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Abstract

The paper gives a simple LMI procedure to design simple adaptive control laws for ‘almost stable’ systems. It
relaxes existing ‘almost passive’ assumptions making simple adaptive control possible for all systems stabilizable
by LTI controllers. The expected advantage of the adaptive control compared to the initial LTI control is to
improve performances and robustness. The proposed results apply to multi-input multi-output systems and rely
on LMI optimization. The theory is illustrated on a satellite attitude control DEMETER benchmark.

1 Introduction
Adaptive control is a control strategy proposing to make online modifications of the control law to better reject
inevitable uncertainties and perturbations. One such adaptive scheme ([IS96, ÅW89]) relies on estimating online
these uncertainties and perturbations and with that knowledge to tune the control law. Another adaptation scheme
([Fra74, KBS94]) proposes to directly tune the control gains with the sole output measurements. Often called direct
adaptive control it has the advantage of simplicity compared to estimation/gain-scheduling and other more complex
schemes. On the other hand it has the disadvantage to require strong assumptions on the system characteristics in
order to prove closed-loop stability. One such direct adaptive control scheme is the passification-based strategy
(also called simple adaptive control in [KBS94]). The results presented in this paper enter this framework.

The passivity-based adaptive control framework was first restricted to square systems having same number
of inputs and outputs ([Fra74]). Moreover, the systems were assumed to have open-loop hyper-minimum phase
properties or equivalently in [KBS94] to be ‘almost strictly passive’ (i.e. being closed-loop passive with some
static output feedback gain). The conditions have been mitigated in [BTH06] and relaxed in [Fra03, Fra08] to non
square systems at the expense of finding a linear combination of outputs Gy that makes the new weighted system
‘almost strictly passive’. Further extension is proposed in [PF08] by the introduction of a parallel feedforward
gain (also known as a shunt, see [KBS94]). These extensions conclude that a necessary condition for passivity-
based adaptive control is to have a static output feedback u = F0y that renders the closed-loop strictly passive
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with respect to some output Gy + Du. Unfortunately, finding these F0, G,D matrices appeared in that paper as
a hard problem and does not even guarantee the validity of the adaptive control (the F0, G,D matrices have to
satisfy additional LMI conditions). The goal of the present paper is to prove that as soon as a system is ‘almost
stabilizable’ (i.e. closed-loop stable for some static output feedback gain F0) then a direct adaptive control can be
built.

The direct adaptive scheme we propose involves as usual in this framework a feedback control u(t) = K(t)y(t)
where the time-varying gain K(t) is adapted according to a differential equation. This differential equation in-
cludes classically a gradient type term −GyyT that drives the feedback gain to stabilizing values according to
closed-loop passivity properties. It also includes a second corrective term −φ(K − F0) intended to keep the gain
in reasonable values in practice. As it was done in [PF08] the φ function is not just a modification term assumed not
to modify stability properties proved when it is put to zero, it does intervene explicitly in the closed-loop stability
proof and is related to the feedthrough gain D.

Results for designing the adaptive law parameters are given in terms of LMIs. This not only allows to take
advantage of convex optimization tools such as SeDuMi by [Stu99] and the easy to code with YALMIP interface
of [Löf04], but it also paves the way for conditions guaranteeing robustness. Inspired by first results of [PFA08,
BYYS07] extensions of this paper contributions to robustness issues are given in [PAMF11].

But this manuscript rather concentrates on sketching properties of the adaptive scheme on a satellite attitude
control example. The full control problem with real data provided by CNES is exposed and an illustrative adaptive
control law design is performed.

On-orbit life of a satellite is decomposed into phases allowing the convergence from the separation state to
the mission state, orbit control, and safe state in case of fault. For each phase or ‘mode’, a specific set of attitude
pointing requirements is to be met by using a specific set of actuators and sensors. Inside a mode, several attitude
control and estimation algorithms can be designed for example to meet increasing performance levels requirements.
For the past thirty years, the number of AOCS (Attitude ans Orbit Control System) modes has been reduced and
now generic AOCS architecture consists typically on two or three modes (one safehold mode, one mission mode
and one orbit control mode). In the same time the software complexity has increased to meet ever more demanding
requirements. Thus the switching between AOCS modes and software needs more and more robustness to be able
to tackle larger kinematics conditions (satellite angular rate and position) as well as a greater pointing accuracy.

In this paper, the problem of the reaction wheels control software inside the mission mode is considered for
the CNES microsatellite DEMETER ([PMF99],[Bui03], [PF02], [PA06],[BPR10]). A linear PD type controller
designed for small pointing error is replaced by an adaptive PD controller. Comparison of the static and adaptive
laws show what improvements can be expected in particular with respect to self tuning in response to modifications
in the plant dynamics. The questions of weather such control strategy could help to reduce the number of control
modes and the complexity of switching from one to the other are discussed but largely left for future work.

The outline of the paper is as follows. First a section is devoted to the theoretical results. LMI results for
stabilization with adaptive control for any ‘almost stable’ system is given. Section 3 exposes the Demeter satellite
attitude control problem which is solved in Section 4. Finally some conclusions are driven.

Notations
Rm×p is the set of real m by p matrices. AT is the transpose of the matrix A. Tr(A) is the trace of A. 1 and 0
are respectively the identity and the zero matrices of appropriate dimensions. For symmetric matrices, A > (≥)B
means that A−B is positive (semi) definite. ||A||• =

√
Tr(AAT ) is the Frobenius norm of A.

φ(Rm×p → Rm×p) is a function defined by

φ(K) = ψ(||K||2•) ·K

where ψ([0 νβ[→ [0 +∞[) is a scalar function behaving as a dead-zone close to the origin ψ(0 ≤ k ≤ ν) = 0
and ψ(ν ≤ k < νβ) and a monotone increasing barrier function that goes to infinity as k converges to νβ. An
example of such function is ψ(ν ≤ k < νβ) = k−ν

νβ−k .
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2 Main results
Linear MIMO systems described in state-space are considered

ẋ = Ax+Bu , y = Cx. (1)

where x ∈ Rn is the state, u ∈ Rm is the control input and y ∈ Rp are the measured outputs. It is assumed that
p ≥ m, i.e. there are more outputs than inputs.

It is assumed that a static output-feedback u = F0y has been designed such that the closed-loop system
ẋ = A(F0)x is asymptotically stable where

A(F ) = A+BFC.

No assumption is made about the closed-loop passivity but the following proposition gives a way to define passive
outputs for that closed-loop system.

Proposition 1 If ẋ = A(F0)x is asymptotically stable then there exists (P,G, µ) solution to the following LMI
problem

P > 0 ,

[
AT (F0)P + PA(F0) PB − CTGT

BTP −GC −µ1

]
< 0. (2)

The pair (G,µ) is then such that the following system is passive

ẋ = A(F0)x+Bw , z = GCx+
1
2
µw. (3)

Proof Let xTPx, P > 0, be a quadratic Lyapunov function proving asymptotic stability of ẋ = A(F0)x, it is
such that there exists ε > 0 such that AT (F0)P + PA(F0) ≤ −ε1. Then take any matrix G and a large enough
scalar µ such that

(PB − CTGT )(µ−11)(BTP −GC) ≤ ε1.

A Schur complement argument gives the LMI in (2). Passivity of the closed-loop system is direct, based, for
example, on results in [BGFB94]. �

Having obtained some passivity property of the system, the following theorem allows to prove closed-loop
stability with simple adaptive control.

Theorem 1 Let β > 1 be a given scalar. If (F0, G, µ) are feasible values for LMIs (2), then there exists
(Q,R, T, F, α) solutions to the following LMI problem[

R QB − CTGT
BTQ−GC µ1

]
≥ 0, (4)

[
T (F − F0)T

(F − F0) µ−11

]
≥ 0, Tr(T ) ≤ α, (5)

Q > 0,
AT (F0)Q+QA(F0) + αβCTC
+R+ CT (GT (F − F0) + (F − F0)TG)C < 0. (6)

The solution is such that u = Fy is a stabilizing static output feedback satisfying ||F − F0||2• ≤ ν = αµ−1 and,
whatever Γ > 0, the values (Γ, G, ν = αµ−1, β) define a stabilizing adaptive controller:

u(t) = K(t)y(t) ,
K̇(t) = −Gy(t)yT (t)Γ− φ(K(t)− F0)Γ.

(7)

Before providing the proof we recall two technical lemmas slightly modified from [PF08]. Proofs are very
similar to those in [PF08] and therefore not reproduced here.
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Lemma 1 If y(t) is bounded for all t ≥ 0, then K(t) constrained by (7) is bounded such that

||K(t)− F0||2• < νβ , ∀t ≥ 0.

Lemma 2 For all (F,K) satisfying

||F − F0||2• ≤ ν, ||K − F0||2• < νβ

the inequality Tr(φ(K − F0)(K − F )T ) ≥ 0 holds.

Proof of Theorem 1
Firstly let us prove the existence of a solution to the LMIs. Assume (P, F0, G, µ) satisfy the LMIs (2). A Shur
complement argument implies that

AT (F0)P + PA(F0) + (PB − CTGT )(µ−11)(BTP −GC) < 0

Take any small enough ε such that

AT (F0)P + PA(F0) +R < 0,
R = (PB − CTGT )(µ−11)(BTP −GC) + ε1.

A converse Shur complement argument implies (4) and (6) with F = F0 and α = 0. For that choice of F = F0 (5)
trivially holds with T = 0. Small perturbation argument implies the existence of a solution with (possibly small)
non zero α.

Now, let us prove the properties of F . Pre and post multiply (4) by
[

1 −CT (F − F0)T
]

and its transpose
respectively to get

QB(F − F0)C + CT (F − F0)TBTQ
−µCT (F − F0)T (F − F0)C
≤ R+ CT (GT (F − F0) + (F − F0)TG)C.

Combined to (6) it gives

AT (F )Q+QA(F ) + CT (αβ1− µ(F − F0)T (F − F0))C < 0.

A Schur complement argument on (5) gives

α ≥ Tr(T ) ≥ µ||F − F0||2•

which is the expected bound on F − F0. Reminding that β > 1 and (F − F0)T (F − F0) ≤ ||F − F0||2•1, it also
implies stability of the closed-loop: AT (F )Q+QA(F ) < 0.

We now prove the stability of the closed-loop with the adaptive control law with the following Lyapunov
function:

V (x,K) = xTQx+ Tr((K − F )Γ−1(K − F )T )

which derivative along the trajectories of the closed-loop system writes

V̇ = 2xTQ(Ax+BKy) + 2Tr(K̇Γ−1(K − F )T ).

Pre and post multiply (6) by xT and x respectively to get

2xTQ(Ax+BF0y) ≤ −αβyT y − xTRx− 2yT (F − F0)TGy

Thus one gets
V̇ ≤ 2xTQB(K − F0)y − αβyT y

−xTRx− 2yT (F − F0)TGy + 2Tr(K̇Γ−1(K − F )T ).
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Pre and post multiply (4) by
(
xT −yT (K − F0)T

)
and its transpose respectively to get

2xTQB(K − F0)T y − xTRx− 2yT (K − F0)TGy
≤ µyT (K − F0)T (K − F0)y

and therefore
V̇ ≤ yT (µ(K − F0)T (K − F0)− αβ1)y

+2yT (K − F )TGy + 2Tr(K̇Γ−1(K − F )T ).

Thanks to Lemma 1, the first term is known to be negative. Noting that

yT (K − F )TGy = Tr(GyyT (K − F )T )

and replacing K̇ by its value one gets

V̇ ≤ −2Tr(φ(K − F0)(K − F )T )

and concludes the proof thanks to Lemma 2. �
At this stage the results can seem confusing. Theorem 1 gives, at the knowledge of a stabilizing SOF gain

F0, two alternative controllers. One is another SOF gain F . The other is a ‘simple’ adaptive control gain, still
more complex than the SOF control laws. The justification of F is to be an intermediate variable used to define
the Lyapunov function for the adaptive law. What is expected is that the adaptive law will have better robustness
properties than the original SOF u = F0y.

The adaptive control law is such that the gain K varies around the original stabilizing gain F0. It cannot escape
from the bounded set ||K − F0||2• ≤ νβ (see Lemma 1) and as the system stabilizes it converges to the bounded
set ||K − F0||2• ≤ ν. Trivially one cannot expect any improvement from the adaptive control if ν is small. One
should therefore seek for solutions maximizing ν. To this end, the following design procedure is proposed:

1- Minimize µ subject to (2) with the additional constraints

P > 1,
[
g21 G
GT 1

]
> 0, µ0 ≤ µ

where g is some upper-bound on the norm ofG and µ0 is a lower-bound on µ0. Both these parameters should
be chosen a priori based on practical considerations: g large enough in order to have a feasible solution, µ0

small but large enough to make µ invertible in practice in the next step.

2- For the obtained (G,µ) maximize α subject to (4,5,6).

The important feature of the design procedure is that it is guaranteed to succeed when starting from a stabilizing
static output feedback F0. The only assumption on the system is that it should be ‘almost stable’ thus relaxing usual
‘almost passive’ assumptions of [KBS94] (existence of a static output feedback that makes the system stable and
passive).

A second feature is the boundedness of the control gain K(t). While the usual passivity conditions conclude
with the possibility of the control gain K(t) to diverge in the direction K(t) = −k(t)G with a positive possibly
large scalar k(t), our new result based on the introduction of a fictive feedthrough term 1

2µ forbids such high
gain control. The corrective term φ is intended to prevent any divergence. It not only keeps K(t) is a domain of
implementable values but plays a key role in the proof of stability.

The two step design procedure amounts to solving two LMIs. Solving these can be done in polynomial time
using efficient semi-definite programming solvers such as SeDuMi by [Stu99]. Results of the next sections are
obtained using this solver and are coded in Matlab c© with the help of YALMIP interface of [Löf04]. Computation
time for the small size problems we have considered are of less than one second.

The fact that results are formulated in terms of LMIs gives also the opportunity to extend them to guarantee
robustness. Inspired by first results of [PFA08, BYYS07] extensions of this paper contributions to robustness
issues are given in [PAMF11].

The remaining of the present paper is now devoted to illustrating the results on an application example.
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3 Demeter satellite benchmark
The AOCS control loop of DEMETER is fully described in [PA06]. In this section, only the main elements used
for the study are recalled.

The AOCS reaction wheel control loop is presented at Figure 1.

PD
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Star 

Disturbances

Filter

Reaction
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+ +

Ground
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!#

" #

TTc d

r r

ControllerBias
Speed

Figure 1: DEMETER MNO control loop

3.1 Flexible satellite
The three axes of the satellite are assumed independent. Each one is modeled as a double integrator scaled by
inertia:

Jiω̇i = Ti , θ̇i = ωi (8)

where T is the total torque (actuators and disturbances) applied to the satellite to which we add two pairs of poles
and zeros representing the first flexible modes. For the second axis this fourth order model (obtained by reduction
of a eleventh order model containing four flexible modes) is

Gsat,2(s) =
0.04736s2 + 0.0006546s+ 0.2991

s4 + 0.01387s3 + 6.338s2
.

We shall design the adaptive control for this axis and then test it on the first axis for which the model is

Gsat,1(s) =
0.03933s2 + 0.0005437s+ 0.2485

s4 + 0.01706s3 + 7.797s2
.

For simplicity reasons, the attitude measurement is considered perfect (no star tracker noise or delay nor avail-
ability problem) and the guidance reference is zero for attitude and rate. The reaction wheel is also considered
perfect (unitary gain transfer function).

3.2 Flight software
The flight software for the wheel control is composed of the attitude and rate estimation and the reaction wheel
control law.

The attitude estimate is considered equal to the attitude measurement. The satellite angular velocity is derived
from the attitude estimate via high pass filters of first order, with a time constant of 0.5 seconds. Gestim(s) = s

s+0.5 .
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The reaction wheels control filters consists of three parts: a nonlinear control law for large pointing error
switching with a PD controller for small pointing errors, both followed by the same stabilising linear filter.

The large pointing error control is intended to decrease the pointing error, with minimal reaction wheel effort.
It is achieved through a nonlinear control law with the following type

Ti = −ki(δωi + bisign(δθi)) (9)

where Ti is the computed torque on axis i. At this stage of the study, this mode is not studied.
The small pointing error control is applied as soon as the pointing falls within a given threshold. The law is of

proportional-derivative type such as :
Ti = −Kpiδθi −Kdiδωi (10)

where Kpi and Kdi are respectively the proportional and derivative gains on axis i. Based on experiments and
physical knowledge the following gains have been chosen for the satellite: Kpi = 0.1, Kdi = 2.

But for these values the closed-loop does not perform as required and a stabilizing filter is added. The synthesis
of the stabilizing filter is not detailed here. Some information about the synthesis can be found in [PMF99]. The
3 SISO control filters are the result of a multi-objective H2/H∞ LMI synthesis with pole placement in an LMI
region. They have been open-loop reduced, digitalised using a first order hold method, decomposed into the
summation of a static gain and two second order strictly proper filters and finally the coefficients truncated to five
digits. The result consists in a PID with a low pass filter. For the second axis the filter gain is

Gfilter,2(s) =
0.5411s4 − 3.678s3 − 4.99s2 − 1.747s− 0.1241

0.25s6 + 1.961s5 + 5.094s4 + 5.722s3 + 3.068s2 + 0.5784s

4 Adaptive control of the Demeter satellite
In order to evaluate the adaptive control on this benchmark we have considered at this stage of our study the
situation when the estimator and the stabilizing filter are given and we aim at replacing the static PD gain in (10)
by the adaptive law (7). It amounts to applying the exposed procedure to the following system with one input and
two outputs [

1
Gestim(s)

]
Gsat,2(s)Gfilter,2(s).

The advantage of the considered problem is that it gives the possibility to plot in 2D the time histories of the gains
and thus illustrate the adaptive law properties.

As a start we have applied the adaptive control design procedure starting with the known stabilizing gain

F0 =
[
Kp2 Kd2

]
=
[

0.1 2
]
.

Comparison of the static feedback (using gain F0) with the adaptive law in terms of output signals is given in
Figure 2. Simulations are done with non zero initial conditions (randomly chosen). The dotted line correspond to
the responses for the static control and the solid line for the adaptive control.

The adaptive law gives a slightly faster convergence of the outputs. But the improvement is not significant.
This is not surprising since the filters have been designed to optimally solve the problem with this choice of static
PD control. We therefore have considered an altered case for which the improvements due to the adaptive control
are more significant. To do so we have changed the static gains into

F0 =
[
Kp2 Kd2

]
=
[

0.3 2
]

and performed the whole design again. It is now described step by step in details.
At the first step of the procedure we chose g = 103 and µ0 = 10−4 and found the following values

G =
[

28.131 −165.556
]
, µ = 196.494.
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Figure 2: y(t) with static and adaptive control for F0 = [ 0.1 2 ]

For the second step of the procedure we chose β = 2 and found

F =
[

0.1437 2.0000
]
, α = 4.7993.

To apply the adaptive control it is then needed to chose Γ and φ. For the choice of Γ we proceed as follows. We
assume that the PD control dedicated to small pointing error situations intended to work for values of y close to
zero, or at least for ||y|| ≤ ymax = 20. The adaptation gain is subject at first approximation to K̇ = −GyyTΓ. Its
derivative should not be too large to be implementable. From practical consideration we decided that a limitation
||K̇|| < K̇max = 1 would be reasonable. This meant in first approximation to take Γ < K̇max/y

2
max and we took

Γ = 1.489 · 10−5.
For the choice of φ we proceeded to some tests and ended in choosing

φ(ν ≤ k ≤ νβ) =
(

103(k − ν) +
k − ν
νβ − k

)4

which does satisfy the assumptions and makes it a rapidly growing barrier as k gets out of the region bounded by
ν.

The time histories of the outputs y(t) =
(
δθ(t) δω(t)

)T
(Figure 3), the control signals u(t) = K(t)y(t)

(Figure 4) and the control gains K(t) (Figure 5) are all compared to the static control F0 =
[

0.3 2
]

(doted
line). The plots clearly show the improvement due to the adaptation which is not at the expense of highly varying
gains or larger control inputs.

In order to see the influence of the function φ we also give in Figure 6 the time histories of K(t) with Kp on
the horizontal axis and Kd on the vertical axis. The inner dotted circle corresponds to ||K − F0||• = ν and the
outer circle is ||K − F0||• = νβ. The expected bounds on the control gains are indeed satisfied and would be
maintained even in case of bounded noise in the loop, including noise on the measurements.

To test the robustness of the adaptive control it is now applied to the model of the first axis of the satellite:[
1

Gestim(s)

]
Gsat,1(s)Gfilter,2(s).

We intentionally kept the same filter Gfilter,2(s) which is not designed for this axis. The result is that the closed-
loop contains a stable but very slow oscillating mode which cannot be damped with PD control. This oscillation
can thus be seen as some perturbation. Figure 7 shows the time histories of the outputs in that case. It can be
clearly seen that the adaptive control is most effective. The time histories of the gains are quite similar to those in
Figures 5 and are therefore not reproduced.
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Figure 3: y(t) with static and adaptive control for F0 = [ 0.3 2 ]
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Figure 4: u(t) with static and adaptive control for F0 = [ 0.3 2 ]

The simulations show that the simple adaptive control can be of interest for improving a given linear control
law. Here we have tested the adaptation of the PD gains and further experiments will be done for adaptation of the
filter gains.

Another prospective work will be devoted to the originally formulated problem of reducing the number of
control ‘modes’. Currently the satellite is controlled with the two modes defined by (9) in case of large pointing
errors and the PD control (10) for small pointing error. Keeping the properties of these two modes, an alternative,
unique mode control would be of the type

Ti = −Kpisatbi(δθi)−Kdiδωi

where satbi
stands for the saturation operator with lower-bound −bi and upper bound bi. This saturated represen-

tation of the switched static control has been studied in [BPR10]. In cooperation with the authors of this paper we
will consider the adaption of the gains of that saturated PD control and to proving global stability of the non-linear
closed loop.
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5 Conclusions
The paper produces a new theoretical result for direct adaptive control. Namely it relaxes ‘almost passive’ con-
ditions into ‘almost stable’ conditions. The result is that any given LTI control law can be converted into an
adaptive version of it with gains kept close to the original ones while preserving stability properties. The benefit of
such adaptation is possibly improved convergence and robustness. This is illustrated on a real application satellite
model. Only two scalar gains of an LTI controller are adapted in the simulations, future work will be devoted to
testing adaptation on other gains of the control law.
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