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Abstract—The goals of this research are to develop an analog 
spiking neural network so as to improve the performance of 
biventricular pacemaker (CRT devices). Implantation in silicon 
uses the analogical neural network approach that requires the 
development of a technical solution satisfying the requirement of 
very low energy consumption. Targeting an alternative analog 
solution in 0.18µm CMOS technology, this paper presents a new 
approach in analog spiking neural network for the delay 
prediction by using a Hebbian learning algorithm. 

I. INTRODUCTION  
That biventricular pacemaker also known as “Cardiac 

Resynchronization Therapy (CRT) device” is aimed at 
patients also suffering from circulatory deficiency [1]. The 
principle of this device is based on the stimulation 
synchronization of both ventricles in reference with the natural 
signal of the sinus node. The Adaptive CRT device [2, 3] aims 
at controlling the contraction of both ventricles for each 
heartbeat, in order to improve the ejection volume of each 
ventricle (the Stroke Volume: SV) during contraction. One of 
the basic characteristics of this resynchronization is therefore 
atrioventricular (AV) delay and interventricular (VV) delay, 
which represent  respectively the time separating the 
contractions of right atria and ventricle (RA – RV) and the 
delay of contractions between the right and left ventricular 
(RV – LV). The use of “hemodynamic” sensors allows 
volume measurement of blood ejected by each ventricle [4] 
and is therefore used for optimization of the AV and VV 
delays, in order to maximize the SV. However, this 
optimization rule is very variable. It changes from patient to 
patient, requiring an optimal manual adjustment for each 
patient during implant procedure. Furthermore, it may change 
for the same patient in function of the cardiac rhythm, physical 
activity, and the physiological condition of the heart. In 
addition, it may also show short-term variation [5] through 
ageing or general health of the patient. This very important 
situation variability has prescribed a solution based on the use 
of neural networks which have the advantage of the capacity 
of sequence classification , as well as a massively parallel 
hardware implementation [6] satisfying the target 
requirements of reduced dimensions and very low energy i.e. 

720nW, for the analogical element. Thus up to date the project 
uses the AI Medical Semiconductor Adaptive CRT device 
based on a Spiking Neural Network (SNN). The overall 
approach for the CRT device will be concisely examined in 
section II. In Section III we will describe the new architecture 
of the analog spiking neural network, its algorithm and 
simulations. The section IV will address a conclusion and its 
potential impact on the future research. 

II. GLOBAL DESCRIPTION OF AI MEDICAL 
SEMICONDUCTOR ADAPTIVE CRT DEVICE 

The adaptive CRT device receives at entry the signal of 
three electrodes (RA, RV and LV) of Input/Output type and 
the signal of two Input type only hemodynamic sensors, 
placed in the RV and LV. At the exit, the CRT sends a series 
of impulses towards the electrodes RV and LV for 
depolarization stimulation. These electrical impulses exciting 
RV and LV are sent in accord with the delay described above 
and determined by the internal controller. The internal 
functional unit of the CRT contains five sub-units (Fig. 1): 

• An entry interface (receiving the signal of sensors and 
electrodes); 

• A cardiac impulse generator (exciting the heart via 
electrodes); 

• A general controller (GC) functioning as master of the 
CRT; 

• Two SNNs working as slaves of the general 
controller, which we will name SNN1 and SNN2; 

• A programming interface. 

The core of the device is based on the connection of GC 
with both SNN. The choice of the master-slave principle 
between the GC and the SNN allows accepting or rejecting the 
prediction made by the SNN [2] and maintaining the 
adjustments they suggest in the brackets defined by the 
medical corpus. The clinical practitioner will program the 
initial AV and VV delays, via the programming interface, 
during the clinical test following the CRT implantation.  These 
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initial values will have to be learned by the first SNN (SNN1) 
in nonadaptive mode before the GC can toggle into adaptive 
mode. In this adaptive mode, the CRT will adjust the AV and 
VV delays by itself, in order to maximize the SV. 
Improvement of the optimization is achieved by a second 
SNN (SNN2) already in place, aimed at recognition of all 
physiological situations of the heart, but not described herein. 

 
Figure 1.  Internal bloc description of the AI Medical Semiconductor 

Adaptive CRT device 

The adaptive CRT has three modes: Nonadaptive, 
Adaptive and Reinforce. It starts always in the nonadaptive 
mode under the supervision of a clinical practitioner while the 
patient is on cardiac monitoring. In this mode, the practitioner 
will initialize AV and VV delays on the monitor. The CRT is 
thus only a simple cardiac battery (classic pacemaker) for the 
patient. The GC transmits to the heart impulses corresponding 
to the delays specified by the practitioner. We will name these 
fixed delays PAV and PVV respectively (P: Pacing). On the 
inside, the SNN1 in the background learns to predict these 
programmed delays with the best possible accuracy. When the 
GC approves the forecast of SNN1 as “good”, then it slides 
into adaptive mode. 

 The startup of adaptive mode is done with correct delays. 
In this mode, we target the optimization of the SV (volume 
ejected by each ventricle) through optimal control of the AV 
and VV delays. In the higher control level (Reinforce), the aim 
is the optimization of the Hebbian plasticity/stability dilemma. 
Whereas in this presentation, we focus on the first mode. 

III. THE DELAY PREDICTION NETWORK (SNN1) 

A. Functional description of the Network 
1) The targets assigned to SNN1 

The target is twofold. In nonadaptive mode, SNN1 should 
learn to reproduce the AV and VV delays programmed by the 
practitioner. These delays are then adjusted by using the 
Hebbian Learning algorithm. In the adaptive mode, we toggle 
to the “online learning” algorithm. The different times 
determined by the network are relative to the instant t0, 
corresponding to an impulse captured by the RA electrode. 
Each decision is made in one cardiac period.  

2) Network Structure 
The SNN1 is composed of two I&F neurons, each with 

200 dynamic synapses at entry. We shall distinguish the 
neurons N1 and N2 that respectively deliver an impulse with 
delay to t0 of T1 and T2 (also Ti with i ∈ {1, 2} ). Each neuron 
is dedicated to our ventricular timing (RV or LV), i.e. 

dedicated to PAV and PVV. In order to distinguish the synapses, 
we will name them Sij with i being the number of neurons and 
j, the row of synapse, i.e. j∈{1,200}. We will break the neuron 
up into three modules (Fig. 2). The first module is a “temporal 
synchronizer decoder” synchronized to the signal RA of the 
IEGM via the analogical entry interface. After detection of the 
depolarization impulse RA, it triggers a sequential stimulation 
of the second module’s synapses like a “shift register”. The 
time shift between the two consecutive stimulations of a 
synapse is predefined for duration of 5ms called delay. The 
second module is composed of 200 “dynamic synapses” per 
neuron. Each synapse, receiving the shifted stimulation from 
module 1, emits an impulse called Post Synapse Response 
(PSR) towards the neuron. The PSR is an impulse balanced by 
the synaptic weight. The third module comprises the ”Leaky 
Integration” part and the “Fire” part of the I&F neuron which 
respectively collects the 200 PSRs from the second module as 
an accumulator and works as a comparator with a threshold. 

 

Figure 2.  Synopsis of the three analog modules of the SNN1 

3) The analog I&F neuron architecture  
We choose a classic CRRC cell from the high energy 

particle physics experiments [7] as an analog leaky integration 
architecture of the third module for the following three 
reasons: 

• We must stack temporal excitations in order to trigger 
a neuron Ni to exceed an internal threshold; 

• The idea of accumulation of excitation is also 
associated with the concept of energy integration; 

• The CRRC presents an impulse response stretching 
over time, which allows the “addition” of excitations 
followed by stacking up of the amplitudes and the 
leak of the incoming energy. 
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Figure 3.  Schema of the CRRC 

Fig. 3 shows the schema of the CRRC that produces a 
similar response of a classic I&F neuron. The mathematical 
relationship between a Dirac excitation and the output 
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response (the impulse response) is t.e-αt.u(t) where u(t) is a 
Heaviside function. We can find (1) in Laplace transform: 

 ( ) ( )( )pCRpCR
pCR

pCi
vPH

In

Out

2211

12

0 11
1

++
⋅==  (1) 

In seeking the closest formula of Laplace transform, we 
can also infer the formal equations (2, 3) for the VHDL-AMS 
description by supposing R = R1 = R2, C = C1 = C2, which 
justify the name of CRRC. 
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4) The variation of output amplitudes of CRRC 
depending on excitations 

In Fig. 4, we can easily observe that the peaking time (Pk) 
and the delay (5ms) between two excitations are two 
important parameters to analyze this variation. The Pk points 
do not correspond to the maximal amplitude outputs of CRRC, 
usually a little bit later. Furthermore, the Pk can change both 
the amplitude output and maximum asymptotic line. We 
define a coefficient N = Delay / Pk in order to well choose 
suitable balance values. In the case of CRRC, Pk = RC=τ . 

 

Figure 4.  Variation of the output amplitudes of the CRRC by having six 
consecutive excitations 

5) Choice of the threshold 
According to the nature of the I&F neuron, if the 

amplitude output of the CRRC crosses over the threshold, Ti is 
fired as the I&F neuron output, and then all the shift registers 
will be reset to 0 and suppress all the following PSRs. Thus 
the choice of the threshold should be particular. In order to 
avoid the mistaken firing, the threshold should be set to fulfill 
the following conditions. If we are short of the last impulse of 
a consecutive series, which can trigger the neural response, the 
target firing will not occur until the appearance of another 
complete consecutive series. Moreover, by taking into account 
the noise impact, the threshold should not be chosen in a 
position too close to the nearby maximum of the amplitude 
output. For this sake, we have successfully simulated the 
maximum asymptote depending on the coefficient N. Fig. 5 

(a) which presents influence of the coefficient N on the 
maximal CRRC amplitude output of a series of consecutive 
impulses. When N = 1, the asymptote reaches its maximum 
after 5 impulses. Fig. 5 (b) shows the gap between the affect 
of (K−1)th impulse (AK−1) and the influence of the remainders 
(Arest) on the neuron output. Only in the cases of N near to 1, 
AK−1 > Arest when K−1 = 3. Therefore, we can set a threshold 
which needs absolutely 4 consecutive impulses to trigger. 

 
Figure 5.  Study on the choice of the threshold 

6) Simulation 
The simulation of the CRRC under the description of 

VHDL-AMS is presented in Fig. 6. The PSR signal here is 
supposed to be bounded to [0, 1]. With the help of the 
simulation software (MATLAB, SMASH), the optimal value 
of N is 1 and we should have at least 4 consecutive unitary 
impulses to trigger the I&F neurons. In other words, the fourth 
impulse will be the discriminant. 

 
Figure 6.  The firing of I&F neuron after four consecutive impulses 

7) The Hebbian learning algorithm 
The Hebbian learning algorithm [8], which is applied in 

the nonadaptive mode, aims to get the neural response Ti 
which matches the value Pi preset by the clinician. With the 
following equation (4), we can adjust those synaptic weights. 

 ij ij ijRω ω η= + ∗  (4) 

whereη is the learning rate. Actually, the real modification 
of the synaptic weight depends on Rij that is determined by 
this algorithm, which is an evolution of the [9]. The main 
difference is that Shift Register is reset to zero after the I&F 
neuron has been fired. The target of the adjustment with those 
synaptic weights is to generate a coherent excitation for a 
group of 3 to 5 synapses which will excite the I&F neuron and 
that will reach the internal threshold so that it emits an 
impulsion at the right moment (AV or VV delay). This 
algorithm acts as a finite state machine which proposes to use 
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two variable states: “I&F Neuron State” (NS) and “dynamic 
Synapse State” (SS) (Fig. 7). The state NS gets the value Hit 
when |Ti − Pi| < 15ms or the value Miss in the others cases. 
For each synapse, we measure the delay (TSij -Ti) between the 
excitation instant of the synapse Sij and the trigger instant of 
the neuron. The variable states of the synapse Sij are defined in 
the following four cases for ∆ =20ms (four impulses) ： 

• ( ) [ ]∆−∆−∈− ,2iij TTS ， SS = PostHebb; 

• ( ) [ ]0,∆−∈− iij TTS ,   SS = Hebb; 

• ( ) [ ]∆∈− ,0iij TTS ,     SS = PreHebb;  

• ( ) [ ]∆∆−∉− ,2iij TTS ,  SS = Out. 

 
Figure 7.  Definition of “I&F Neuron State” and “dynamic Synapse State” 

The algorithm will increase (Rij = +1) or decrease (Rij = –1) 
these synaptic weights according to a logic combination of 
these two variable states NS and SS by using (4) and the table 
I below: 

TABLE I.  Rij  SETTING WITH HEBBIAN LEARNING ALGORITHM 

States of SS 
Rij States of NS 

PostHebb Hebb PreHebb 

ii PT <  Hit  –1* +1∆* 

ii PT >  Hit +1◊* –1○*  

ii PT <  Miss  –1 +1 

ii PT >  Miss +1 –1  
* corresponds to the specified impulse of the selected state of SS in Fig. 7 

B. Analog architecture investigations through system 
simulations 
For the best optimization of the system concept, a 

development of a complete behavioral model has been written 
in VDHL-AMS integrating an electromechanical model of the 
heart developed jointly by the LTSI laboratory and the 
System-ViP society and a model of the AI Medical 
semiconductor adaptive CRT device [2, 3]. It permits us to 
investigate and test various technical and architectural analog 
solutions for an analog implementation of the neural network 
SNN1. We have developed a behavioral model of the analog 
parts of the neural network. The models we have already 
developed for other projects [10, 11] directly inspire this one. 
For modulation of the energy conveyed by the PSRs, two 
strategies were investigated: an amplitude modulation and an 
impulse density modulation. Our study will investigate the 
best choice, which will depend on the precision constraints on 
synaptic weights in relation to the focus of learning in a few 

seconds. Analysis of this constraint requires the simulation of 
the neuron within the complete system. Power consumption 
should be the second elected criteria. Finally, a compromise 
between the surface, i.e. the number of components, and 
power consumption will have to be researched. This design 
work influences also the synapse structure. A PSR amplitude 
control requires an analog multiplier while the impulse density 
control involves only nonlinear functions. The modeling of 
various solutions has offered a global simulation.  

IV. CONCLUSIONS 
The above result shows some analogical solutions for the 

analog spiking neural network to be implemented in the 
adaptive CRT devices. Future work is needed to be more 
specified. This project has required the development of a 
number of behavioral models at the system level as well as the 
various analog behavioral models. The actual design will be 
based on simulations of a comprehensive system, which will 
permit the establishment of optimal specifications. The 
presentation was focused on the method used to reach a first 
analog solution adapted with the whole system. 
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