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Abstract

A multi-objective synthesis problem involving H2, H∞ and impulse-to-peak performances
is investigated. In general, multi-objective control problems are hard problems to solve and
do not have exact solutions. Here, an LMI formulation is proposed for the mixed H2/impulse-
to-peak optimization under an H∞ constraint for LTI discrete-time systems. This framework
is then used to control the attitude of a space launcher. A particular control structure
is defined and a multi-objective H2/H∞/impulse-to-peak synthesis problem is solved to
tackle specific specifications. A systematic synthesis procedure including the tuning of design
parameters is defined and results from simulations are presented..

Keywords: Multi-objective Control, LMI Optimization, Launch Vehicles, Attitude Control,
Robust Synthesis

1 Introduction

It is well-known that H∞ synthesis guarantees robust stability in the face of worst-case distur-
bances while H2 synthesis is more adapted to deal with nominal performance. When imposing
transient specifications (overshoot, settling time) a less known approach is to guarantee a bound
on the peak impulse response [3], [15], [18], [19]. Applications involving sharp and various spec-
ifications naturally result in considering a mixed design framework that can integrate optimal
transient performance and robustness in a single controller. In particular, the last developments
of space launchers in terms of structure (optimized composite) and versatile payloads make it
necessary to take hard design constraints into account in the pilot design phase. In such an
application, the controller should counter the effects of uncertainties and dispersions affecting
the launcher parameters as well as the disturbances (winds shear and gusts) while ensuring a
high level of reliable performance (low level of consumption). Here, the reliability means that
the angle of attack and the angle of deflection of the actuator (thrust) should stay below a
pre-specified level during all the atmospheric flight of the launcher. During the last ten years,
some attempts have been made to tackle the complex problem of robust attitude control of a
space launch vehicle via modern control synthesis methods [9], [4], [10]. Those efforts lead to
the definition of the working group PIROLA (PIlotage RObuste des LAnceurs).

1.1 The working group PIROLA

PIROLA was a three years research working group on robust control of launchers. This group,
with financial support of CNES (French Space Agency) is aimed at improving control loop
robustness and at reducing the time for tuning the control laws for this type of application.
More specifically, the designer wishes to enlarge the controllable configurations and to allow the
use of low cost sensors and actuators. The reduction of the time spent in tuning the control law
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is obtained via the development of automatic procedures while keeping connection with physics.
The group includes academic research partners: LAAS-CNRS (government research center) [1],
[2], [17], ONERA (French aerospace research center) [20], [8], Supaero, [21], [22], Supelec [4], [5]
(engineering schools) and an industrial partner: EADS ST (Space Transportation) [10].

Robust synthesis as well as robust analysis methodologies have been proposed in the frame
of PIROLA. The former ranged from stationary control methodologies (H∞ design based on the
cross standard form, µ-synthesis, multi-objective control) to linear parameter-varying techniques
and multi-model modal self-scheduled control while the last have mainly included techniques
based on µ tools and SemiDefinite Programming (SDP) tools. The interested reader may consult
the reference [8] for a more detailed information concerning the design methods. The goal of this
article is to detail the LMI-based multi-objective control strategy proposed by LAAS-CNRS.

1.2 A multi-objective controller for launch vehicle control

Our approach consists in translating engineering requirements into automatic control specifica-
tions. These last specifications are converted into a particular multi-objective control problem
involving H2, H∞ and impulse-to-peak performance criteria. As it turns out, despite the great
number of papers on the subject, multi-objective synthesis problems are in general open prob-
lems except for some particular cases for which an exact convex formulation is given using LMI
formalism. In our case, the best we can hope is to find a relaxed convex formulation as tight as
possible since no exact convex characterization for the impulse-to-peak performance exists in the
literature [18], [15], [19]. Here, a new characterization of impulse-to-peak performance is given
for LTI discrete-time systems. It involves additional variables and allows a decoupling between
the Lyapunov function and the system matrix in the spirit of references [7], [11], [14]. This
property is particularly useful in robust and multi-objective control problems. Indeed, it paved
the way for the reduction of inherent conservatism of robust or multi-objective control methods
based on the Lyapunov shaping paradigm [15], [13], [12], [14], [1]. Here, an LMI formulation
based on those ideas is proposed for the mixed H2/impulse-to-peak optimization under an H∞
constraint for LTI discrete-time systems. The relevance of the approach is illustrated by its
application to the robust control of the attitude of a launch vehicle. An associated systematic
synthesis procedure including the tuning of design parameters is defined and results from simu-
lations are presented. These simulations are based on a very complete model including bending
modes effects as well as time-varying behavior and non linear (rate and position limitations of
actuators) effects. Future directions of research are then proposed in the concluding section.

1.3 Notations

Notation is standard. The transpose of a matrix A is denoted A′. For symmetric matrices, >
(≥) denotes the Löwner partial order, i.e. A > (≥) B iff A − B is positive (semi) definite. 1
stands for the identity matrix and 0 for the zero matrix with the appropriate dimensions. The
symmetric part of a square matrix A is denoted sym[A], i.e. sym[A] = A + A′.

2 Problem formulation

2.1 Ariane control loop

We are interested in the control of the launch vehicle during its atmospheric flight and partic-
ularly in the design of the piloting inner loop for the yaw axis of the launcher as illustrated by
figure 1.
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Figure 1: ARIANE control loop

The main function of this loop is to hold the launcher around its center of gravity which
follows the guidance reference trajectory.
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Figure 2: Model of the launcher

G is the center of gravity, V and Vr are the absolute and relative velocity and w is the wind
velocity. i is the angle of attack and Ψ is the deviation of the launcher from the yaw axis with
respect to the guidance attitude reference. The control variable is the thruster angle of deflection
β. A thorough description of the plant may be found in the references [9], [4], [5].

2.2 Model of the launcher

To get a tractable analytical model for the plant, some simplifying assumptions have to be done.

Assumptions 1
- Axis are decoupled

- All angles remain small

- Parameters are slowly time-varying

Under these assumptions, the linearized dynamics of the launcher include a rigid model (without
bending modes and actuator dynamics) where ψ̇ is the angular velocity and ż the lateral drift
rate.

ψ̈(t) = A6

(
ψ(t) +

ż(t) − w(t)
V

)
+ K1β(t)

z̈(t) = a1ψ(t) + a2 (ż(t) − w(t)) + a3β(t)

(1)

Moreover, the angle of attack equation reads:

i(t) = ψ(t) +
ż(t) − w(t)

V
(2)
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Those equations depend on known aerodynamic coefficients ai, i = 1, 2, 3 and time-varying
coefficients A6, the aerodynamic efficiency and K1, the thruster efficiency along the flight enve-
lope.

Defining the state vector as x =
[

Ψ Ψ̇ ż
]′, the perturbation input as w and the controlled

output as i, we get the following third-order state-space model for the rigid part of the launcher.

ẋ(t) =




0 1 0

A6 0
A6

V
a1 0 a2


x(t) +




0

−A6

V
−a2


W +


 0

K1

a3


u(t)

z(t) = i(t) =
[

1 0
1
V

]
x(t) − 1

V
W

(3)

Note that the launcher is aerodynamically unstable.
The sensors dynamics (second order for ψ and ψ̇) and the actuators dynamics (second or-

der) are added to the previous model to compose he complete linearized dynamics of the rigid
launcher. Due to lack of tests and system complexity, internal uncertainties and dispersions
have to be faced. They mainly concern the propulsion system, aerodynamic coefficients, mass
model and inertia, flexible modes (elastic and sloshing), actuators and sensors modelling. The
wind (shear and gusts) is considered as an external disturbance.

Figure 3: Bending modes of the ARIANE launcher

The first 5 bending modes are taken into account into the complete model and their charac-
teristics are considered to be not exactly known (4 uncertain parameters per mode) leading to
the definition of a discrete-time uncertain LFT simulation model of order 17 and ∆ ∈ R

22×22.

2.3 Control objectives and performance specifications

During the atmospheric flight phase, the physical constraints and objectives defining the re-
quirements that the pilot must fulfill are the following.

1- Guidance demand tracking.

2- Stabilize the launcher with respect to internal and external disturbances.

3- Limit the aerodynamical loads or equivalently limit angle of attack deviations.

4- Limit the consumption of the controller.

The physical constraints and objectives become automatic control requirements shaping the
pilot.

- Closed-loop stability with sufficient stability margins (for a given flight time): Gain mar-
gins (low and high frequencies) must be respectively over LF and HF. Delay margin must
be greater than one sampling period.

- In addition to the stability margins on the rigid part of the model, a specified attenuation
of bending modes (X dB) has to be insured. The first flexible mode may be alternatively
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controlled with respect to the previous defined attenuation X dB or with respect to its
phase (see figure 4).

End of rigid mode

LF

Figure 4: Illustration of the margins in the Nichols plot

- The pilot has to reject disturbances (wind and gusts) influence on the angle of attack i.
In particular, angle of attack peaks must not exceed the limits ± imax in response to a
typical wind profile presented in figure 5.
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Figure 5: Wind profile

- The previous performance specifications must be achieved without an excessive thruster
consumption expressed as cumulated deflections.

C =
Tend∑

k=Tini

|βk+1 − βk| (4)

The pilot must make sure that robustness requirements with respect to uncertainties on the
rigid and bending modes are fulfilled. This means that all previous control objectives have to
be achieved for all possible configurations of the 22 uncertain parameters.

3 Multi-objective H2/H∞/impulse-to-peak design

Keeping in mind the high heterogeneity of the performance specifications, we adopt a multi-
objective strategy for the control design procedure. Even if the problem of the synthesis of a
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robust pilot achieving the different specifications may be naturally recast as a multi-objective
control problem, it is first necessary to translate the control objectives and the performance
specifications in terms of a set of design constraints involving adequate system norms. One
therefore impose

- A bound on the impulse-to-peak performance of the closed-loop transfer W − i with an
additional filter modelling a typical wind profile to limit the angle of attack.

- A bound on the H∞ performance of the sensitivity S to get a minimum modulus margin
and therefore good gain margins

- A bound on the H2 performance of the transfer between measurement noises and β̇ to
reduce the consumption

- A mixed roll-off and lead filter to attenuate the bending modes and control in phase the
first one

The first step of the design procedure consists in choosing a particular model for synthesis
purpose. Due to the high complexity of the complete model of the launcher, a simplified model
is usually utilized for design purpose. Here, this simplified model is composed of the rigid model
defined by the equation of the torque equilibrium of the yaw axis of the launcher. The synthesis
model also includes the sensors dynamics (second order) but is free of the bending modes and
actuator dynamics.

3.1 Structure of the controller

As will be seen in the next section, the controller is composed of two parts. One part of the
controller is tuned (mixed filter) and the other part is computed via multi-objective optimization
leading to the particular structure for the controller detailed in figure 6. Note also that the wind
gust model acts like a weighting function which has to be tuned in the controller synthesis
procedure.

1z  = z  = 3

z  = i2

+ +
+

Wind gustw

w

w w

2

3 3
21

1

ψ

ψ
.

Σaug

−β
Actuator

model

delay delay

+ +

Filter

Controller

sensors

Launcher
Rigid

with

Mixed Multiobjective
Controller

Figure 6: Structure of the multi-objective controller

The complete synthesis model is then defined by Σaug.. An H2/H∞/impulse − to − peak
multi-objective control problem is therefore set on Σaug to enforce the three first specifications.

6



3.2 The multi-objective control problem

3.2.1 Definition

Let the LTI discrete plant Σaug be given by its state-space minimal realization:

 xk+1

zk

yk


 =


 A B1 B

C1 D11 D
C D21 0





 xk

wk

uk


 (5)

where x ∈ R
n is the state vector, w ∈ R

mw is the disturbance vector, u ∈ R
mu is the input

vector, z ∈ R
rz is the controlled output vector and y ∈ R

ry is the measured output vector.
The z and w vectors are partitioned as indicated in figure 7.

aug
ooo

K

u y

zw
w
w2

i2p z
z2

i2pΣ
o

Figure 7: Standard model for multi-objective control

z =


 z∞

zi2p

z2


 w =


 w∞

wi2p

w2


 (6)

The associated matrices are therefore consequently partitioned.

B1 =
[

B∞ Bi2p B2

]
C1 =


 C∞

Ci2p

C2


 D11 =


 D∞ D∞i2p D∞2

Di2p∞ Di2p Di2p2

D2∞ D2i2p D2




D21 =
[

Dy∞ Dyi2p Dy2

]
D =


 D∞u

Di2pu

D2u




(7)

The controller K is given by its state-space realization:

ηk+1 = AKηk + BKyk

uk = CKηk + DKyk
(8)

The closed-loop system Σaug. � K is given by its state-space matrices:

Acl =
[

A + BDKC BCK

BKC AK

]
Bcl =

[
B1 + BDKD21

BKD21

]

Ccl =
[

C1 + DDKC DCK

]
Dcl = [D11 + DDKD21]

(9)

The multi-objective control problem is then defined in the following way.
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Problem 1 (multi-objective H2/H∞/i2p control problem)
Find a controller K in the set of internally stabilizing controllers K such that:

min
K∈K

αiγw−i + αcγcons

s.t.
||Σaug.

mod � K||2∞ ≤ γmod

||Σaug.
W−i � K||2i2p ≤ γw−i

||Σaug.
cons � K||22 ≤ γcons

(10)

If performance specifications are often expressed in terms of H2 and H∞ norms, impulse-to-
peak performance is not so usual and deserve a thorough description.

3.2.2 The impulse-to-peak performance

At our knowledge, only references dealing with the continuous-time case may be found in the
literature [3], [18], [15], [19].

Let the closed-loop discrete-time plant be given by its minimal realization:

Σ � K
xk+1 = Aclxk + Bclwk x(0) = 0
zk = Cclxk + Dclwk

(11)

As in the continuous-time case, a conservative LMI characterization may be used to compute
a bound on the peak of the impulse response of a discrete LTI system.

Theorem 1
If there exists a matrix Pcl ∈ S

∗+ and a scalar γ∗ satisfying:

γ∗ = min
Pcl,γ

γ

s.t.
AclPclA

′
cl − Pcl < 0

BclB
′
cl − Pcl < 0

CclPclC
′
cl − γ1 < 0

DclD
′
cl − γ1 < 0

(12)

then ||zk||2 ≤ γ∗ ∀ k ≥ 0.

Proof 1
First note that by Schur complement, all the inequalities defining the realizable set of (12 may
be equivalently written with respect to Xcl = P−1

cl :

A′
clXclAcl − Xcl < 0 (13)

B′
clXclBcl < 1 (14)

γ−1C ′
clCcl − Xcl < 0 (15)

γ−1D′
clDcl − 1 < 0 (16)

Let x and z be the solutions of (11) when the impulsive input wki is applied with x(0) = 0.
wki = αeiδk, |α| ≤ 1, i = 1, · · · , mw where ei ∈ R

mw is the basis vector with 1 at the position
i, 0 elsewhere and δk is the unit pulse. Then ∀ i:

x0 = 0 z0 = Dclαei

x1 = Bclαei z1 = Cclx1 = CclBclαei

xk = Ak−1
cl Bclαei zk = Cclxk = CclA

k−1
cl Bclαei

(17)
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From (13), we get

x′
k+1Xclxk+1 < x′

kXclxk < · · · < x′
1Xclx1

So, ∀ k ≥ 1, from (14) and (15),

1 > α2B′
clXclBcl = x′

1Xclx1 > x′
kXclxk > γ−1x′

kC
′
clCclxk

= γ−1z′kzk

So, ||zk||2 < γ. Using the last inequality (16) leads to

||z0||2 < γα2 ≤ γ

�

At our knowledge, this LMI characterization of the impulse-to-peak performance is new for
discrete-time systems. Here, we are interested in an equivalent alternative LMI characterization
of a bound on the impulse-to-peak performance of the closed-loop system (11). A generaliza-
tion of the method in [13] where an extra matrix G is introduced for the test of H2 and H∞
performances leads to the equivalent LMI optimization problem.

Theorem 2
Let the following semidefinite programming problem be given:

γ∗
G = min

Pcl,γ,G,F
γ

s.t. [ −Pcl AclG
G′A′

cl Pcl − G − G′

]
< 0

[ −Pcl Bcl

B′
cl −1

]
< 0

[ −γ1 CclF
F′C ′

cl Pcl − F − F′

]
< 0

[ −γ1 Dcl

D′
cl −1

]
< 0

(18)

then

γ∗ = γ∗
G

Proof 2
The proof comes from the application of elimination lemma [16]) on the first and third inequality
of (12). �

So far, the new proposed characterization (18) of impulse-to-peak performance seems not
to bring any novelty. In fact, we will see later that it allows to reduce the conservatism of
the proposed bound when dealing with multi-objective control problem. The reference [1] gives
another application of this condition in robust control context.
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3.2.3 Impulse-to-peak performance design via LMI’s

The previous characterization may be used to tackle the problem of designing a controller min-
imizing a bound on the impulse-to-peak performance.

Problem 2 (worst-case i2pk synthesis)
Find a full-order dynamic output-feedback controller K in the set of internally stabilizing con-
trollers K.

min
K∈K

||Σaug. � K||i2p = min
K∈K

sup
w∈I

||z||L∞ (19)

where I = {wki = αeiδk, |α| ≤ 1, i = 1, · · · , mw}.
To address the impulse-to-peak performance synthesis problem, we need to relax the previous

optimization problem (18) by setting G = F . This relaxation is known as the generalized shaping
paradigm [13].

Theorem 3
If there exist X ∈ R

n×n, Y ∈ R
n×n, Â ∈ R

n×n, B̂ ∈ R
n×r, Ĉ ∈ R

m×n, D̂ ∈ R
m×r, Q ∈ S+∗

n ,
H ∈ S+∗

n , J ∈ R
n×n, and a scalar γ∗

G ∈ R
+∗ such that:

γ∗
G = min

X,Y, γ
J,H,Q,S

γ

s.t 


−Q −J AX + BĈ A + BD̂C

� −H Â YA + B̂C
� � Q − X − X′ J − S′ − 1
� � � H − Y − Y′


 < 0


 −Q −J Bi2p + BD̂Di2py

� −H YBi2p + B̂Di2py

� � 1


 < 0


 −γ Ci2pX + Di2puĈ Ci2p + Di2puD̂C

� Q − X − X′ J − S′ − 1
� � H − Y − Y′


 < 0

[ −γ Di2p + Di2puD̂Di2py

� −1

]
< 0

(20)

then a full-order controller reconstructed as follows:

V ′
1U1 = S − YX DK = D̂

CK = (Ĉ − D̂CX)U−1
1 BK = V −T

1 (B̂ − YBD̂)
AK = V −T

1

[
Â − Y(A + BD̂C)X − V ′

1BKCX − YBCKU1

]
U−1

1

(21)

leads to bound the peak value of impulse response of the system:

||z||∞ <
√

γ∗
G

Proof 3
From (2), it is easy to see that the matrix G is invertible and may be partitioned as follows:

G =
[

X U2

U1 •
]

G−1 =
[

Y V2

V1 •
]

(22)
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Then applying the following similarity transformation on the closed-loop Lyapunov matrix, we
get: [

1 0
Y ′ V ′

1

]
Pcl

[
1 Y
0 V1

]
=

[
Q J
J ′ H

]
(23)

Multiplying the first three terms in (2) by
[

1 Y
0 V1

]
and by its transpose, we get the final result

by applying the change of variables (21). �

This parameterization is a slight modification of the one proposed in [15] and an extension
to the impulse-to-peak case of the one given for the first time in the context of H2 and H∞
performances in [13]. Its main interest relies in the decoupling between the Lyapunov function
and the computation of the controller. The controller is now built from the additional variable
G allowing to use independent Lyapunov function in the context of multi-objective control.

3.3 LMI formulation of the multi-objective control problem

Let us come back to our original multi-objective control problem (10). Except in some par-
ticular cases, this problem is hard to solve analytically. Even if many sub-optimal numerical
approaches have been developed, the reduction of the conservatism of the proposed solution is
still a challenging problem, [18], [15]. In the previous subsection, we have seen how to convert
the original worst-case impulse-to-peak design problem to a convex optimization problems in-
volving LMIs. The same technique may be applied to the H2 and H∞ performance criteria as
originally proposed in [13] and an extended LMI formulation may be formulated for H∞ and
H2 performances of respectively Σaug.

mod. � K and Σaug.
cons. � K.

H∞ performance:
 B∞clB

′
∞cl − P∞cl B∞clD

′
∞cl 0

� −γmod1 + D∞clD
′
∞cl 0

� � P∞cl


 + sym





 Acl

C∞cl

−1


 [

0 0 G∞
]

 < 0

(24)

H2 performance:

trace(T) < γcons


 −1 B′

2cl 0
B2cl −P2cl 0
� � P2cl


 + sym





 0

Acl

−1


 [

0 0 G2

] < 0

[ −T + D2clD
′
2cl 0

� P2cl

]
+ sym

[[
C2cl

−1

] [
0 G2

]]
< 0

(25)

Defining the notations[
1 0
Y ′ V ′

1

]
P2cl

[
1 Y
0 V1

]
=

[
Q2 J2

J ′
2 H2

]

[
1 0
Y ′ V ′

1

]
P∞cl

[
1 Y
0 V1

]
=

[
Q∞ J∞
J ′∞ H∞

]

[
1 0
Y ′ V ′

1

]
Pi2pcl

[
1 Y
0 V1

]
=

[
Qi2p Ji2p

J ′
i2p Hi2p

]
(26)

a full-order output-feedback controller minimizing an upper bound for the multi-objective H2/H∞/i2p
synthesis problem may be computed using semidefinite programming and LMI formulation.
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Theorem 4
If the following semidefinite programming problem has a solution

min
X,Y, γcons, γw−i,T,S
Ji,Hi,Qi, i = ∞, i2p, 2

αcγcons + αiγw−i

under




−Q∞ −J∞ AX + BĈ A + BD̂C B∞ + BD̂Dy∞ 0
� −H∞ Â YA + B̂C YB∞ + B̂Dy∞ 0
� � Q∞ − X − X′ −1 − S′ + J∞ 0 X′C ′∞ + Ĉ′D′∞u

� � � H∞ − Y − Y′ 0 C ′∞ + C ′D̂′D′∞u

� � � � −1 D′∞ + D′
y∞D̂′D′∞u

� � � � � −γmod1




< 0




−Qi2p −Ji2p AX + BĈ A + BD̂C

� −Hi2p Â YA + B̂C
� � Qi2p − X − X′ Ji2p − S′ − 1
� � � Hi2p − Y − Y′


 < 0


 −Qi2p −Ji2p Bi2p + BD̂Di2py

� −Hi2p YBi2p + B̂Di2py

� � 1


 < 0


 −γw−i Ci2pX + Di2puĈ Ci2p + Di2puD̂C

� Qi2p − X − X′ Ji2p − S′ − 1
� � Hi2p − Y − Y′


 < 0

[ −γw−i Di2p + Di2puD̂Di2py

� −1

]
< 0

Trace(T2) < γcons


−T2 C2X + D2uĈ C2 + D2uD̂C D2 + D2uD̂Dy2

� Q2 − X − X′ −1 − S′ + J2 0
� � H2 − Y − Y′ 0
� � � −1


 < 0




−Q2 −J2 AX + BĈ A + BD̂C B2 + BD̂Dy2

� −H2 Â YA + B̂C YB2 + B̂Dy2

� � Q2 − X − X′ −1 − S′ + J2 0
� � � H2 − Y − Y′ 0
� � � � −1


 < 0

(27)

then a controller K constructed from (21) is a suboptimal solution to the multi-objective syn-
thesis problem (10).

Proof 4
The proof is very simple and consists in creating a particular Gi matrix for each performance
constraint. Applying a generalized shaping paradigm

G∞ = Gi2p = G2 = G =
[

X U2

U1 •
]

G−1 =
[

Y V2

V1 •
]

(28)
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and the linearizing change of variables

D̂ = DK

Ĉ = CKU1 + D̂CX

B̂ = V −1′
1 BK + Y BD̂

Â = V −1′
1 ÂU1 + Y (A + BB̂C)X + V ′

1BKCX + Y BCKU1

(29)

leads to the result. �

Notice also that the proposed approach is always less conservative than the one using the
Lyapunov Shaping paradigm from [15].

3.4 Synthesis procedure and tuning parameters

As seen before, the whole controller is formed from a mixed filter in series with a multi-objective
controller. We have therefore two different sets of tuning parameters. The first set is formed
with the parameters defining the wind gust model and the mixed filter. The wind gust model
is a second order with two tuning parameters while the mixed filter is composed of a low-pass
filter multiplied by a lead filter:

Ww(p) =
Kw

p2 + 2Twp + T 2
w

Wm =
1 + aτp

1 + τp

Kro

1 + Trop
(30)

We have therefore 6 synthesis parameters: KW , TW , Kro, Tro, a and τ . The other set of
tuning parameters is formed from the optimization parameters αi/αc and γmod of the multi-
objective LMI optimization step. The complete synthesis procedure therefore reads as

Algorithm 1
1- Choose the tuning parameters and form the augmented plant ΣAug.. Extract ΣAug.

w−i , ΣAug.
cons

and ΣAug.
mod .

2- Solve the convex optimization problem via LMI optimization and get the decision variables.

min (αiγw−i + αc γcons )
under

L∞m(Qm,Jm,Hm,X,Y,S, Â, B̂, Ĉ, D̂, γmod) < 0

Li2p(Qi2p,Ji2p,Hi2p,X,Y,S, Â, B̂, Ĉ, D̂, γw−i) < 0

L2c(Q2,J2,H2,T2,X,Y,S, Â, B̂, Ĉ, D̂, γcons) < 0

(31)

3- Reconstruct the controller with formulae (21).

4 Simulation results

The previous algorithm has been used to design a robust autopilot for the atmospheric flight of a
space launcher. Some worst-cases parametric configuration where the combination of parameter
extremal values is particularly critical has been identified. The synthesis has been performed
considering an LTI worst-case configuration of the time-varying parameters of the launcher.
During the atmospheric flight phase, the time-variant behavior of the launcher and physical
behavior is validated by simulations using a SIMULINK c© model where information about spec-
ifications fulfillment is provided to the user. The time-domain specifications are therefore verified
by inspecting the time responses provided by time-varying simulations while the frequency do-
main specifications are checked by considering only some pre-defined worst-cases. Indeed, the
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robustness analysis of the frequency domain performances is limited to those worst-cases as the
experience has shown that they are quite representative of the complete problem.

First, the Bode plot of the multi-objective controller computed via algorithm 1 is presented
in figure 8. The effect of the lead filter is obvious for the channel ψ − u.

−40

−30

−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−360

−270

−180

−90

0

90

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

Ψ
.

Ψ u

u

f/f
s

Figure 8: Bode diagram of the multi-objective pilot

The open-loop frequency responses are given in Nichols charts in figures 9 and 10 for several
linearized models of specific configurations. This plot is obtained by freezing the model of the
launcher when the wind gust is applied. The roll-off specification on bending modes is indicated
by the X dB horizontal line. A zoom on a specific range of frequencies allows to verify gain
margins imposed on the rigid model. Note also that the first flexible mode remains between two
critical points for all worst-cases satisfying the phase control requirement for this mode.
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X db
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Figure 9: Nichols plot of the open-loop Figure 10: Zoom on the Nichols plot

Various time responses are also proposed. Note that all scales have been normalized with
respect to the sample period Ts. The first figure shows the variation of the angle of attack when

the typical wind profile in figure 5 is applied. The consumption C =
Tend∑

k=Tinit

|β(k + 1) − β(k)| is

computed and plotted with respect to the maximum allowed consumption. The right plot shows
that the consumption is very good since the multi-objective controller needs only 50 % of the
maximum allowable consumption to tackle the specifications.
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Finally, the angle of deflection and its velocity are plotted below. They are far from the
specified maxima.
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5 Conclusions

The simulations have shown that this approach leads to controllers verifying all the specifications
imposed on the launcher during the atmospheric flight. This black box-like method allows a
great flexibility in the synthesis process. The tuning parameters are clearly identified with
respect to the fundamental trade-off proposed by the performance specifications. Easy-to-use
macros of MATLAB based on convex semidefinite optimization solvers allow the designer to
tune adequately the synthesis parameters.

The main drawback of the proposed method comes from the fact that it can be used only
with a simplified synthesis model (without bending modes) due to numerical considerations.
Moreover, the parametric uncertainty of the model is not directly dealt with. In fact, parametric
robustness concerns are inherited from time-varying nature of the model which is not taken into
account here. Considering that the time spent to design a multi-objective controller is not
prohibitive, the first step in order to take non stationarity into account would be to interpolate
a finite number (5 or 6) of multi-objective controllers computed for a frozen configuration of the
launcher all along the atmospheric flight envelope. Of course, this does not mean that finding
an adequate interpolation algorithm is an easy task!
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