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Very fast decision making for whole body motion
generation with humanoid robots
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Abstract—High speed decision making to generate motion for
humanoid robot is mandatory to deal with highly changing
environments. Such contexts include human-robot interaction or
emergency situations. We focus here on the problem of balancing.
At first we explain a method allowing to plan very quickly foot-
steps. It is based on building an approximation function which
takes as an input a transition between two steps and output
a positive value if the transition is possible. An experiment on
human-humanoid robot interaction illustrates the approach. In
second we present a solver specifically targeted towards solving
optimization problem for walking.

Index Terms—Humanoids, fast decision making

I. I NTRODUCTION

T HE AIM of this project is to explore high speed decision
making by a humanoid robot for motion generation. Hu-

mans, such as firemen or sportsmen, are able to take a pertinent
decision in the blink of an eye although such decision usually
involves a rather time consuming deliberative process. The
so- called snap-judgments are usually obtained after training,
practice and an extended experience of similar situations.
Robots interacting with humans performing collaborative work
for instance, face the same kind of challenges. Indeed let us
imagine a humanoid robot manipulating a table with a human
(such as demonstrated in 2003 by HRG [1]). If the latter one
loses grip of the table, the robot will have to quickly move
appropriately to avoid putting in danger its human collaborator
and itself. Finding in a timely manner a safe sequence of
motion to avoid such situation is crucial. There are other fields
of applications, less dramatic, where such capabilities would
be useful such as entertainment where a small-size robot could
imitate a child, or interact with him during a game. In such
contexts, obviously it would not be possible to assume that
the user is an expert able to program the robot appropriately.

A. Context

Reacting in the blink of an eye for security reason or
during collaborative work is a very challenging task for a
generic robot such as a humanoid. The problem generally
consists in generating motions based on a representation of
the world and taking into account the limitation of the robot.
The representation of the world is usually partial and noisy,
and in a human like environment it can be quite complex.
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A humanoid robot is considered in general well-suited to
evolve in such kind of environments because of its volume
and its wide range of possible configurations. The subsequent
disadvantages of the versatility and the compactness are the
complexity to generate motions where the robot keeps its
stability. Two general approaches exist to address this problem:
the reactive approach and the deliberative one. In both cases,
one of the major difficulties with humanoid robots is to take
into account the problem of stability.

B. Balancing

Through the well-known RABBIT [2], [3] [4] [5] and
BIP [6] projects, several researchers proposed very advanced
stability criteria. They demonstrated how it was possible to
take into account the cyclic aspect of walking, impacts and
even how to make a robot run. However those researches
focused mostly on biped robots and not on humanoid as a
generic robot. Moreover the current available humanoid plat-
forms such as HRP-2 are not well suited for the control laws
designed from this work. Researchers considering humanoid
as a generic platform realize whole body motion in real-
time in two steps: first to plan reference paths considering
stability criteria and second to generate motion ensuring that
the previously found paths are valid. The recent breakthroughs
allowing real world applications such as ASIMO [7], Q-RIO
[8] and HRP-2 [9] were all based on efficient resolution
scheme achieved by simplifying the stability criteria and the
dynamical model of the robot. The most widely used stability
criterion is the Zero Momentum Point which assumes that
the feet of the robot are in contact with a flat and horizontal
floor. Regarding a simplification of the robot model, the most
significant contribution is the cart-model proposed by Kajita
[10], which constraints the CoM of the inverted pendulum on
a plane. By considering a window over the near future, it is
possible to consider either an analytical solution by adding
a constraint on the ZMP functional space, either a preview
control scheme [9]. The preview control is a linear optimal
control based control strategy, working with a linearized model
of the inverted pendulum. Although this window on the future
is a key for planning dynamic motion, it generates only CoM
trajectory. In order to perform planning, a Generalized Inverted
Kinematics scheme is needed to generate the articular values
corresponding to the CoM trajectory. Such scheme involves
SVD computations which are quite time consuming. We
propose therefore to use a machine learning based scheme to
test ether or not a foot transition is possible or not considering
joint limits, self-collision and dynamical stability. It is based
on Recursive Stratified Sampling and Farthest Point Sampling.
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Fig. 1. Steps space. As the legs of the robot are symmetric, onlyone foot
is consider here.

This method allows to identify the space of possible foot-
steps for any pattern generator. It is detailed in section II.
The constraint on dynamical stability is important becausethe
methods introduced in [9] and [11] tracked a ZMP reference
trajectory but do not guarantee that it is inside the support
polygon. To take into account this problem, and avoid to
resort to a desired ZMP trajectory defineda-priori we have
proposed to solve a constrained Quadratic Problem. However
the off-the-shelf solvers available are quite time consuming.
We proposed a new solver customized to our problem which
is 10 times faster than those off-the-shelf solvers. This solver
is briefly presented in section III.

II. FOOT STEP PLANNING

A. Problem statement

Let us assume that the robot is using a specificgait generator

gg : x → γ (1)

with x = [x⊤

lfx
⊤

rf ]⊤, andγ is an articular trajectoryq(t),∀t ∈
[tbegin, tend]. A feasible trajectory should not make the robot
self-collide, respect the articular limits and have the Foot
Rotation Indicator projected into the support polygon. Based
on those constraints, let us consider the following function
f : R

n → R such that

f(x)

{

> 0 if γ is feasible,

≤ 0 if γ is not feasible.
(2)

Such function can be computed fromγ by calculating the
distance to the above constraints. However the time to generate
γ and compute the distance to the constraints can be com-
putationally expensive. In the context of probabilistic road-
map planning, the speed taking to shoot configuration in the
footsteps space and checking either or not this configuration is

feasible is important. It affects the resolution efficiency. There-
fore our approach is to samplef and build an approximation
f̂ which can be evaluated very efficiently.

B. Overview of related work

The current solution is to only allow a small set of steps for
the robot: in that case the generation and verification phases
are useless since all trajectories can be memorized and verified
off-line ( [12], [13]). This approach is not always satisfying
for it leads to a gait which has no flexibility, and combined
with planning it often results in the robot making a large
number of steps to perform a task for which only one or two
steps would have been arguably enough. par Pre-computing
robot dependent data-structure has been proposed in path
planning for multi-body robots in the past [14]–[16]. In these
papers a road-map is computed for a multi-body robot without
obstacles. Once the robot is placed in an environment with
obstacles, the pre-computed road-map is pruned by removing
edges in collision with the obstacles. The remaining road-map
is then used to plan paths.

Closer to our application, in [17] a 2 dimensional map is
built which returns the time necessary to change a HRP-2
step-length during the flying phase of the foot in order to
realize an emergency stop. The key-point of this work is
to build a map which verifies that the ZMP realized by the
robot stays in the support polygon for a given step-length
modification done at a given time while walking. Indeed
walking pattern generator such as the one proposed by Kajita
et al. [18], or Morisawa [11] does not guarantee that the robot
ZMP will stay in the support polygon. The main difference
between this previous work and our approach is that we
consider more constraints, and propose an adaptive partition
of the input space well suited for higher dimensions. Indeed
our work, taking into account free steps (their work only
considers forward walking), has to aim at dealing with higher
dimensions.
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Fig. 2. The construction of the approximation̂f

C. Adaptive sampling

In order to cope with the high-dimension aspect of the
function the method build an approximation function which
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Fig. 3. The positive samples generated and some feasible steps

is not over-complete, but based on a tree representation of the
input space. Inside the leaf-boxes, an optimization problem is
solved to provide a local approximation similar to the Support
Vector Regression method.

The leaf-boxes are separated in two categories:

• Boxes including positive and negative output values are
called “frontier boxes” notedBFrontier. Empty boxes
also belong to the frontier.

• Boxes including only only negative or positives values
are called “regular boxes” notedBRegular.

Without further assumption onf it is quite difficult to decide
when the approximation at the frontier is sufficiently well
sampled, or when the regular boxes do not contain areas
wheref is of opposite sign. Therefore we assume that there
is a probabilityρboost that the sampling should be perform
on Bfrontier rather thanBregular. This probability can be
changed by the user to modify the behavior of the algorithm.
Once the set from which to choose has been decided, the box
with the lowest confidence is used to generate the sample.

D. Computingf

In this specific applicationf is computed by starting from
the set of steps described in Fig. 1. By settingθ = θ′ = 0 the
dimension of the input space can be reduced to4. The pattern
generator used in this specific work is the one described in [9].
It generates a trajectoryγ in the articular space. The distance to
the constraints is computed at each time step of the trajectories:
joint limits, self-collision and deviation of the fictuous ZMP
from the desired trajectory.f is finally the smallest value of
the distance to the constraints over the all trajectory. A major
difficulty for the approximation scheme is to reflect the non-
linearities introduces by having constraints both on the task
space and on the articular values.

Locally the approximation scheme is using a similar rep-
resentation to the Support Vector Regression scheme [19]
without feature space.

E. Experimental results

1) Approximating feasibility of gaits for a given pattern
generator:The pattern generator considered in this experiment

is the preview control scheme proposed by Kajita in [9].
The implementation used in this experiment is described in
[20]. It has the particularity to add a constraint between the
waist and the CoM making sure that for one configuration
of steps leads to one and only oneγ trajectory. V-Clip was
used to compute self-collision between the legs, while the Foot
Rotation Indicator is used to compute the degree of stability
of the robot.

Figure 2 shows the mechanism of the decision tree which
recursively divides the input space into a disjoint union ofrect-
angular cells. It also shows the negative samples (unfeasible
steps); we can see some negative samples in what one would
picture as the feasible area: this is due to numerical unstability
in the computation off , more specifically when a possible
trajectory is close by a constraint. These slow the computation
as it creates a new frontier. Several techniques used in machine
learning for error tolerance might be helpful if we cannot
make our simulation process more reliable. Figure 3 shows
the positive samples. They are concentrated near the frontier
between feasible and unfeasible arrival footprints, whichis
indeed the region on which the approximation scheme should
focus.

Fig. 4. Experimental results

2) Application: Human-Humanoid robot interaction:We
have been able to successfully use this region for online
footprints correction in an experiment where HRP2 is guided
by a human holding its hands. The footprint to be corrected
corresponds to a reference position of the left or right foot
relatively to the current position of the (resp. left or right)
hand, which the robot endlessly tries to go back to. Figure 4
shows the results of this experiment.

III. SOLVER TO GENERATE DYNAMICALLY STABLE COM
TRAJECTORIES

We recall here briefly the results presented in [21].

A. Problem statement

The Model Predictive Control (MPC) scheme introduced
in [9], [22] for generating walking motions works primarily
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with the motion of the CoM of the walking robot. In order to
obtain an LMPC scheme, it is assumed that the robot walks
on a constant horizontal plane, and that the motion of its CoM
is also constrained to a horizontal plane at a distanceh above
the ground, so that its position in space can be defined using
only two variables(x, y).

Only trajectories of the CoM with piecewise constant jerks
...
x and

...
y over time intervals of constant lengthT are con-

sidered. That way, focusing on the state of the system at the
instantstk = kT ,

x̂k =





x(tk)
ẋ(tk)
ẍ(tk)



 , ŷk =





y(tk)
ẏ(tk)
ÿ(tk)



 , (3)

the integration of the constant jerks over the time intervals of
lengthT gives rise to a simple recursive relationship:

x̂k+1 = A x̂k + B
...
x(tk), (4)

ŷk+1 = A ŷk + B
...
y (tk), (5)

with a constant matrixA and vectorB.
Then, the position(zx, zy) of the ZMP on the ground

corresponding to the motion of the CoM of the robot is
approximated by considering only a point mass fixed at the
position of the CoM instead of the whole articulated robot:

zx
k =

(

1 0 −h/g
)

x̂k, (6)

zy
k =

(

1 0 −h/g
)

ŷk, (7)

with h the constant height of the CoM above the ground and
g the norm of the gravity force.

Using the dynamics (4) recursively, we can derive a rela-
tionship between the jerk of the CoM and the position of the
ZMP over time intervals of lengthNT :

Zx
k+1 = Pzs x̂k + Pzu

...
Xk, (8)

Zy
k+1

= Pzs ŷk + Pzu

...
Y k, (9)

with constant matricesPzs ∈ R
N×3 andPzu ∈ R

N×N , with

Zx
k+1 =







zx
k+1

...
zx
k+N






,

...
Xk =







...
xk

...
...
xk+N−1






, (10)

and similar definitions forZy
k+1

and
...
Y k.

In order for a motion of the CoM to be feasible, we need
to ensure that the corresponding position of the ZMP always
stays within the convex hull of the contact points of the feetof
the robot on the ground [23]. This constraint can be expressed
at the instantstk for a whole time interval of lengthNT as:

bl
k+1 ≤ Dk+1

(

Zx
k+1

Zy
k+1

)

≤ bu
k+1, (11)

with a Dk+1 ∈ R
m×2N a matrix varying with time but

extremely sparse and well structured, with only2m non zero
values on 2 diagonals.

The LMPC scheme involves then a quadratic cost which is
minimized in order to generate a “stable” motion [22], [24],
leading to a canonical Quadratic Program (QP)

min
u

1

2
uT Qu + pT

k u (12)

with

u =

( ...
Xk...
Y k

)

, (13)

Q =

(

Q′ 0
0 Q′

)

(14)

whereQ′ is a positive definite constant matrix, and

pT
k =

(

x̂T
k ŷT

k

)

(

Psu 0
0 Psu

)

(15)

wherePsu is also a constant matrix (see [25] for more details).
With the help of the relationships (8) and (9), the constraints

(11) on the position of the ZMP can also be represented as
constraints on the jerku of the CoM:

b′lk+1 ≤ Dk+1

(

Pzu 0
0 Pzu

)

u ≤ b′uk+1. (16)

Since the matrixQ is positive definite and the set of linear
constraints (16) forms a (polyhedral) convex set, there exists
a unique global minimizeru∗ [26].

The number of variables in the minimization problem (12)
is equal ton = 2N and the number of constraints (16) is of
the same order,m ≈ 2N . Typical uses of this LMPC scheme
considerN = 75 andT = 20ms, for computations made on
a time intervalNT = 1.5 s, approximately the time required
to make 2 walking steps [24]. This leads to a QP which is
typically considered as small or medium sized.

Another important measure to take into account about this
QP is the numberma of active constraintsat the minimum
u∗, the number of inequalities in (16) which hold as equalities.
We have observed that at steady state, this number is usually
very low, ma ≤ m/10, and even in the case of strong
disturbances, we can observe that it remains low, with usually
ma ≤ m/2 [24].

B. An optimized QP solver

1) Design choices:The solved developed in this work is
based on an active set method, using a primal formulation
and the range space of the constraints matrix. Because quite
few constraints are active when solving the problem the
active set method is faster than interior point method. The
primal formulation has the advantage that the algorithm can
be stopped and still provide a feasible solution even so it
is sub-optimal. The constraint to provide a feasible solution
when starting the algorithm can be easily tackled by solvinga
linear problem. The range space formulation of the constraint
is motivated by the fact that its complexity is directly related
to the number of active constraints which is quite small.
Moreover, as the related matrices are not ill-conditioned the
resolution do not perform poorly.

2) Off-Line Change of variables :The first action of a
range space active set method is usually to make a Cholesky
decomposition of the matrixQ = LQLT

Q and make an internal
change of variable

v = LT
Qu. (17)
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That way, the Quadratic Problem (12) simplifies to a Least
Distance Problem (LDP) [27]

min
v

1

2
‖v + L−T

Q pk‖
2.

In our case, we need to solve online a sequence of QPs (12)-
(16) where the matricesQ′, Pzu and Psu are constants. We
can therefore make this change of variable completely off-line
and save a lot of online computation time by directly solving
online the LDP:

min
v

1

2
‖v + p′k‖

2 (18)

with

p′Tk =
(

x̂T
k ŷT

k

)

(

PsuL−T
Q 0

0 PsuL−T
Q

)

(19)

and constraints

b′lk+1 ≤ Dk+1

(

PzuL−T
Q 0

0 PzuL−T
Q

)

v ≤ b′uk+1. (20)

Realizing this change of variable off-line allows savingn2

flopsat each iteration of our algorithm. Note that, we measure
computational complexity in number of floating-point opera-
tions, flops. We define a flop as one multiplication/division
together with an addition. Hence, a dot productaT b of two
vectorsa, b ∈ R

n requiresn flops.

C. Constraint activation

We have observed that not considering removing constraints
does not affect the result we obtain from our LMPC scheme
in a noticeable way. From the implementation viewpoint this
allow to implement very efficient updates of the Cholesky
decomposition of the constraint matrix. By observing the
Lagrangian multipliers we can guess which constraint will be
activated for the next iteration. Our final guess for the active
set when doing so is in most cases correct or includes only one,
and in rare cases two unnecessarily activated constraints.This
leads to slightly sub-optimal solutions, which nevertheless
are feasible. Furthermore, we have observed that, this does
not affect the stability of our scheme: the difference in the
generated walking motions is negligible.

D. Numerical results

Before implementing the algorithm described in this pub-
lication, the computation of our LMPC scheme relied on
QL [?], a state of the art QP solver implementing a dual
active set method with range space linear algebra. The fact
that it implements a dual strategy implies that it can not be
interrupted before reaching its last iteration since intermediary
iterates are not feasible. Furthermore, no possibilities of warm
starting are offered to the user. However, since it relies ona
range space algebra, comparisons of computation time with
our algorithm without warm starting are meaningful.

We naturally expect to gainn2 flops at each iteration thanks
to the off-line change of variable. Furthermore, QL does not
implement double sided inequality constraints like the ones we
have in (20), so we need to double artificially the numberm
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of inequality constraints. Since computing the stepα requires
nm flops at each iteration andm ≈ n in our case, that’s a
secondn2 flops which we save with our algorithm. The mean
computation time when using QL is 7.86 ms on the CPU of our
robot, 2.81 ms when using our Primal Least Distance Problem
(PLDP) solver. Detailed time measurements can be found in
Fig. 5.

Even more interesting is the comparison with our warm
start scheme combined with a limitation to two iterations for
solving each QP. This generates short periods of sub-optimality
of the solutions, but with no noticeable effect on the walking
motions obtained in the end: this scheme works perfectly well,
with a mean computation time of only 0.74 ms and, most of
all, a maximum time less than 2 ms!

A better understanding of how these three options relate
can be obtained from Fig. 6, which shows the number of
constraints activated by QL for each QP, which is the exact
number of active constraints. This figure shows then the
difference between this exact number and the approximate
number found by PLDP, due to the fact that we decided
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to never check the sign of the Lagrange multipliers. Most
often, the two algorithms match or PLDP activates only one
constraint in excess. The difference is therefore very small.

This difference naturally grows when implementing a max-
imum of two iterations for solving each QP in our warm
starting scheme: when a whole group of constraints needs to be
activated at once, this algorithm can identify only two of them
each time a new QP is treated. The complete identification of
the active set is delayed therefore over subsequent QPs: forthis
reason this algorithm appears sometimes to miss identifying
as many as 9 active constraints, while still activating at other
times one or two constraints in excess. Note that, regardless of
how far we are from the real active set, the solution obtained
in the end is always feasible.

IV. CONCLUSION

We have presented our current results in achieving fast
decision making to generate whole-body motion generation.It
is consists in designing an approximation function which can
evaluate the feasibility of a foot-step in 300µs. In addition
we have proposed a solver of constrained Quadratic Program
specifically designed for walking which is 10 times faster than
well-known general QP-solver.
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