exact robustness results is obtained
when the degree of the PPDLF grows.

”Sum-of-squares” method.
This more recent approach, [2, 3], considers a general form of PPDLFs and shows that for polytopic sys-
tems these polynomial parameter-dependent functions may always be chosen homogeneous. The main re-
sult consists in writing conditions for positive definite polynomial parameter-depend matrices to be sum-of-
squares leading to sufficient parameter-independent LMI conditions for the original parameter-dependent
problem. Results have no proof of convergence towards exact robustness results as the degree of the PPDLF
grows. As for the ”slack variables” approach, numerous additional variables are introduced for describing
the degrees of freedom of Square Matricial Representation (SMR) of homogeneous forms.

For all these methods the main objectives are: to give implementable LMI formulations for the most
general PPDLFs; to evaluate the numerical complexity that in general grows exponentially with the degree
of the PPDLF; to prove convergence properties towards ”exact” results. In the present paper the aim is to
answer to the first aspect within the ”slack variables” framework. Comparisons with other cited results is
not included in this draft but is expected for the final paper.

2 Preliminaries
Define two polytopic parameter-dependent matrices as follows

A(ζ) =
N∑

i=1

ζiAi , Π(ζ) =
N∑

i=1

ζiΠi

where the ζ is the vector of the N uncertain parameters constrained by

ζi ≥ 0 ,

N∑
i=1

ζi = 1 . (1)

For the analysis of polytopic uncertain linear time-invariant (LTI) systems defined by

ẋ(t) = A(ζ)x(t)

we have suggested in [7] to do the analysis of the artificially augmented system
ẋ(t) = A(ζ)x(t)
A(ζ)ẋ(t) = A2(ζ)x(t)
...
Ar(ζ)ẋ(t) = Ar+1(ζ)x(t)

(2)

and proved that it amounts to attesting robust stability of the original system using a PPDLF of the type

xT


1

A(ζ)
...

Ar(ζ)


T

Π(ζ)


1

A(ζ)
...

Ar(ζ)

x .
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In [8], this results has been extended by using a PPDLF of the type

xT


1

M(ζ)
...

Mr(ζ)


T

Π(ζ)


1

M(ζ)
...

Mr(ζ)

x

where M(ζ) is an arbitrarily chosen polytopic parameter-dependent matrix. The obtained results amount
to the robust analysis of the artificially augmented system

ẋ(t) = A(ζ)x(t)
M(ζ)ẋ(t) = M(ζ)A(ζ)x(t)
...
Mr(ζ)ẋ(t) = Mr(ζ)A(ζ)x(t) .

(3)

A ”good” choice for M(ζ) is non trivial. The last formulation includes the former one but has the same
disadvantage of considering special parameter-dependent polynomial Lyapunov functions of degree 2r+1.
Therefore, conditions for more general types of PPDLFs of fixed degree are needed to extend these results.
To do so, one can introduce the following redundant equations:

ζji

i ẋ(t) = ζji

i Ax(t) .

This approach leads to write PPDLFs of the type

xT (ζ [r] ⊗ 1n)T Π(ζ)(ζ [r] ⊗ 1n)x (4)

where ζ [r] ⊗ 1n is a block column matrix composed of ζji

i 1n elements of degrees constrained by ji ≤
ri. For example, in case of three parameters N = 3, the choice r = (2 1 0) corresponds to ζ [r] =(

1 ζ1 ζ2
1 ζ2

)T
.

Applied with the same methodology as proposed in [8] and on the same second example, we get the
numerical results of Table 1. γr stands for the minimal attainable guaranteed H2 cost when applying the
methods for a chosen vector r. Only some results among all tested vectors r are reported, including the
best ones. For each choice of r, the number of decision variables depends only on

∑
ri. For

∑
ri = 0, 1,

2, 3, 4 and 5 the number of variables are respectively 52, 217, 499, 898, 1414 and 2047. Note that if r̃ ≤ r
(element-wize) then the guaranteed costs can be proved to be ordered as γr̃ ≥ γr. This is indeed the case
for the results of Table 1.

Table 1: Numerical results for example 2 in [8] using a PPDLF of the type (4)

r γr r γr r γr

(0 0 0) 8.31 (1 1 1) 4.14
(2 1 0) 3.73 (2 1 1) 3.73

(1 0 0) 4.83 (1 2 0) 4.09
(0 1 0) 5.29 (1 0 2) 4.10 (2 2 1) 3.68
(0 0 1) 4.90 (3 0 0) 3.98 (3 1 1) 3.54

(0 3 0) 5.14 (1 1 3) 4.08
(1 1 0) 4.14 (0 0 3) 4.80 (3 0 2) 3.51
(2 0 0) 4.17
(0 2 0) 5.14
(0 0 2) 4.83

The numerical results of Table 1 are to be compared with those of [8]. Choosing M(ζ) = A(ζ) we had
obtained for r = 1, 2 and 3 respectively γ = 4.7339, 4.2177 and 3.8307. Then the choice of M(ζ) = ζ11n
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was tested and gave for r = 1 and 2 better results (see r = (1 0 0) and r = (2 0 0) in Table 1). These
results are much less conservative than the quadratic stability framework (parameter-independent Lyapunov
function) that gives the upper bound of 18.1490. Nevertheless they seem still quite conservative compared
to a lower bound of 1.3208 obtained by fine griding search over the set of uncertainties.

A clear conclusion of these numerical tests is that the ”slack variables” framework may be applied to
solve robustness problems with PPDLFs, but results depend on the choice of the monomials involved in
the PPDLF. More precisely, in (4) the parameter-dependent Lyapunov matrix P (ζ) such that V (x, ζ) =
xT P (ζ)x is of the type

P (ζ) = (ζ{r} ⊗ 1n)T Π(ζ)(ζ{r} ⊗ 1n) =
∑

i1,i2,i3

ζi1ζ
ji2
i2

ζ
ji3
i3

Pi1,i2,ji2 ,i3,ji3

and whatever the maximal degrees chosen for each parameter, the monomials composed of more than three
parameters are left aside. For that reason the present paper focuses on a more general result where the
PPDLFs involve all possible monomials up to a certain degree. The proposed PPDLFs are of the type

Vq(x, ζ) = xT Pq(ζ)x = xT (
∑

αj(ζ)Πj(ζ))x (5)

where Πj(ζ) are affine parameter-dependent symmetric matrices and αj(ζ) = ζj1
1 ζj2

2 · · · ζjN

N are all the
monomials up to a degree q (

∑
ji ≤ q).

3 Notations
Rm×n is the set of m-by-n real matrices. AT is the transpose of the matrix A. 1 and 0 are respectively the
identity and the zero matrices of appropriate dimensions. For Hermitian matrices, A > (≥)B if and only
if A−B is positive (semi) definite.

Let a vector of integers j =
(

j1 . . . jN

)
. Define the notation Σj =

∑N
i=1 ji. For all such j

vectors, αj(ζ) = ζj1
1 ζj2

2 · · · ζjN

N is a monomial of degree Σj of the variables ζi, i ∈ {1 . . . N}. The number
of monomials of degree going from 0 to q is given by

pq,N = (N + q)!/(N !q!)

Define βk,q(ζ) the vector of all monomials of degrees k to q and let βk(ζ) = βk,k(ζ). Trivially β0(ζ) = 1
and β1(ζ) = (ζ1 . . . ζN )T . Define recursively the following linear parameter-dependent matrices:

M0
k (ζ) =


ζk

ζk+1

...
ζN

 , M j+1
k (ζ) =


M j

k(ζ) 0 · · · 0

0 M j
k+1(ζ)

...
. . .

0 M j
N (ζ)


and let the affine parameter-dependent matrices

[
Υq(ζ) Ψq(ζ)

]
=


M0

1 (ζ) −1 0 · · · 0
0 M1

1 (ζ) −1
...

. . . . . .
0 Mq−1

1 (ζ) −1

 ,

ΦA,q(ζ) =
[

A(ζ) −1n 0
0 Υq(ζ)⊗ 1n Ψq(ζ)⊗ 1n

]
,

ΦB,q(ζ) =
[

vec(B(ζ)) −1m ⊗
[

1n 0
]

0 1m ⊗
[

Υq(ζ)⊗ 1n Ψq(ζ)⊗ 1n

] ]
where vec(B(ζ)) is the vector composed of the m columns of B(ζ) stacked together.
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These matrices are such that β1(ζ) = M0
1 (ζ) and recursively βk(ζ) = Mk−1

1 (ζ)βk−1. Therefore, the
vector β0,q(ζ) containing all pq,N monomials αj(ζ) of degrees 0 to q can be described by[

Υq(ζ) Ψq(ζ)
]
β0,q(ζ) = 0 .

Moreover, one gets that

ΦA,q(ζ)
(

x
(β0,q(ζ)⊗ 1n)A(ζ)x

)
︸ ︷︷ ︸

zA,q(ζ)

= 0 (6)

and

ΦB,q(ζ)
(

1
(1m ⊗ (β0,q(ζ)⊗ 1n))vec(B(ζ))

)
︸ ︷︷ ︸

zB,q(ζ)

= 0 . (7)

4 Stability and guaranteed H2 performance via PPDLF and LMIs
Theorem 1 Let an integer q and assume that for one admissible value of the uncertainty A(ζ0) is stable. If
there exist an affine parameter-dependent row block matrix Π(ζ) =

[
Π1(ζ) · · · Πpq,N

(ζ)
]

composed
of symmetric elements:

Πj(ζ) =
N∑

i=1

ζiΠji , Πji = ΠT
ji ∈ Rn×n (8)

and a matrix F such that the following LMIs are fulfilled for all N vertices (ζi = 1, ζj 6=i = 0):[
0 Π(ζ)

ΠT (ζ) 0

]
+ FΦA,q(ζ) + ΦT

A,q(ζ)FT < 0 (9)

then robust stability of ẋ = A(ζ)x is attested by the PPDLF (5).

Proof : First note that inequalities (9) are affine with respect to ζ. Therefore, if they are satisfied for
all vertices, the inequalities also hold for all uncertainties such that (1). Multiply (9) on both sides by the
vector zA,q(ζ) and its transpose. Due to the conditions (6), one gets that V̇q(x, ζ) < 0 where Vq(x, ζ) is
the parameter-dependent quadratic Lyapunov function

Vq(x, ζ) = xT Pq(ζ)x , Pq(ζ) = Π(ζ)(β0,q(ζ)⊗ 1n) .

Note that writing Π(ζ) as a row block matrix of elements Πj(ζ) on the position corresponding to the
monomial αj(ζ) gives the Lyapunov function (5) composed of a sum of symmetric matrices Πj(ζ). Hence
Pq(ζ) is symmetric.

At this stage we have exhibited a quadratic Lyapunov function that is negative along all trajectories of
the system and for any admissible uncertain parameter. Moreover, note that V̇q(x, ζ) < 0 also writes as

Pq(ζ)A(ζ) + AT (ζ)Pq(ζ) < 0 .

A(ζ0) being stable, this inequality implies that Pq(ζ0) is positive definite and moreover, it implies that
Pq(ζ) is non singular whatever the admissible uncertainty. Pq(ζ) is continuous with respect to the parame-
ters, positive definite for one value in the set and non-singular for all values, therefore it is positive definite
for all values. This concludes the proof. �

The robust stability result is now extended to robust H2 performance. Let the following uncertain
system: {

ẋ(t) = A(ζ)x(t) + B(ζ)w(t)
z(t) = C(ζ)x(t) (10)

where x(t) ∈ Rn is the state, w(t) ∈ Rm is the input perturbation and z(t) ∈ Rp is a performance output.
The guaranteed H2 cost problem is to compute an upper bound on the H2 norms of the transfer w 7→ z
realisations for all admissible values of ζ such that (1). The conservatism of the methods may be evaluated
by the gap between the guaranteed upper bound and the worst-case norm.
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Theorem 2 Let an integer q and assume that for one admissible value of the uncertainty A(ζ0) is stable.
If there exist an affine parameter-dependent matrix Π(ζ) =

[
Π1(ζ) · · · Πpq,N

(ζ)
]

satisfying (8) and
a pair of matrices (F,G) such that the following LMIs are fulfilled for all N vertices (ζi = 1, ζj 6=i = 0):[

CT (ζ)C(ζ) Π(ζ)
ΠT (ζ) 0

]
+FΦA,q(ζ) + ΦT

A,q(ζ)FT < 0

ET

[
0 1m ⊗Π(ζ)

1m ⊗ΠT (ζ) 0

]
E −2γ2FFT + GΦB,q(ζ) + ΦT

B,q(ζ)GT ≤ 0

(11)

with

E =
[

0mn×1 1m ⊗
[

1n 0n×n(pq,N−1)

]
0mnpq,N×1 1mnpq,N

]
F =

[
1 01×mnpq,N

]
,

then γ is a guaranteed H2 cost for system (10).

Proof : First note that the inequalities in (11) are convex with respect to ζ. Therefore, their being
fulfilled on the vertices implies they are fulfilled for all values inside the polytope. Then, for the same
reasons as in the proof of Theorem 1, the first inequality in (11) implies that

AT (ζ)Pq(ζ) + Pq(ζ)A(ζ) + CT (ζ)C(ζ) < 0

and Pq(ζ) = PT
q (ζ) > 0. Next, note that for zB,q(ζ) defined in (6):

ΦB,q(ζ)zB,q(ζ) = 0 , F zB,q(ζ) = 1

EzB,q(ζ) =
(

vec(B(ζ))
(1m ⊗ (β0,q(ζ)⊗ 1n))vec(B(ζ))

)
1m ⊗ Pq(ζ) = (1m ⊗Π(ζ))(1m ⊗ (β0,q(ζ)⊗ 1n)) .

Multiplying second inequality in (11) by zB,q(ζ) and its transpose implies that

−2γ2 + vec(B(ζ))T (1m ⊗ Pq(ζ))vec(B(ζ))
+vec(B(ζ))T (1m ⊗ PT

q (ζ))vec(B(ζ)) ≤ 0

which is Tr(BT (ζ)Pq(ζ)B(ζ)) ≤ γ2. The obtained parameter-dependent inequalities prove the robust
bound on the H2 norm. �

Applied to the second example considered in [8], Theorem 2 gives the following results

q γq nb vars
1 4.18 409
2 2.67 2101

where γq are the minimal values fulfilling the LMIs (11) for the two choices of q = 1 and 2. These results
show that a PPDLF of the type (5) of order 3 is more appropriate than a PPDLF such that (4) of higher
degree. Even for LMI conditions of comparable size, the results are significantly improved.

Remark 1 At the difference of [8] where the constraint Tr(BT (ζ)P (ζ)B(ζ)) ≤ γ2 was dealt with by
introducing an affine parameter-dependent matrix such that BT (ζ)P (ζ)B(ζ) ≤ X(ζ) and Tr(X(ζ)) ≤
γ2, we have not made any such conservative assumption for obtaining the LMI result of Theorem 2. For
the considered example for which there is only one input (m = 1) it makes no difference but it may have
some advantage for systems with multiple disturbance inputs. This improvement is done at the expense of
bigger dimensions of the slack variable G.

Remark 2 Define γq the minimal value to the LMI constraints (11) for a fixed value q. With a similar
method as in [7] one may prove that if q ≤ q̃ then γq̃ ≤ γq. This means that the conditions are less
and less conservative as the degree of the PPDLF grows. But there is no proof at this point of a possible
convergence of γq towards the exact worst case H2 cost as q goes to infinity .

6



References
[1] P.-A. Bliman. A convex approach to robust stability for linear systems with uncertain scalar parame-

ters. SIAM J. Control and Optimization, 42:2016–2042, 2004.

[2] G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Robust stability of polytopic systems via polynomi-
ally parameter-dependent Lyapunov functions. In IEEE Conference on Decision and Control, Maui,
Hawaii, USA, December 2003.

[3] G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Polynomially parameter-dependent Lyapunov functions
for robust H∞ performance analysis. In IFAC World Congress, Prague, Czech Republic, July 2005.

[4] M.C. de Oliveira, J. Bernussou, and J.C. Geromel. A new discrete-time stability condition. Systems
& Control Letters, 37(4):261–265, July 1999.

[5] M.C. de Oliveira, J.C. Geromel, and L. Hsu. LMI characterization of structural and robust stability:
The discrete-time case. Linear Algebra and its Applications, 296(1-3):27–38, July 1999.

[6] M. Dettori and C.W. Scherer. New robust stability and performance conditions based on parameter
dependent multipliers. In IEEE Conference on Decision and Control, pages 4187–4192, Sydney,
Australia, December 2000.

[7] Y. Ebihara, D. Peaucelle, D. Arzelier, and T. Hagiwara. Robust performance analysis of linear time-
invariant uncertain systems by taking higher-order time-derivatives of the states. In joint IEEE Con-
ference on Decision and Control and European Control Conference, Seville, Spain, December 2005.
In Invited Session ”LMIs in Control”.

[8] Y. Ebihara, D. Peaucelle, D. Arzelier, and T. Hagiwara. Robust H2 performance analysis of uncertain
LTI systems via polynomially parameter-dependent Lyapunov functions. In IFAC Symposium on
Robust Control Design, Toulouse, July 2006. Submitted, URL: www.laas.fr/ ∼peaucell/
papers/ ROCOND06 4.pdf.

[9] T. Iwasaki and G. Shibata. LPV system analysis via quadratic separator for uncertain implicit systems.
IEEE Trans. on Automat. Control, 46(8):1195–1207, August 2001.

[10] V.J.S. Leite and P.L.D. Peres. An improved LMI condition for robust D-stability of uncertain poly-
topic systems. IEEE Trans. on Automat. Control, 48(3):500–504, 2003.

[11] R.C.L.F. Oliveira and P.L.D Peres. Stability of polytopes of matrices via affine parameter-dependent
Lyapunov functions: Asymptotically exact LMI conditions. Linear Algebra and Its Applications,
405:209–228, 2005.

[12] D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou. A new robust D-stability condition for real
convex polytopic uncertainty. Systems & Control Letters, 40(1):21–30, May 2000.

[13] D.C.W. Ramos and P.L.D. Peres. A less conservative LMI condition for the robust stability of discrete-
time uncertain systems. Systems & Control Letters, 43:371–378, 2001.

[14] M. Sato. Robust performance analysis of linear time-invariant parameter-dependent systems using
higher-order lyapunov functions. In American Control Conference, pages 615–620, Portland, OR,
USA, June 2005.

[15] X. Zhang, P. Tsiotras, and P.-A. Bliman. Multi-parameter dependent Lyapunov functions for the
stability analysis of LTI parameter-dependent systems. In IEEE Conference on Decision and Control,
Paradise Island, Bahamas, December 2004.

7


