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Abstract

Passivity is a widely used concept in control theory having lead to
many significant results. The manuscript concentrates on one charac-
teristic of passivity, namely passification-based adaptive control. This
concept applies to MIMO systems for which exists a combination of out-
puts that renders the open-loop system hyper-minimum-phase. Under
such assumptions, the system may be passified by both high-gain static
output-feedback and by a particular adaptive control algorithm. This last
control law is modified here to guarantee its coefficients to be bounded.
The contribution of the paper is to investigate its robustness with respect
to parametric uncertainty. Time response characteristics are illustrated
on examples including realistic situations with noisy output and saturated
input. Theoretical results are formulated as linear matrix inequalities and
can hence be readily solved with semi-definite programming solvers.
Keywords: Passivity, Robustness, Adaptive Control, LMI

1 INTRODUCTION

One of a variety of adaptive control approaches is the so-called passification based
adaptive control (PBAC). First introduced in 1974 for linear systems [9, 10, 1]
and later extended to nonlinear systems [29, 30, 18, 13] it provides efficient de-
sign procedures and simple controller structures. Compared to adaptive schemes
with combined parameter estimation and controller tuning [16, 4], PBAC needs
no estimation and tuning is performed via a simple differential equation. For
this reason it is also called simplified adaptive control in [19].

In PBAC framework, passification (sometimes called passivation) is under-
stood as finding a state or output feedback control rendering the closed loop
system passive [29, 20]. In the paper two passification control strategies are
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considered. More precisely, both strategies are required to be G-passifing [11].
That is, closed-loop passivity should be attested not for the entire measurement
output vector but for a linear combination defined by a matrix G. As G may
not be square, the results apply for non-square systems. An algorithm based on
Bilinear Matrix Inequalities (BMIs) is provided for the design of G matrices.

Among applications areas of PBAC are process control [2], flight control [3,
12] and irrigation systems [32]. But many more applications would be possible
if providing methods and proofs for assessing robustness of PBAC with respect
to disturbances and parametric uncertainties. These long standing issues (see
e.g. [8, 27]) are the main questions addressed in the paper.

Lack of robustness with respect to disturbances is noticed for many adaptive
algorithms and is often characterized by diverging adaptation parameters. Many
practical solutions have been proposed and one of the most popular ones is
introducing a negative feedback into the adaptation differential equation.It was
first employed in 1971 [24, 7] and rediscovered later [8, 15]. In the present
paper, such negative feedback on the controller parameters is proposed based
on a dead-zone type function. It is shown to have good behavior to disturbances
and moreover it guarantees convergence to bounded equilibrium points. It is
therefore called a Bounded Passification-Based Adaptive Control (BPBAC).

But the central result of the paper is to address robustness with respect
to parametric uncertainty. While robustness is often complex to evaluate in
a non-linear context, many results exist for linear systems [6, 17, 28]. The
proposed approach therefore relies on a theoretical result relating linear static
output-feedback (SOF) and BPBAC. Namely it is demonstrated that BPBAC
has robust closed-loop passivity properties if one can prove the existence of a
passifying parameter-dependent SOF with bounded gains. Limiting the study
to state-space modeled linear time-invariant systems with uncertainties on the
the matrix of dynamics A, a method is provided for such parameter-dependent
SOF design. The result is derived from nowadays widely known Linear Matrix
Inequality (LMI) techniques [6] which are adapted for the passification problem
following the first results of [25, 26].

The outline of the manuscript is as follows. In the next section the robust G-
passification problem is stated and the class of systems for which it is solved are
presented. Section 3 is then devoted to LMI-based results for robust parameter-
dependent SOF design. The obtained numerically testable conditions are proved
in section 4 to attest robustness of the BPBAC. Section 5 gives the BMI algo-
rithm for selecting appropriate G matrices. In section 6 all exposed results are
applied to a numerical example and realistic closed-loop simulations are pro-
vided. All numerical calculations are performed in the MATLAB environment.
YALMIP [23] is used to enter LMIs and BMIs. Semi-definite programming prob-
lems are solved with SeDuMi [31] and BMI problems are solved with PenBMI
[21, 22].

Notations: Rm×n and Cm×n are the sets ofm-by-n real and complex matrices
respectively. For a matrix A, the notations A(i,j) indicates the element of row
i and column j. AT is the transpose of the matrix A and A∗ is its transpose
conjugate. Tr(A) is the trace of matrix A. 1 and 0 are respectively the identity
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and the zero matrices of appropriate dimensions depending on the context. For
Hermitian matrices, A > (≥)B if and only if A−B is positive (semi) definite.

2 PROBLEM FORMULATION

Control of uncertain LTI systems is considered. The systems are represented in
state-space by {

ẋ(t) = A(ξ)x(t) +Bu(t)
y(t) = Cx(t) (1)

where x(t) ∈ Cn is the state, u(t) ∈ Cm is the vector of control inputs and
y(t) ∈ Cl is the vector of measured outputs. ξ is a constant parameter describing
dependency with respect to operating conditions. This parameter is decomposed
as a sum of two terms ξ = θ+∆ where θ stands for an estimate of the operation
point while ∆ is an uncertainty on the conditions. The matrix A(θ + ∆) is
assumed rationally dependent with respect to ∆, which dependency can be
generically written as:

A(θ + ∆) = A0(θ) +B∆(θ)∆(1−D∆(θ)∆)−1C∆(θ) .

The uncertainty matrix ∆ is assumed constant full-block norm-bounded, ∆ ∈
∆ρ(θ) where

∆ρ = {∆ ∈ Cm∆×l∆ : ∆∗∆ ≤ ρ21} (2)

and ρ(θ) is the radius of the ball of uncertainties. It depends of the operating
point. The larger is ρ, the bigger is the domain of admissible uncertainties.
Many other types of uncertainties may be considered in the same framework as
exposed in the following. Norm-bounded type is adopted to simplify presenta-
tion of results.

The B and C matrices are assumed to be exactly known and full rank. This
assumption restricts the paper application to systems with uncertainties only
on the system dynamics. Difficulty to extend the exposed results for systems
with uncertainties on B and C matrices are discussed further in the paper. Such
extensions are planned for future research.

The defined uncertain model is said to be a Linear Fractional Transform
(LFT), build as the feedback connection of the uncertain matrix (w∆ = ∆z∆)
with the linear system ẋ = A0(θ)x+B∆(θ)w∆ +Bu

z∆ = C∆(θ)x+D∆(θ)w∆

y = Cx
(3)

The LFT is assumed to be well-posed, that is (1−D∆(θ)∆) is non-singular for
all admissible uncertainties ∆ ∈ ∆ρ(θ) and A(θ,∆) lies in a bounded set.

Two control strategies are adopted and compared. One is parameter-dependent
static output-feedback (SOF)

u(t) = F (θ)y(t) + v(t) (4)
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which supposes to have measurements of the operating point parameters (or to
have access to a good estimate); the second, is adaptive control defined as

u(t) = K(t)y(t) + v(t)
K̇(t) = −Gy(t)y∗(t)Γ− φ(K(t))Γ

(5)

where φ is any dead-zone type function satisfying property P(B).

Definition 1 Let B ⊂ Cm×l be a compact set of complex valued matrices. The
function φ(K) : Cm×l → Cm×l, it is said to satisfy property P(B) if

• the function is zero valued inside B:

φ(K) = 0 , ∀K ∈ B

• and, outside B, makes strictly positive the following scalar product:

Tr (φ(K)(K − F )∗) > 0 , ∀K ∈ Cm×l\B , ∀F ∈ B .

A sub-case of adaptive control (5) is when φ(K) is identically zero for all
K ∈ Cm×l. It corresponds to an infinite dead-zone where B = Cm×l. This
infinite dead-zone case is exactly the control strategy adopted in [9, 19] and
is known to diverge in the presence of disturbances on the measurements y(t).
A classical practical solution to prevent the gain K(t) for diverging is to add
a term such as −φ(K(t)) (see for example [8, 15, 4]) which will force K(t) to
keep close to a region B of implementable gains. The idea of using dead-zone
functions rather than other proportional gain regularizations is not new (see for
example [14] for adaptive observer case). The present contribution is to consider
dead-zone regularization in a control framework and to prove that properties
holding for φ identically zero are kept true when the dead-zone type function is
introduced.

The provided results prove robust closed-loop stability and passivity of (1)
with adaptive control (5) for multiple operating points θ ∈ {θ1 . . . θN} while
maximizing the size ρ(θi) of admissible uncertainties ∆ around each one of
these values. Robustness of the adaptive control is then proved for ξ lying in
the union of all ”balls” centered at the operating points θi thus giving an inner
approximation of the actual region of admissible parameters ξ ∈ Ξ (see figure 1).
Results are provided assuming the systems matrices of equations (3) are given
and the region B is set a priori by practical implementation considerations.

Before getting into details, the definition of passivity on which are based all
results is stated. It is done in a non-linear context because it corresponds to the
situation when (1) is in closed-loop with the adaptive non-linear control (5).

Consider a closed-loop non-linear uncertain system{
η̇ = f(η,∆) + g(η)v
y = h(η) (6)
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Ξ

θ

ρ(θ)

Figure 1: Inner approximation of the admissible domains Ξ by finite number of
”balls”

where η =
(
x∗ K∗ )∗ is the state, v is the input, y is the measurements, ∆ is

an uncertainty, f , g and h are smooth functions. Let G be a prespecified m× l-
matrix. Extending the definitions of [11] to uncertain systems and insisting
of the sub-part x of the state that corresponds to the original system to be
controlled, the following definition is stated.

Definition 2 The system (6) is called robustly globally x-strictly G-passive if
for any ∆ ∈ ∆ there exists a nonnegative scalar function V (η,∆) (storage
function) and a scalar function γ(x,∆) (strictly positive for all x 6= 0) such that

V (η(t),∆) ≤ V (η(0),∆) +
t∫
0

[v(τ)∗Gy(τ)− γ(x(τ),∆)] dτ (7)

holds for all t ≥ 0 and all solutions of the system (6).

The adjective ”robustly” indicates passivity should hold for all admissible
values of the uncertainty ∆ ∈ ∆, when omitted it indicate the property holds
for only one considered value of ∆. The adjective ”globally” indicates passivity
does not depend on the initial conditions. As usual when dealing with control
of linear systems, specifications are always global and the adjective is removed
to alleviate. The adjective ”strict” indicates that not only the system is passive,
but for zero inputs the sub-state x(t) converges to zero. As usually for adaptive
control no convergence is required for the sub-state K(t). On the contrary,
except if the open-loop system is already asymptotically stable and passive,
K(t) has to be different from zero for stability to hold. ”G-passivity” indicates
that the usual passivity properties hold with respect to a linear combination of
the closed-loop outputs characterized by the matrix G. This notion allows to
extend results to many more systems than when taking G = 1, in particular
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systems may not be square. Note that design of G-passifying controllers K for a
system Σ (i.e. find K such that the closed-loop with linearly combined outputs
G(Σ ? K) is passive) is not equivalent to passification of the ”squared” system
GΣ (i.e. find K such that the closed-loop (GΣ) ?K is passive). G-passification
as the advantage to be more general and it preserves the number of adjustable
parameters potentially giving better transient responses, see [1].

3 ROBUST PASSIFYING SOF DESIGN

Static-output feedback design is considered at first with an additional constraint
on modulus-bounded entries. Let F ∈ Rm×l be a real valued matrix with strictly
positives entries (F (i,j) > 0). The sub-set BF ⊂ Cm×l is defined as the set of
complex valued matrices with entries bounded in modulus by the entries of F :

F ∈ BF ⇔ |F(i,j)| ≤ F (i,j) .

Based on results of [10, 11], an LMI test for robust G-passifiability was
recently published in [25]. Slightly modified to take into account uncertain sets
with ρ 6= 1, and including bounds on the controller gain, it writes as follows.

Theorem 1 Let G ∈ Cm×l a given matrix, if there exists a solution H(θ) ∈
Cn×n, F (θ) ∈ Cm×l to the LMI constraints

H(θ) > 0 , H(θ)B = C∗G∗ , (8)[
H(θ)A0(θ) +A∗0(θ)H(θ) + C∗(G∗F (θ) + F ∗(θ)G)C H(θ)B∆(θ)

B∗
∆(θ)H(θ) 0

]
+

[
C∗

∆(θ) 0
D∗

∆(θ) 1

] [
ρ2(θ)1 0

0 −1

] [
C∆(θ) D∆(θ)

0 1

]
< 0

(9)

and for (i, j) ∈ {1 . . .m} × {1 . . . l}[
F

2

(i,j) F(i,j)(θ)
F ∗

(i,j)(θ) 1

]
≥ 0 , (10)

then F (θ) ∈ BF and the uncertain system (1) at operating point θ is robustly
x-strictly G-passified via SOF u(t) = F (θ)y(t) + v(t) for all uncertainties ∆ ∈
∆ρ(θ).

Proof : The fact that F (θ) ∈ BF is immediate applying a Schur complement
argument to the inequalities (10). (9) being a strict inequality, there exists a
positive scalar ε such that

L(9) ≤
[
−ε1 0
0 0

]
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where L(9) stands for the left-hand side of inequality (9). Pre and post multiply
the obtained inequality by the vector

(
x∗ w∗∆

)
and its transpose respectively

to get

2x∗H(θ)(A0(θ)x+B∆(θ)w∆) + 2x∗C∗G∗F (θ)y + εx∗x ≤ w∗∆w∆ − ρ2(θ)z∗∆z∆ .
(11)

By definition of the uncertainty, the right-hand side of this inequality is negative.
Due to (8) and feedback control law (4) one gets x∗C∗G∗F (θ)y = x∗H(θ)Bu−
y∗G∗v. Hence (11) implies

2x∗H(θ)ẋ ≤ 2v∗Gy − εx∗x .

Taking its integral over time gives (7) where V (x) = x∗H(θ)x and γ(x) =
1/2εx∗x. �

Although the current paper considers only full-block norm-bounded uncer-
tainties to limit the presentation complexity, note that the result of Theorem 1
extends easily to many more types of uncertainties. Following methodology of

papers such as [17, 28] it simply needs to modify the
[
ρ2(θ)1 0

0 −1

]
matrix

accordingly to the uncertainty description.
Some characteristics of Theorem 1:

• The equality constraint of (8) is a strong limiting constraint that, except
maybe in very special cases, cannot hold for uncertainty dependent matri-
ces B and C. The assumption that B and C are exactly known is at this
stage necessary. Future work will be devoted to removing this limitation.

• The constraints (8), (9) and (10) are linear with respect to the decision
variables H(θ) and F (θ) hence finding such a solution can be done effi-
ciently using semi-definite programming solvers such as those interfaced
in YALMIP [23].

• The LMI conditions are also linear with respect to ρ(θ). Therefore, the
solvers can as well maximize ρ(θ) for increasing the uncertainty domains
on which robustness is guaranteed.

Solving separately optimization problems for several operating points θ ∈
θ = {θ1 . . . θN} gives a sub-set of operating points θ̂ ⊂ θ for which LMIs of
Therorem 1 are feasible. Associated to this sub-set are sequences of bounded
feedback gains {F (θ) ∈ BF }θ∈θ̂

and associated bounds on uncertainties {ρ(θ)}θ∈θ̂.
Define the overall set of obtained operating points:

Ξ̂F =
{

ξ = θ + ∆(θ) : θ ∈ θ̂ , ∆(θ) ∈ ∆ρ(θ)

}
.

Denote ΞF the set of all operating conditions ξ such that system (1) is G-
passifiable via a parameter-dependent SOF (4) with gains bounded in BF . The
set Ξ̂F obtained by solving a finite number of LMI conditions, is trivially an
inner approximation of ΞF . Moreover, taking a sufficiently thin discretization
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θ̄ of the parameter space, the inner approximation can be made as exact as
wanted. Without entering into details on building and optimizing an algorithm
for picking appropriately the elements of θ̄, note that such algorithm would need
only to solve at each tested point LMIs of relatively low dimensions with few
variables. All the calculations being done off-line, the overall computational
burden is relatively limited.

4 ROBUST PASSIFYING ADAPTIVE CON-
TROL

The previous section concludes with the possibility to compute a set Ξ̂F such
that for all operating conditions ξ ∈ Ξ̂F there exists a SOF control gain F (ξ) ∈
BF that G-passifes system (1), moreover the such gains are known and belong
to the finite set {F (θ)}θ∈θ̂. But the underlying parameter-dependent control
strategy is not recommended. In case ξ is indeed constant, implementation
would mean to be able to measure it (or to build a sufficiently fast estimator
to get an appropriate value before the system diverges) and couple that with
a look-up table for F (ξ) ∈ {F (θ)}θ∈θ̂ selection. In case ξ is not constant but
slowly varying, the control strategy may totally fail because of switching between
controllers. Rather than entering such complex, computation and memory de-
manding strategies, direct adaptive control is adopted in the following.

Before stating the main result of the paper, equilibrium points of the closed-
loop with adaptive control are investigated. The closed-loop system is non-linear
with n+ml states corresponding to the n original states x(t) of (1) and the ml
elements of the matrix K(t) of system (5). Define the set

E = { (xe,Ke) : xe = 0 , Ke = F ∈ B } .

As φ(F ) = 0 for all F ∈ B, assuming zero input v(t) = 0, the states included in
E are such that

ẋ = 0 , K̇ = 0 .

E is a set of equilibrium points for system (1) with adaptive control (5). For a
given operating condition ξ, around the equilibrium point (xe = 0,Ke = F (ξ)),
the linearized model is such that

ẋ(t) = A(ξ)x(t) +BKeCx(t) +BK(t)Cxe = (A(ξ) +BF (ξ)C)x(t) .

First Lyapunov’s theorem indicates that the equilibrium point is locally unstable
if A(ξ)+BF (ξ)C has a positive eigenvalue. This result indicates that E cannot
be an asymptotically stable set if B does not contain a stabilizing SOF gain.
Moreover, if E is proved to be a globally asymptotically stable set and assuming
the initial conditions are not at an unstable equilibrium, the system states can
only converge, if it does converge to a fixed point (which is the case in practice),
to a value K(+∞) = F (ξ) which defines a stabilizing SOF gain for system (1).

The central result is now formulated.
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Theorem 2 Let G ∈ Cm×l a given matrix, the following condition (i) implies
(ii):

(i) There exists a parameter-dependent m × l matrix F (ξ) ∈ B such that
system (1) with the SOF (4) is robustly x-strictly G-passive for all ξ ∈ Ξ.

(ii) For any Hermitian positive definite matrix Γ ∈ Cl×l and any function φ
satisfying property P(B), the choice (5) is a time-varying output-feedback
that renders system (1) robustly x-strictly G-passive for all ξ ∈ Ξ and, in
case of zero input v(t) = 0, the set E is globally asymptotically stable.

Proof : Take any ξ ∈ Ξ, let F (ξ) ∈ B be an asymptotically stabilizing
gain and assume it x-strictly G-passifies the system. According to [11], this is
equivalent to the existence of a quadratic storage function V (x, ξ) = x∗H(ξ)x
and a positive scalar γ(ξ) > 0 fulfilling the matrix inequalities

H(ξ) = H∗(ξ) > 0 : H(ξ)B = C∗G∗

H(ξ)A(ξ, F ) +A∗(ξ, F )H(ξ) < −2γ(ξ)1 (12)

where A(ξ, F ) = A(ξ) + BF (ξ)C is the closed-loop dynamics matrix. Let any
Hermitian positive definite matrix Γ > 0 and let the output-feedback law (5).
Consider the following storage function

V (x,K, ξ) =
1
2
x∗H(ξ)x+

1
2
Tr

(
(K − F (ξ))Γ−1(K − F (ξ))∗

)
. (13)

Along the trajectories of (1) with the control law (5) the derivatives of V (x,K, ξ)
write

V̇ (x,K, ξ) = x∗H(ξ)(A(ξ)x+BKy +Bv) + Tr
(
(K − F (ξ))Γ−1K̇∗

)
.

Add and subtract x∗H(ξ)BF (ξ)y in the equation to get

V̇ (x,K, ξ) = x∗H(ξ)(A(ξ)x+BF (ξ)y +Bv) + x∗H(ξ)B(K − F (ξ))y
+Tr

(
(K − F (ξ))Γ−1K̇∗

)
which, taking y = Cx, H(ξ)B = C∗G∗ and K̇ as in (5), reads

V̇ (x,K, ξ) = x∗H(ξ)A(ξ, F )x+ y∗Gv + y∗G∗(K − F (ξ))y
−Tr ((K − F (ξ))yy∗G∗)− Tr ((K − F (ξ))φ(K)∗) .

As Tr(M1M2) = Tr(M2M1) one gets that

y∗G∗(K − F (ξ))y − Tr ((K − F (ξ))yy∗G∗)
= y∗G∗(K − F (ξ))y − Tr (y∗G∗(K − F (ξ))y)
= 0

therefore, due to (12), the derivative of the Lyapunov function is over-bounded
as

V̇ (x,K, ξ) ≤ −γ(ξ)||x||2 + y∗Gv − Tr (φ(K)(K − F (ξ))∗) . (14)

9



Since F (ξ) ∈ B and due to property P(B), one gets that for zero input v = 0 and
for any vector (x,K) not belonging to E the time derivative of the Lyapunov
function V is strictly negative:

V̇ (x,K, ξ) < 0 , v = 0 , ∀(x,K) /∈ E

which proves global asymptotically stability of E . Taking the integral over time
of (14), one gets

V (x(t),K(t), ξ) ≤ V (x(0),K(0), ξ) +

t∫
0

[
v(τ)∗Gy(τ)− γ(ξ)||x(τ)||2

]
dτ

which proves x-strict G-passivity for the closed-loop. �
Some characteristics of Theorem 2:

• The time-varying control (5) is called the Bounded Passification-Based
Adaptive Controller (BPBAC). The values of the gain K(t) are automat-
ically tuned given the measures y(t), it adapts whatever the values of the
uncertain parameters ξ and thanks to the dead-zone function φ, the con-
troller gains are constrained to converge in a bounded set. Moreover, it
is shown that the BPBAC converges asymptotically to a stabilizing SOF
gain.

• The BPBAC is not claimed to ensure robustness for any parameter ξ
(hardly believable in practice). But applying results of section 3, in case
B is of the type BF , admissible sets Ξ̂F fulfilling property (i) of Theorem
2 may be computed with LMI tools.

5 BMI DESIGN OF G MATRICES

All results exposed up to this point assume a given G ∈ Cm×l matrix for which
the system is desired to be closed-loop G-passive. Trivially, not all matrices
are suitable. For that purpose (except if physical considerations indicate a
good choice or if techniques of [5] apply) there is a need for a guide to choose
the matrix G. Ideally, one may formulate the problem as finding G such that
the set ΞF is maximal. Not only such problem would be difficult to state
mathematically but as seen in the following it would be much complex from
a numerical point of view. Therefore the paper adopts a sub-optimal strategy
consisting of designing G such that ΞF is non-empty and contains at least one
value ξ0 to be chosen a priori.

In [11, Corollary 3] it is proved that if there exists a SOF gain that G-
passifies the system (1) at operation point ξ0 then the choice F (ξ0) = −k(ξ0)G,
for a sufficently large value of k(ξ0), is also a G-passifying gain. This result is
quite common in passivity context and is known as high-gain control. For our
purpose, it allows to simplify the search of G. Indeed G-passifiability conditions
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(12) write for F (ξ0) = −k(ξ0)G:

H(ξ0) = H∗(ξ0) > 0 : H(ξ0)B = C∗G∗

H(ξ0)A(ξ0) +A∗(ξ0)H(ξ0) < 2k(ξ0)C∗G∗GC
(15)

This problem is non-convex and, if k(ξ0) is fixed a priori, it is a problem con-
strained by Bilinear Matrix Inequalities (BMIs). It may nevertheless be solved
using the PenBMI solver [21, 22]. Of course, since BMI problems are not con-
vex, there is no guarantee for finding G even when it exists. However, as tested
on several examples, PenBMI does succeed efficiently.

The design procedure we have adopted for G-design is

• Choose a large value of k(ξ0);

• Choose an upper bound onH(ξ0) (we took h̄ = 1) for scaling the solutions;

• Declare in YALMIP the following BMI problem where H(ξ0), G and t are
the variables

h̄1 > H(ξ0) > 0 , H(ξ0)B = C∗G∗ , t > −1 (16)

H(ξ0)A+A∗H(ξ0)− k(ξ0)C∗G∗GC < t1 (17)[
F

2

(i,j) −k(ξ0)G
− k(ξ0)G∗ 1

]
≥ 0 , (18)

• Minimize t using PenBMI, if it returns t < 0, the procedure succeeded.

Some characteristics of the procedure:

• The only bilinear term in the inequalities is G∗G. Every other term in
linear, which may explain the relatively good behavior of PenBMI for these
BMIs.

• The last inequality (18) is added to the optimization problem to guarantee
the existence of at least one gain F in the set BF .

• Once a matrix G has been found, any matrix proportional to that is also
satisfactory for the considered problem. We recommend for numerical
reasons to choose k(ξ0)G.

6 NUMERICAL EXAMPLE

Consider the linearized fourth-order model of lateral dynamics for an autonomous
aircraft including model of actuator dynamics, presented in [12]. The nominal
model is defined for a medium value of the flight altitude ξ0 = 5km. The mea-
sured plant output y(t) is a vector of the yaw angle ψ(t), yaw angular rate r(t)
and the rudder deflection angle δr(t): y(t) = [ψ, r, δr]∗. The control input of the
plant is the rudder servo command signal, i.e. n = 4, m = 1, l = 3.
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Parameters of the nominal state-space model (1) in this case are as follows:

A(ξ0) =


0 1 0 0
0 0 1 0
0 12 −0.6 5.0
0 0 0 −20

 , B =


0
0
0
20

 , C =

 1 2 0 0
0 1 2 0
0 0 0 1


and dependency with respect to fight altitude is given by

B∆ =
[

0 0 0.2 0
]T

, D∆ = 0
C∆ =

[
0 −7.5 0.7 −4.5

]
.

Note that for this data some coefficients of the matrix A(ξ) vary in an order of
magnitude when ξ varies from 0 to 10.

6.1 Design of G matrices

This design procedure is applied with two choices of k:

k1 = 102 , k2 = 104

and with F =
[

10 10 10
]
, i.e. all coefficients of the control gain should be

norm bounded by 10. It gives the following two admissible values of G

G1PenBMI = 10−2
[

10 6.14 3.55
]

G2PenBMI = 10−4
[

10 10 4.87
]
.

The computation time of PenBMI is less than half a second for the example
(Sunblade 150 computer). The scaled values

G1 =
[

10 6.14 3.55
]
, G2 =

[
10 10 4.87

]
are admissible as well. These are used next.

6.2 Computation of the admissible set of flight altitudes

LMIs of Theorem 1 are solved with F =
[

10 10 10
]
, for each matrix G1 and

G2 and for sequences of values θi. The latest version of SeDuMi [31] (SeDuMi
1.1 available at http://sedumi.mcmaster.ca/) is used to solve the LMIs along
with the parser YALMIP [23]. The computation time of each individual LMI
problem is less than half a second (Sunblade 150 computer). No numerical
problems are encountered.

The results are given in Tables 1 and 2. The obtained admissible uncertainty
sets Ξ̂F are the unions of the discs centered at θi with radius ρ(θi) plotted in
Figure 2.

One can notice that depending on the flight conditions, the SOF gains are
quite different. Although there may be a single SOF gain G-passifying the
system for the entire sets Ξ̂F , the results tend to indicate that such gain would
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Table 1: Results of Theorem 1 for G1

θi ρ(θi) F (θi)
0 1.811

[
−9.5880 −6.2087 −10

]
3 1.8557

[
−9.8017 −9.3363 −10

]
6 1.6791

[
−10 −10 −7.7524

]
8 1.2443

[
−10 −10 −3.8156

]
9.2 0.4667

[
−6.4047 −6.2846 0.1371

]
9.6 0.0753

[
−1.0534 −1.1990 0.8271

]
Table 2: Results of Theorem 1 for G2

θi ρ(θi) F (θi)
0 2.0850

[
−9.2301 −7.2487 −10

]
4 2.1685

[
−9.9957 −9.9653 −10

]
7 1.7141

[
−10 −10 −5.7759

]
9 0.5217

[
−4.7837 −6.0888 −0.0732

]
9.5 0.0248

[
−0.5089 −0.7243 0.7936

]
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Figure 2: Unions of admissible uncertain sets for G1 and G2 respectively

have coefficients with norm larger than 10. When limiting the control gain it is
therefore needed to have an auto-tuning rule to adapt the gains depending on
the flight altitudes. BPBAC is applied for this purpose in the following.

Note as well that uncertainties are assumed complex in Theorem 1. This is
why the regions are discs of the complex plane. For practical purpose only
the real part of these sets are of interest. The result is that there exists
a bounded parameter-dependent SOF such that the system is robustly G1-
passsifiable for all real valued flight altitude ξ ∈ [0 9.6753] and G2-passifiable
for all ξ ∈ [0 9.5248]. Theorem 2 guarantees that for these sets the BPBAC (5)
asymptotically stabilizes the system and makes it G-passive. In the following
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all tests are performed for G = G1 that gives the largest admissible set of flight
altitudes.

6.3 Implementing the BPBAC

To implement BPBAC one needs to chose an positive definite matrix Γ and a
function φ satisfying property P(BF ). Two such functions are now exhibited.
One is based on the dead-zone function ψd

f
: C → C parametrized by f > 0,

such that:

ψd
f
(k) =

{
0 (0 ≤ |k| ≤ f)
(1− f

|k| )k (f ≤ |k|)

that is applied element-wize to define φd
F

: Cm×l → Cm×l such that:

K̂ = φd
F
(K) ⇔ K̂(i,j) = ψd

F (i,j)
(K(i,j)) .

The second function is a smoothed version of the dead-zone ψsd
f

: C → C

parametrized by f > 0, such that:

ψsd
f

(k) = (|k| − f)ψd
f
(k)

that is applied element-wize as well to define φsd
F

: Cm×l → Cm×l. For illustra-
tion the two functions ψd and ψsd are plotted on Figure 3 for the real scalar
case.

Figure 3: ψd (dashed) and ψsd for f = 1
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Lemma 1 The functions φd
F

and φsd
F

fulfill property P(BF ).

Proof : First, note that φ(K) = 0 for K inside the set BF is trivial. Second,
recall that the scalar product is such that

Tr(φ(K)(K − F )∗) =
m∑

i=1

l∑
j=1

ψF (i,j)
(K(i,j))(K(i,j) − F(i,j))∗
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which is the sum over all terms of elements like ψf (k)(k− f)∗. These terms are
scalar products of two vectors in the complex plane as illustrated on Figure 4.
They are necessarily nonnegative. Moreover, the sum is strictly positive as soon
as one element of K is outside the set BF . �

Figure 4: k − f and ψ(k) for the dead-zone and the second order dead-zone
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6.4 Simulating the BPBAC

A first series of simulations is made taking initial conditions

x(0) =
(

10 0 0 0
)T

, K(0) =
[

0 0 0
]
.

taking Γ = 1, F =
[

10 10 10
]

and φ = φd
F
. Robustness with respect to ξ

is illustrated for ξ = 0, ξ = 5 and ξ = 9.655. Time histories of both the output
y(t) and the control gain K(t) are plotted on Figures 5, 6 and 7 respectively.
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Figure 5: y(t) and K(t) histories for ξ = 0

As expected the stabilization of the system becomes more critical as the flight
altitude is increased. Other simulations for ξ = 9.67 show that convergence to
zero takes about 1000 seconds. In all cases the control gain K(t) converge to the
specified set BF as expected. This stationary value is necessarily such that the
closed-loop is G-passive. But over time, not all values of K(t) are possible SOF
stabilizing gains. Indeed for ξ = 0 and ξ = 5 the time histories show temporary
unstable oscillating behaviors. These situations occur as the control gains seem
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Figure 6: y(t) and K(t) histories for ξ = 5
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Figure 7: y(t) and K(t) histories for ξ = 9.655
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to stop their convergence and their value at that time does not stabilize the
linear system. The resulting instability ”pushes” the control gain away from
that value.

A second series of simulations is made to see the influence of the Γ matrix
in particular with respect to these oscillating phenomena. The experiments are
done for ξ = 0 and for the following values of Γ:

Γ1 =

 10 0 0
0 1 0
0 0 1

 , Γ2 =

 0.1 0 0
0 1 0
0 0 1

 , Γ3 =

 1 0 0
0 10 0
0 0 1

 ,

Γ4 =

 1 0 0
0 0.1 0
0 0 1

 , Γ5 =

 1 0 0
0 1 0
0 0 10

 , Γ6 =

 1 0 0
0 1 0
0 0 0.1

 .

The time histories of K(t) are represented on Figure 8. The influence of Γ is
illustrated to be significant but as proved upper, any positive definite Γ makes
the system asymptotically stable.
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Figure 8: K(t) histories for various values of Γ

Last series of simulations is performed for a more realistic situation with
noise on the measurements (y(t) = Cx(t)+n(t)), saturation on the inputs (u(t)
is saturated between -20 and +20) and with slowly varying parameters (ξ grows
linearly from 0 to 9.6 during the time interval [0 5] and then decreases linearly
to 8 at t = 10). Γ is chosen to be equal to Γ6 because it gave the best results
in the last experiments. The time histories of y(t), K(t) and u(t) for the two
choices of dead-zone functions φd

F
and φsd

F
are plotted respectively in Figures 9

and 10.
The simulations illustrate that the BPBAC has good behavior in real situa-

tions. Comparisons of these two simulations show that whatever the dead-zone
function the closed-loop system behaves globally the same. The differences are
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Figure 9: y(t), K(t) and u(t) histories in real noisy saturated situation with
φ = φd

F

0 5 10
!20

!15

!10

!5

0

5

10

15

0 5 10
!30

!25

!20

!15

!10

!5

0

5

0 5 10
!20

!15

!10

!5

0

5

10

15

20

Figure 10: y(t), K(t) and u(t) histories in real noisy saturated situation with
φ = φsd

F
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essentially in terms of convergence speed to the set BF . The second order dead-
zone function φsd

F
acting as a severe penalty function as the gains are far from

the set BF , it keeps the control gains closer to the set.
Note that without the dead-zone functions, the controller gains would di-

verge under the influence of the noise on measurements. Indeed, as seen in the
theoretical part of the paper, the control can have infinite gain (K = −kG with
any k sufficiently large) and any perturbation may tend to ”push” the gains in
that direction. This phenomenon is illustrated in Figure 11.
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Figure 11: K(t) histories in real noisy saturated situation with φ = 0

7 CONCLUSIONS

Robustness problem of passification-based adaptive control is solved for the case
of linear systems with uncertainties on the A matrix. Not only robustness is
proved to hold but a constructive strategy is provided to evaluate the admissible
uncertainty domains. Still several questions remain open and are left for future
research. The major question is whether such techniques may apply in case the
B and C matrices are uncertain as well. Results in that direction are expected
provided a relaxation of the strong HB = G∗C∗ equality constraint. Other,
more practical questions are relative to the choices of the Γ matrix and the dead-
zone φ function used to implement BPBAC. Several matrices Γ have been tested
on the example showing very diverse convergence of the control parameters.
Providing theoretical tools for choosing Γ is clearly needed. Concerning the
dead-zone type functions, we have tested two such functions without noticing
much difference. A deeper study with comparisons to other existing disturbance
rejections strategies would be of interest.
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