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Abstract— This paper presents the architecture and FPGA im-
plementation of a video processor for detection and correction of 
specular reflections in endoscopic images by using an inpainting 
algorithm. Stream processing and parallelism are used to exceed 
real-time performance on NTSC format video without the need 
for an external memory. The system was implemented in a 
XC2VP30 FPGA and uses 91% of available slices. Image quality 
is significantly enhanced. 

I. INTRODUCTION 
Advances in video imaging have played a key role in bring-

ing forth the widespread use of Minimally Invasive Surgery 
(MIS) in a variety of procedures such as cardiology, neurosur-
gery, orthopaedics, urology and oncology. However, the in-
herent difficulties of MIS techniques have traditionally im-
posed limitations on their applicability. Reduced instrumental 
control and freedom, combined with unusual hand-to-eye co-
ordination and a limited view of the operating field, enforce 
restrictions on the surgeon and require considerable dexterity 
and skill. On the other hand, these procedures entail several 
benefits for the patient and the healthcare system: smaller in-
cisions, minimal blood loss, preservation of normal tissue, 
reduced pain, and shortened recovery and rehabilitation times. 

The use of video-assistance to facilitate MIS has been the 
focus of increasing attention since the early 1980s. In typical 
video-assisted MIS, a small camera called an endoscope is 
inserted into the surgical site via a small incision on the sur-
face of the patient's body. The surgeon will exclusively use 
the endoscope video displayed on a monitor to view the surgi-
cal site and control the position of his instruments, which are 
also inserted through small incisions. Several sophisticated 3D 
navigation systems are under development in cardiology and 
neurosurgery. However, most of the current systems devised 
for spinal surgery still rely on rigidly fixed dynamic reference 
(or fiducial) markers on the instrumented vertebrae for the 
registration of preoperative patient data with the intra-
operative data. This allows the surgeon to localize precisely 
the anatomical structures of interest while minimizing damage 
to adjacent critical structures. 

Our team is working on the development of an augmented 
reality surgical environment using an image-based approach -- 
instead of using visible markers in the pre- and intra-operative 
images -- to achieve a non-contact, automated method for 
elastic 2D-3D registration. Unfortunately, the reflection of the 
light on specular surfaces such as metallic tools and moist 
tissues, as shown in Fig.1, produces artifacts in the images 

that render the task of automatic segmentation of endoscopic 
images very challenging. Improving the quality of endoscopic 
video is an important goal in itself, especially for augmented 
reality applications [8]. Any kind of processing must operate 
in real-time on regular sized video to be usable in a hospital, 
in an operating room. Previous work has shown that endo-
scopic images can be significantly improved, but with signifi-
cant memory and processing requirements [1]. 

 
Figure 1.  An endoscopic image with specular reflections [1] 

In this paper, we present particularized algorithms for au-
tomated detection and correction of specular reflections in an 
endoscopic context, together with their real-time implementa-
tion in hardware. The paper is organized as follows. Section II 
presents the system architecture and some implementation con-
siderations that affect algorithm development. Section III deals 
with the problem of detecting the specular reflections, and sec-
tion IV is concerned with their correction. Section V presents 
results and a discussion.  

II. SYSTEM ARCHITECTURE 
AND IMPLEMENTATION CONSIDERATIONS 

Fig. 2 shows the block diagram of our system. The input is 
a stream of pixels and synchronization signals from a video 
decoder connected to an endoscope. The video format is dein-
terlaced NTSC with an effective resolution of 720 × 480 pixels 
and a frame refresh rate of 60 Hz. The output includes pixel 
values and synchronization signals of the same format and 
refresh rate, transmitted to a VGA port for real-time display. 
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We require real-time video processing, which is difficult to 
achieve on a serial processor because of the great amount of 
data involved. In order to perform an operation on every pixel 
in real-time, the processor must execute 40 million operations 
per second. If we take into account the time to store and load 
data, the corresponding number of instructions rapidly in-
creases. This is not outside the capabilities of FPGA imple-
mentations, however, where massive parallelism can be ex-
ploited. However, this choice implies special constraints re-
lated to the mode of processing data: streaming, offline and 
hybrid [2]. 

Task 1

Histogram decomposition

Task 2

red
green

blue

Sync signals

Mask 
enlargement

Linear 
correction

Specular 
mask smoothing

red
green
blue

Sync signals

Smax,Mmax

endoscope Video processor

Human body

Video 
decoder deinterlacing VGA 

port
Video 

monitor

 
Figure 2.  System block diagram 

Storing one video frame requires approximately 1 MB. The 
limited amount of memory resources in a FPGA would nor-
mally require that an external memory be used, especially if 
several frames must be accessed for processing. However, this 
implies timing constraints related to the access time to the ex-
ternal memory. It must be shorter than the incoming rate of the 
pixels. Generally speaking, external memory doesn’t allow 
multiple port access. The resultant memory bandwidth limita-
tions make it desirable to avoid all external memories. Conse-
quently, we favor the use of a streaming mode with as little 
memory storage as possible. We have to take the challenge to 
use a small amount of memory. In fact by using the internal 
memory of an FPGA we can avoid all the constraints due to 
the use of an external one. 

There are two kinds of parallelism: data and pipeline [3]. 
Generally both of them are used at the same time: first we di-
vide the frame into different sections (data parallelism), then 
each section passes through a processor which executes differ-
ent tasks sequentially (pipeline parallelism). The algorithm 
described in this paper uses pipeline parallelism because each 
frame is entirely computed by one processor; but it’s quite par-
ticular because two processors run on the same frame at the 
same time, and the results of one processor are used by the 
next one, as shown in fig. 2. 

III. DETECTION OF SPECULAR REFLECTIONS 
A diffuse reflection occurs when the incident ray is re-

flected in a multitude of angles. In this case, the incident en-
ergy is distributed in all the directions of the reflection. It gen-
erally occurs at the contact of a granular surface. That is the 

occurs at the contact of a granular surface. That is the kind of 
reflection that permits us to see objects and their shape. A spe-
cular reflection, also called specularity, occurs when the inci-
dent light is reflected in only one direction. In this case, both 
the incident and reflected lights have the same energy, in prin-
ciple without any loss. This energy can glow, especially when 
the light source is near the surface. This kind of reflection oc-
curs when the surface is smooth. A reflection generally has 
both specular and diffuse components. 

A. Histogram decomposition and criteria for detection 
Specularities are by definition regions of an image where 

pixel intensity is very high and where the color matches the 
illumination source. Building an image histogram therefore has 
the potential to assist us in identifying these regions. Three 
separate histograms can be generated for each of the three col-
ors in the image. For endoscopic images taken inside the body, 
the dominant color is red and the light source is white. Conse-
quently, intensely white regions generally correspond to specu-
lar reflections. Analyzing the red, green and blue histograms 
for matching high intensity zones has the potential to point to 
specular regions [1]. 

It has also been shown that it is possible to use a grey-level 
image to detect specularities [4]. With a simple thresholding on 
this image we can detect specularities, because their pixel in-
tensity is independent from other regions. Specularities are 
more visible in the S (saturation) component of the HSV plan. 
Consequently, two images are important to achieve good de-
tection: the grey-level image and the saturation image. 

The methods described in [1] and [4] use one-dimension 
histograms. They divide the image into two distinct regions: 
one where most of the pixels are located and the other where 
specularities are located. Generally however, these histograms 
tend to be noisy, which complicates the distinction between the 
two regions. In other terms, to perform a good thresholding on 
these histograms they must first be de-noised. Detecting a mass 
of pixels corresponding to specular reflections can be accom-
plished by double derivation of the histogram to extract the 
beginning and end of the specular region (in intensity) [1]. 
However, this involves many computations and it requires that 
a complete histogram of an image be stored. 

It has also been suggested to use bi-dimensional histograms 
to perform detection. Specular reflection regions tend to be 
located in a static region of this histogram [5]. The bi-
dimensional histogram is built as follows [6]: 
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where m  is the intensity, s is the saturation, and r, g and b 
respectively represent the red, green and blue components of 
the image. Specularities can be identified from the bi-
dimensional histogram based on the maximum values of m 
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and s for the image [6]. They correspond to the region located 
in the lower right part of the M-S diagram. The relations pro-
posed in [6] tended to produce poor results in the context of 
endoscopic images. After careful investigation of the parame-
ters with a large quantity of endoscopic images, we found that 
the following relations reliably identify pixels that are part of 
a specular reflection. A pixel p will be a part of the specular 
region if it meets the following conditions: 
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ss
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        (3) 

where maxm  and maxs  are the maximum intensity of M 
and S for all pixels in an image, respectively. 

Histogram decomposition corresponds to task 1 of our sys-
tem (fig. 2). Once a pixel is received, 

1. its M value is computed by (1); 
2. having its M value, its S value is computed(2); and, 
3. the smax and mmax values are updated for each frame. 
From a computation point of view, the approach using the 

bi-dimensional histogram is superior to the one with the one-
dimension histogram. No de-noising or histogram post-
processing is necessary. This eliminates a further cause of 
error in the form of rounding in fixed-point calculations. In 
fact, it is not required to store the bi- dimensional histogram at 
all, only to compute and track the maximum values of its two 
components for each frame. Simple thresholding is sufficient 
to detect specular regions. 
B. Composition of the specular mask 

The composition of the specular mask is part of task 2 in 
fig. 2; it works as follows. For each pixel p, the values of ip and 
sp are computed with (1) and (2). The relations of (3) are then 
evaluated to determine whether the pixel is part of the specular 
mask or not. 

In theory, one would have to inspect all pixels from a frame 
f in order to calculate the smax and mmax values, then apply (3) to 
that frame. However, we found that the smax and mmax values 
vary little from frame to frame, and hence the values found for 
frame f allow to find the specular mask of the f+1 frame. The 
specularities tend to be more or less identical between two suc-
cessive frames. This is true when there is no sudden change of 
direction of the camera or of the light source. In the worst case 
the error is limited to a single frame with duration under 17 ms. 
The obtained mask is a black and white frame, with the white 
parts indicating the presence of specularities. 
C. Mask enlargement 

The specular mask received from the detection includes 
only the specular spikes of the frame. It doesn’t take into ac-
count the specular lobe or camera artifacts at the boundaries of 
specular regions and the diffuse regions, caused by the direc-
tion of the camera. If these components are not included in the 
specular mask, the correction will be severely compromised. 
Consequently, mask enlargement is necessary. One approach 
consists of using an intensity descent [1,5]. However, this al-

gorithm requires a significant amount of memory access and 
is computationally intensive. 

In order to accelerate computations, we propose the fol-
lowing process. The specular mask is inspected with the help 
of a sliding window [2]. We define a mask enlargement width 
of n pixels. When a specular pixel is encountered, all pixels 
within a n × n window centered on the specular pixel are in-
cluded in the mask. The number N of buffered lines in the 
sliding window is given by:  

12 += nN        (4) 
The width n of the enlargement depends on the width of the 

different artifacts we want to include into the mask. We have 
found that a value of n = 3 was adequate for most images. This 
means that there is a processing delay of 7 lines between the 
original mask and the enlarged one.  Fig. 3 gives an example of 
a mask enlargement with n = 1. The white pixel represents the 
specular pixel, the bold lines represent the sliding window, and 
the light grey pixels represent the new specular pixels after 
successive iterations. The blue pixel is the actual pixel being 
computed. 

 Figure 3.  Mask enlargement with n=1, up: input frame; down:output frame 

IV. CORRECTION OF SPECULAR REFLECTIONS 
Correcting a frame consists of removing all the speculari-

ties previously detected and replacing them with information 
obtained from their neighborhood. One of the best ways to 
perform a good correction is to use an image in-painting algo-
rithm, such as the Navier-Stokes algorithm [7]. However this 
kind of algorithm uses several loops to pass through a given 
frame. This requires large amounts of memory and computa-
tional effort. We aim to achieve a single frame memory archi-
tecture. We therefore propose the following approach, which 
operates line by line:  
• An entire line of the frame is stored. 
• For each specular region detected in this line, three data are 

stored: the value of the pixel before the specular region pb 
the value of the pixel after the specular region pe and the 
width of the specular region w.  

• For each specular region, the linear skew a is calculated: 

w
pp

a be −
=      (5) 

• The leftmost pixel in a specular region is given index zero. 
Pixel po is given the value pb + a. The corrected value of 
all other pixels is given by  

app ii +=+1      (6) 

At the end of the process there will be a delay of 1 line be-
tween the enlarged mask and the corrected frame. 

Since linear correction operates only in the horizontal di-
mension, it is necessary to add correction along the vertical 
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dimension. This is achieved by passing the corrected frame 
through a smoothing window which replaces corrected pixels 
with the average of its neighbors. This is done by using a 3×3 
sliding window with 5 passes. Each pass creates a delay of 3 
lines, for a total of 15 lines delay. 

The total delay of the system is 25 lines of 858 pixels each 
(with 720 active pixels); this delay of 0.8 ms between the non 
corrected input frame and the corrected output frame uses 64 
KB of the internal memory. The delay is acceptable for real-
time operation. 

V. RESULTS AND DISCUSSION 
The system was first developed and implemented with 

Matlab to adjust parameters and processes and to build a base-
line reference. This Matlab implementation included fixed 
point data types from the start. The system was then described 
at the register-transfer level with VHDL. Simulation and veri-
fication were performed with the help of Modelsim and an 
automated test bench. 

Two systems were in fact implemented with different de-
tection algorithms: the single [1] and bi-dimensional ap-
proaches. Table 1 presents resource usage for the implementa-
tion of each algorithm after the synthesis process. Bi-
dimensional histogram detection uses 10 times fewer re-
sources than the mono-dimensional version and it achieves 
better results. 
TABLE I.  RESOURCES USED FOR EACH HARDWARE IMPLEMENTATION 

ON A XILINX VIRTEX 2 PRO XC2VP30 FPGA 

algorithm Flip-flops 
(27,392 avail-

able) 

LUTs 
(27,392 

available) 

Brams 
(2,448 Kb 
available) 

Mono-dimensional 
histogram detection 

6,002 
(21%) 

10,531 
(38%) 

162Kb 
(6%) 

Bi-dimensional histo-
gram detection 

571 
(2%) 

1,032 
(3%) 

108Kb 
(4%) 

Correction 3,641 
(13%) 

24,044 
(88%) 

1,018Kb 
(42%) 

Detection and correc-
tion 

4,212 
(15%) 

25,076 
(91%) 

1,126Kb 
(46%) 

Fig. 4 demonstrates the detection and correction of specu-
lar reflections. Hardware implementation of mono-histogram 
decomposition gives an unstable mask because of the compu-
tations needed to extract the beginning of the specular region.  

The best results come from [7] because the correction is 
done on two dimensions, instead of one dimension. The spe-
cular regions are filled until there is no information to propa-
gate from the boundaries. In other terms, the widths of the 
boundaries tend to zero. This needs a lot of memory to store 
multiple frames of the same picture.  

The correction algorithm proposed in this paper works 
well when the specular region is entirely enclosed inside an 
object (Fig. 4). When it’s located at the boundary of two dif-
ferent objects, the information coming from one object can be 
propagated to the other one. 

After the optimization of placing and routing process, the 
system uses 91% of the available slices of a XC2VP30 FPGA. 
The maximum operating frequency is 32 MHz, which exceeds 
the minimum required of 27 MHz for real-time operation. 

VI. CONCLUSION 
This paper has presented a method and architecture to im-

plement a processor able to detect and correct specularities in 
NTSC endoscopic videos. This is done with two parallel tasks 
in a streaming processing mode. Bi-dimensional histogram 
decomposition is computed to detect the specularities. It has 
the advantage of using few memory and computation re-
sources without compromising the quality of the resulting 
image. The correction is done in two steps, a linear correction 
and a smoothing process. The system functions in real time 
and doesn’t require an external memory. 
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Figure. 4  Hardware implementation of the specular mask (middle) and the correction (right) of the left image 


