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Very fast decision making for whole body motion
generation with humanoid robots

Olivier StasseMember, IEEE Nicolas Perrin, Pierre-Brice Wieber, Nicolas Mansard, anddrbLamiraux,

Abstract—High speed decision making to generate motion for A humanoid robot is considered in general well-suited to
humanoid robot is mandatory to deal with highly changing evolve in such kind of environments because of its volume
environments. Such contexts include human-robot interaction or and its wide range of possible configurations. The subsequen

emergency situations. We focus here on the problem of balancing. . .
At first we explain a method allowing to plan very quickly foot- disadvantages of the versatility and the compactness are th

steps. It is based on building an approximation function which COomplexity to generate motions where the robot keeps its
takes as an input a transition between two steps and output stability. Two general approaches exist to address thisl@nu

a positive value if the transition is possible. An experiment on the reactive approach and the deliberative one. In bothsgcase

human-humanoid robot interaction illustrates the approach. In  one of the major difficulties with humanoid robots is to take
second we present a solver specifically targeted towards solving. -
into account the problem of stability.

optimization problem for walking.
Index Terms—Humanoids, fast decision making
B. Balancing

I. INTRODUCTION Through the well-known RABBIT [2], [3] [4] [5] and

HE AIM of this project is to explore high speed decisiorB!P [6] projects, several researchers proposed very aedanc

making by a humanoid robot for motion generation. Hus:_tabll!ty criteria. They demonstrated how |t'was' possilde t
mans, such as firemen or sportsmen, are able to take a pertif@fkf into account the cyclic aspect of walking, impacts and
decision in the blink of an eye although such decision uguaffVen how to make a robot run. However those researches
involves a rather time consuming deliberative process. TFRFused mostly on biped robots and not on humanoid as a
so- called snap-judgments are usually obtained afteritgyn 9€neric robot. Moreover the current gvallable humanoid- pla
practice and an extended experience of similar situatioi@'ms such as HRP-2 are not well suited for the control laws
Robots interacting with humans performing collaborativeky d€signed from this work. Researchers considering humanoid
for instance, face the same kind of challenges. Indeed let@% & generic platform realize whole body motion in real-
imagine a humanoid robot manipulating a table with a humaine in two steps: first to plan reference paths considering
(such as demonstrated in 2003 by HRG [1]). If the latter orfg@bility criteria and second to generate motion ensuriiag t
loses grip of the table, the robot will have to quickly movéhe previously found paths are valid. The recent breakgisu
appropriately to avoid putting in danger its human collabor 2/lowing real world applications such as ASIMO [7], Q-RIO
and itself. Finding in a timely manner a safe sequence & and HRP-2 [9] were all based on efficient resolution
motion to avoid such situation is crucial. There are othdddgie SCheme achieved by simplifying the stability criteria ahé t
of applications, less dramatic, where such capabilitiesisvo dynamical model of the robot. The most widely used stability
be useful such as entertainment where a small-size robt cogfiterion is the Zero Momentum Point which assumes that
imitate a child, or interact with him during a game. In suck'® feet of the robot are in contact with a flat and horizontal
contexts, obviously it would not be possible to assume thfé@or. Regarding a simplification of the robot model, the most

the user is an expert able to program the robot appropriatefjgnificant contribution is the cart-model proposed by taji
[10], which constraints the CoM of the inverted pendulum on

a plane. By considering a window over the near future, it is
A. Context possible to consider either an analytical solution by agldin
Reacting in the blink of an eye for security reason @i constraint on the ZMP functional space, either a preview
during collaborative work is a very challenging task for @ontrol scheme [9]. The preview control is a linear optimal
generic robot such as a humanoid. The problem generadiyntrol based control strategy, working with a linearizeatiel
consists in generating motions based on a representationopthe inverted pendulum. Although this window on the future
the world and taking into account the limitation of the raboigs g key for planning dynamic motion, it generates only CoM
The representation of the world is usually partial and noisitajectory. In order to perform planning, a Generalized:htsd
and in a human like environment it can be quite complekinematics scheme is needed to generate the articularssalue
_ , , corresponding to the CoM trajectory. Such scheme involves
O. Stasse and N. Perrin are with the CNRS-AIST JRL (Joint Robo SVD computations which are quite time consuming. We
Laboratory), UMI3218/CRT AIST Central 2, Umezono 1-1-1, Risba 305-
8568 Japan (see http://staff.aist.go.jp/olivier.stasse propose therefore to use a machine learning based scheme to
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feasible is important. It affects the resolution efficientyere-
fore our approach is to sampjeand build an approximation
f which can be evaluated very efficiently.

B. Overview of related work

The current solution is to only allow a small set of steps for
the robot; in that case the generation and verification ghase
are useless since all trajectories can be memorized arfiederi
off-line ( [12], [13]). This approach is not always satisfyi
for it leads to a gait which has no flexibility, and combined
with planning it often results in the robot making a large
number of steps to perform a task for which only one or two
steps would have been arguably enough. par Pre-computing
robot dependent data-structure has been proposed in path
planning for multi-body robots in the past [14]-[16]. In ee
papers a road-map is computed for a multi-body robot without
obstacles. Once the robot is placed in an environment with
obstacles, the pre-computed road-map is pruned by removing
Fig. 1. Steps space. As the legs of the robot are symmetric, amdyfoot gdges in collision with the obstacles. The remaining roagm
is consider here. is then used to plan paths.

Closer to our application, in [17] a 2 dimensional map is
built which returns the time necessary to change a HRP-2
This method allows to identify the space of possible foostep-length during the flying phase of the foot in order to
steps for any pattern generator. It is detailed in section realize an emergency stop. The key-point of this work is
The constraint on dynamical stability is important becaimge to build a map which verifies that the ZMP realized by the
methods introduced in [9] and [11] tracked a ZMP referendgebot stays in the support polygon for a given step-length
trajectory but do not guarantee that it is inside the suppanodification done at a given time while walking. Indeed
polygon. To take into account this problem, and avoid twalking pattern generator such as the one proposed by Kajita
resort to a desired ZMP trajectory definaepriori we have et al. [18], or Morisawa [11] does not guarantee that the trobo
proposed to solve a constrained Quadratic Problem. HoweddiP will stay in the support polygon. The main difference
the off-the-shelf solvers available are quite time consigni between this previous work and our approach is that we
We proposed a new solver customized to our problem whichnsider more constraints, and propose an adaptive partiti
is 10 times faster than those off-the-shelf solvers. Thiseso of the input space well suited for higher dimensions. Indeed
is briefly presented in section Il our work, taking into account free steps (their work only
considers forward walking), has to aim at dealing with highe
dimensions.

Il. FOOT STEP PLANNING

A. Problem statement

Let us assume that the robot is using a spegditgenerator

g9 : X — 7y 1)

with x = [x;}x,/]T, and~ is an articular trajectory(t), vt € .
[tbegin, tenal. A feasible trajectory should not make the robog, &
self-collide, respect the articular limits and have the tFodm w7
Rotation Indicator projected into the support polygon. é&2hs
on those constraints, let us consider the following funrctio °
f:R™ — R such that

£(x) >0 !f ~ !S fea5|ble,. @ o of the feet
< 0 if v is not feasible.

) ) Fig. 2. The construction of the approximatign
Such function can be computed from by calculating the

distance to the above constraints. However the time to gémer

~ and compute the distance to the constraints can be com-

putationally expensive. In the context of probabilistiade C- Adaptive sampling

map planning, the speed taking to shoot configuration in theln order to cope with the high-dimension aspect of the
footsteps space and checking either or not this configuraio function the method build an approximation function which



IEEE RO-MAN WORKSHOP ON HUMAN-ROBOT SYNERGY, 28 SEPTEMBER 2Q0080YAMA, JAPAN 3

is the preview control scheme proposed by Kajita in [9].
The implementation used in this experiment is described in
[20]. It has the particularity to add a constraint betweea th
waist and the CoM making sure that for one configuration
of steps leads to one and only onetrajectory. V-Clip was
used to compute self-collision between the legs, while that F
Rotation Indicator is used to compute the degree of stgbilit
of the robot.

Figure 2 shows the mechanism of the decision tree which
recursively divides the input space into a disjoint uniomeat-
angular cells. It also shows the negative samples (unfieasib
3% T : steps); we can see some negative samples in what one would

picture as the feasible area: this is due to numerical uilisgab
Fig. 3. The positive samples generated and some feasible steps in the computation off, more specifically when a possible
trajectory is close by a constraint. These slow the comjautat
as it creates a new frontier. Several techniques used inimeach

is not over-complete, but based on a tree representatidmeof {¢armning for error tolerance might be helpful if we cannot
input space. Inside the leaf-boxes, an optimization pratile Make our simulation process more reliable. Figure 3 shows

solved to provide a local approximation similar to the Suppothe positive samples. They are concentrated near the dronti
Vector Regression method. between feasible and unfeasible arrival footprints, whigh

8CUS.

e

&t

0.10r, " %
m|*

« Boxes including positive and negative output values aF
called “frontier boxes” notedBr,.oniicr. EMpty boxes
also belong to the frontier. |

« Boxes including only only negative or positives valuesj
are called “regular boxes” noteéBreguiqr-

Without further assumption offi it is quite difficult to decide
when the approximation at the frontier is sufficiently well
sampled, or when the regular boxes do not contain aree
where f is of opposite sign. Therefore we assume that there
is a probability py..s: that the sampling should be perform
on By, ontier rather thanB,.g.q-. This probability can be
changed by the user to modify the behavior of the algorithml
Once the set from which to choose has been decided, the b=
with the lowest confidence is used to generate the sample. %

: 1Ny

D. Computingf \ 4 \

In this specific applicatiorf is computed by starting from ' o
the set of steps described in Fig. 1. By settthg ' = 0 the Fig. 4. Experimental results
dimension of the input space can be reduced.tdhe pattern
generator used in this specific work is the one described]in [9
It generates a trajectoryin the articular space. The distance t
the constraints is computed at each time step of the trajesto
joint limits, self-collision and deviation of the fictuousviP?

2) Application: Human-Humanoid robot interactionie
ave been able to successfully use this region for online
footprints correction in an experiment where HRP2 is guided

) X . by a human holding its hands. The footprint to be corrected
from the desired trajectoryf is finally the smallest value of corresponds to a reference position of the left or right foot

the distance to the constraints over the all trajectory. 'qomarelatively to the current position of the (resp. left or righ

difficulty for the approximation scheme is to reflect the norn- . . .
linearities introduces by having constraints both on thek tarlhand’ which the robot endlessly tries to go back to. Figure 4

. shows the results of this experiment.
space and on the articular values.

Locally the approximation scheme is using a similar rep4|. SoLvER TO GENERATE DYNAMICALLY STABLE COM
resentation to the Support Vector Regression scheme [19] TRAJECTORIES

without feature space. We recall here briefly the results presented in [21].

E. Experimental results A. Problem statement

1) Approximating feasibility of gaits for a given pattern The Model Predictive Control (MPC) scheme introduced
generator: The pattern generator considered in this experimeint [9], [22] for generating walking motions works primarily
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with the motion of the CoM of the walking robot. In order towith

obtain an LMPC scheme, it is assumed that the robot walks _ (Xk> (13)

on a constant horizontal plane, and that the motion of its CoM Yi)’

is also constrained to a horizontal plane at a distanebove

the ground, so that its position in space can be defined using Q= <Q’ O> (14)

only two variables(z, y). N0

Only trajectories of the CoM with piecewise constant jerks . N o )

i and ¥ over time intervals of constant lengffi are con- WhereQ' is a positive definite constant matrix, and

sidered. That way, focusing on the state of the system at the p 0

instantsty — i, =t b (% ) (as)
Su

(tr) y(t) : , .
ir=ate) |, 9= [uts) ], (3) WhereP, is also a constant matrix (see [25] for more details).

i(te) Gity) With the help of the relationships (8) and (9), the constgain
(11) on the position of the ZMP can also be represented as

the integration of the constant jerks over the time intexl constraints on the jerk of the CoM:

lengthT' gives rise to a simple recursive relationship:

Trpy1 = ATy + BT (ty), (4) b1 < Disa (Péu Pi) u < by (16)
Urs1 = Ak + B Y (ty), (%) . o - o .
ith tant matrised and torB Since the matrix) is positive definite and the set of linear
with a constant matrixi and vectors. constraints (16) forms a (polyhedral) convex set, therstgxi
Then, the position(z*,2¥) of the ZMP on the ground : L
) . .a unique global minimizer* [26].

corresponding to the motion of the CoM of the robot is . . L

: . : . The number of variables in the minimization problem (12)
approximated by considering only a point mass fixed at the

", : . (IS equal ton = 2N and the number of constraints (16) is of
position of the CoM instead of the whole articulated robot: the same order ~ 2N. Typical uses of this LMPC scheme

zp=(1 0 —h/g) &, (6) considerN = 75 andT = 20 ms, for computations made on
y . a time intervalNT = 1.5 s, approximately the time required
=010 —~h/g)i () to make 2 walking steps [24]. This leads to a QP which is
with h the constant height of the CoM above the ground angpically considered as small or medium sized.
g the norm of the gravity force. Another important measure to take into account about this
Using the dynamics (4) recursively, we can derive a rel@p is the numbern, of active constraintsat the minimum
tionship between the jerk of the CoM and the position of thg+, the number of inequalities in (16) which hold as equalities

ZMP over time intervals of lengttv'7™ We have observed that at steady state, this number is usually
ZF 1 = Puitp + Pou X, (8) Vvery low, m, < m/10, and even in thg case of strong
X disturbances, we can observe that it remains low, with sual
Z]g+1 = Pusyk + PuYk, (9) mg < m/2 [24].
with constant matrice®,, ¢ RV*3 and P,, € RV*Y, with
251 T, B. An optimized QP solver
2 = o Xk = : , (10) 1) Design choices:The solved developed in this work is
2riN ThpN-1 based on an active set method, using a primal formulation

d similar definit forzV 43 and the range space of the constraints matrix. Because quite
and similar definitions fotz,., , and Y. Baw constraints are active when solving the problem the

In order for a motion of the CoM to be feasible, we need”,. ; L .
. " active set method is faster than interior point method. The
to ensure that the corresponding position of the ZMP always.

stays within the convex hull of the contact points of the fafet bgn;?l) foggufr:gmstriﬁs rtcr)]\(/ai d?ad\;a?;%?bfga;c;ﬁioﬂgg\r,gmsga;
the robot on the ground [23]. This constraint can be eXpCbsslg sub-%ptimal The cc?nstraint to provide a feasible sotuti
at the instants, for a whole time interval of lengtiNT" as: P : P

when starting the algorithm can be easily tackled by soléng
by.1 < Diis < I§+1) <bE, (11) linear problem. The range space formulation of the condtrai
k41 is motivated by the fact that its complexity is directly el
with @ Dyy1 € R™<2N a matrix varying with time but to the number of active constraints which is quite small.

extremely sparse and well structured, with o@lly. non zero Moreover, as the related matrices are not ill-conditionesl t
values on 2 diagonals. resolution do not perform poorly.

The LMPC scheme involves then a quadratic cost which is2) Off-Line Change of variables The first action of a
minimized in order to generate a “stable” motion [22], [24]fange space active set method is U§U3"y to make a Cholesky
|eading to a Canonica' Quadratic Program (QP) decompOSItlor? Of the ma.t”@ = LQLQ and make an |nternal

1 change of variable

min §uTQu +piu (12) v = Liu. (17)
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That Way, the Quadratic Pr0b|em (12) Slmpllfles to a Lea.St Computation time for QL, PLDP, with Warm Start (WS), with Limited Time (LT) on HRP-2

0.016 T T T T T

PLDP WS-LT

Distance Problem (LDP) [27] o —

1 0.014

. -T 2
mvln §||U+LQ pk” ’ 0012 |
In our case, we need to solve online a sequence of QPS (12)- .. |
(16) where the matrice®’, P,, and P,, are constants. We
can therefore make this change of variable completelyioé-|
and save a lot of online computation time by directly solving ooos |
online the LDP:

0.008

putation tim

. 1 ;2 0.004 g
min 3 [[v + p| (18)
v 0.002 —
with il s e ‘
P LT 0 0 ‘ ‘ ; m 12
T _ (AT AT su
pe = (@ o) ( 0 @ p [-T (19) Time )
TR Fig. 5. Computation time required by a state of the art geneRcsQlver
. (QL), our optimized solver (PLDP), and our optimized solvethwiarm start
and constraints and limitation of the computation time, over 10 seconds of @rpanmts.
P..L;" 0
/1 2uHQ in
bk?"rl S Dk""l < 0 PZ’U«LéT v S k+1' (20) Number of activated constraints QL, PLDP, with Warm Start (WS), with Limited Time (LT)
20 T T T T T

Realizing this change of variable off-line allows saving
flopsat each iteration of our algorithm. Note that, we measure *
computational complexity in humber of floating-point opera
tions, flops. We define a flop as one multiplication/divisio
together with an addition. Hence, a dot produét of two
vectorsa, b € R™ requiresn flops.

5

Activated Constrair?g

C. Constraint activation

We have observed that not considering removing constraints *
does not affect the result we obtain from our LMPC scheme ;
in a noticeable way. From the implementation viewpoint this *°; 2 s 6 8 10 12
allow to implement very efficient updates of the Cholesk Time

decomposition of the constraint matrix By observing th ig. 6.  Number of active constraints detected by a state ofathesolver
; L), difference with the number of active constraints apprated by our

Lagrangian multipliers we can guess which constraint véll bagorithm (PLDP), between 0 and 2, and difference with thpraximation
activated for the next iteration. Our final guess for thevacti by our algorithm with warm start and limitation of the compidattime,

set when doing so is in most cases correct or includes only ofgWween -9 and 2.

and in rare cases two unnecessarily activated constrdinis.

leads to slightly sub-optimal solutions, which nevertssle . . . . . .

are feasible. Furthermore, we have observed that, this dgéénequallty constr.alnts_. Since compu.tlng the s@epaqwr'es

not affect the stability of our scheme: the difference in thggof:]od?; ?Il(t)pesc\j\?hilct:ﬁrsv“e:oga?/ﬁi; Zulrna(ljguorri(t:k?;e,'rtggtriein

generated walking motions is negligible. computation time when using QL is 7.86 ms on the CPU of our

robot, 2.81 ms when using our Primal Least Distance Problem

D. Numerical results (PLDP) solver. Detailed time measurements can be found in
Before implementing the algorithm described in this puld=ig. 5.

lication, the computation of our LMPC scheme relied on Even more interesting is the comparison with our warm

QL [?], a state of the art QP solver implementing a duaitart scheme combined with a limitation to two iterations fo

active set method with range space linear algebra. The faolving each QP. This generates short periods of sub-ofityma

that it implements a dual strategy implies that it can not b# the solutions, but with no noticeable effect on the wadkin

interrupted before reaching its last iteration since mediary motions obtained in the end: this scheme works perfectly, wel

iterates are not feasible. Furthermore, no possibilittesasm with a mean computation time of only 0.74 ms and, most of

starting are offered to the user. However, since it reliesionall, a maximum time less than 2 ms!

range space algebra, comparisons of computation time withA better understanding of how these three options relate

our algorithm without warm starting are meaningful. can be obtained from Fig. 6, which shows the number of
We naturally expect to gain?® flops at each iteration thanksconstraints activated by QL for each QP, which is the exact

to the off-line change of variable. Furthermore, QL does noumber of active constraints. This figure shows then the

implement double sided inequality constraints like thesome difference between this exact number and the approximate

have in (20), so we need to double artificially the number number found by PLDP, due to the fact that we decided




IEEE RO-MAN WORKSHOP ON HUMAN-ROBOT SYNERGY, 28 SEPTEMBER 2Q0080YAMA, JAPAN 6

to never check the sign of the Lagrange multipliers. Mogt2] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Irgu*Motion
often, the two algorithms match or PLDP activates only one
constraint in excess. The difference is therefore very smal |15
This difference naturally grows when implementing a max-
imum of two iterations for solving each QP in our war
starting scheme: when a whole group of constraints needs tr;hb‘”
activated at once, this algorithm can identify only two ofrin

each time a new QP is treated. The complete identification
the active set is delayed therefore over subsequent QRkigor

&L

reason this algorithm appears sometimes to miss idengifyif16]

as many as 9 active constraints, while still activating &tot
times one or two constraints in excess. Note that, regardies

(17]

how far we are from the real active set, the solution obtained

in the end is always feasible.

(18]

IV. CONCLUSION (19]

We have presented our current results in achieving fa3?!
decision making to generate whole-body motion generatton.
is consists in designing an approximation function which ca
evaluate the feasibility of a foot-step in 3QG. In addition
we have proposed a solver of constrained Quadratic Progrg%
specifically designed for walking which is 10 times fastearth
well-known general QP-solver.

(22]
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