
IEEE TRANSACTIONS ON ROBOTICS 1

Fast humanoid robot collision-free footstep planning
using swept volume approximations

Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux and Eiichi Yoshida

Abstract—In this paper, we propose a novel and coherent
framework for fast footstep planning for legged robots on a
flat ground with 3D obstacle avoidance. We use swept volume
approximations computed offline in order to considerably reduce
the time spent in collision checking during the online planning
phase, in which an RRT variant is used to find collision-free
sequences of half-steps (produced by a specific walking pattern
generator). Then, an original homotopy is used to smooth the
sequences into natural motions avoiding gently the obstacles. The
results are experimentally validated on the robot HRP-2.

Index Terms—footstep generation, motion planning, humanoid
robots, obstacle avoidance.

I. INTRODUCTION

ARGUABLY, the one thing that most differentiate hu-
manoid robots from their wheeled counterparts is their

intrinsic ability to step over obstacles on the ground. For
this reason a lot of work has been done on the problem of
humanoid robot walk planning, with the aim of exploiting at
best this unique capability. Since humanoid robots combine
high dimensionality with underactuation, two properties that
tend to drastically increase the complexity of motion planning,
this problem is not easy to solve. Nevertheless, and although
there is no completely satisfying solution so far, a lot of
promising techniques and tools have been introduced over the
past decade.

Probably the most successful approaches are based on the
use of the A* algorithm with a finite transition model, i.e. a
relatively small set of possible steps (see for example [23], [4],
[6], [7]). For each step a corresponding configuration space
trajectory is known, and it is possible to check quite quickly
whether a given step will avoid the obstacles or not. Since
those steps need to be connectable at will, however, it often
requires the initial and final speed of the robot bodies to be
zero for all the steps of the transition model. At least some
parts of the gaits produced are thus static. This is for example
the case in [23], and [1]. Chestnutt et al. avoid it in [7] by using
a search space which consists in sequences of two consecutive
steps. But since this search space has a higher dimensionality,
in order to be expressive, transition models need to be much
larger than when only isolated steps are considered. Yet,

N. Perrin is with CNRS/LAAS, Université de Toulouse UPS, INSA, INP,
ISAE 7 avenue du colonel Roche, F-31077 Toulouse, France, and CNRS-
AIST Joint Robotics Laboratory, UMI3218/CRT, Tsukuba, Japan (e-mail:
nperrin@laas.fr).

E. Yoshida is with CNRS-AIST Joint Robotics Laboratory,
UMI3218/CRT, Tsukuba, Japan (e-mail: e.yoshida@aist.go.jp).

L. Baudouin, O. Stasse and F. Lamiraux are with CNRS/LAAS, Uni-
versité de Toulouse UPS, INSA, INP, ISAE 7 avenue du colonel Roche,
F-31077 Toulouse, France (e-mail: leo.baudouin@ifma.fr, ostasse@laas.fr,
florent@laas.fr).

the use of the A* algorithm strongly constrains the size of
the transition model. Even when the transitions are isolated
steps, the stepping capabilities are often limited because the
complexity of the A* search quickly increases with the size
of the transition model. Recently though, some interesting
refinements have been considered in order to enhance the
stepping capabilities while keeping a small transition model.
In [9] for example, the steps of a set of reference actions (i.e.
the transition model) can be slightly adjusted to avoid bad
terrain locations.

In this paper, we replace the A* search by a sampling-
based algorithm in order to directly deal with a large transition
model, and add several other improvements to the standard
{A* + finite transition model} approach. Here are our main
contributions:

• Thanks to a walking pattern generator specifically de-
signed, we obtain a low-dimensional search space which
can be densely covered by relatively few points. With an
automatically generated finite transition model of about
300 points in this search space, we are able to obtain
very expressive stepping capabilities. To deal with such a
large transition model, we use, instead of the classical A*
search, a specific Rapidly-exploring Random Tree (RRT)
algorithm.

• Each point in the transition model corresponds to a con-
figuration space trajectory of the robot. Through extensive
offline computations, for each of them we approximate
the volume swept in the workspace by a part of the robot
lower body (from the knees down) during the execution
of the trajectory, and store it in an efficient data structure.
It helps to drastically reduce the time consumed by the
online planning phase when checking for collisions with
the environment.

• Finally, with a simple homotopy, we quickly smooth
and accelerate the trajectories obtained after the planning
phase, and as a result the final motions produced are
fully dynamic, a feature that often lacks with current
approaches. On top of that, there is no incoherence
between the planning phase and the smoothing phase,
so we have the guarantee that if the planner returns
a collision-free solution, then the robot will execute a
sequence which will also be collision-free (this guarantee
is up to some details –discrepancies between simulation
and real world, errors of approximation, errors due to
discretization, etc.–).

a) Pattern generation and smoothing homotopy:
One of the key elements of our framework is the combina-
tion between a specific walking pattern generator based on

IEEE TRANSACTIONS ON ROBOTICS 2

“half-steps” and a simple homotopy that can quickly smooth
sequences of (half-)steps. We present both in section II (we
introduced them in [32]). Before the use of the homotopy, the
generated sequences are called “raw”, and simply correspond
to concatenations of isolated half-steps. Isolated half-steps are
obtained by fixing the position of the swing foot when it
is at its maximum height: this puts us in the conditions of
[23] where two “via point configurations” Qright and Qleft
(corresponding to balanced postures) are fixed and divide steps
into two parts: an upward half-step, and a downward half-step.
In [23] this restriction was used in order to reduce the number
of trajectories to consider; we use it in order to reduce the
dimensionality of the input space. The simple homotopy that
we use to smooth sequences of half-steps is, to our knowledge,
new in the field of humanoid robotics (but it is based on the
same principle as the techniques introduced in [28] and [29]).

b) Finite transition model and swept volume approxima-
tions:
Our pattern generator benefits from an input space of dimen-
sion only 3, and therefore we can cover it with a dense grid
of only relatively few points. Each point corresponds to a
sequence of two half-steps. For each point of the grid we first
simulate the sequence of half-steps and check that it is feasible,
i.e. that it contains no self-collision and does not violate
the joints limits. The points which correspond to feasible
trajectories will be the elements of our transition model. In
section III we explain the construction of this transition model
and show how, for each of its elements, we approximate the
volume swept by the robot lower body during the execution of
the corresponding trajectory. By speeding up collision checks
these approximations will enable us to save a considerable
computation time online.

At first it might seem strange to combine precomputed
swept volumes and a smoothing homotopy that modifies
trajectories, but in fact in the whole process the homotopy is
only applied to one feasible trajectory returned by the planning
process during which the swept volume approximations are
extensively used. When the homotopy is applied we do not
use precomputed swept volumes for the collision checks.

Several efficient swept volume approximation algorithms
exist, such as for example the ones introduced in [22] and
in [17]. Using such advanced specific algorithms will be part
of our future work, but in this paper we validate our framework
with a simpler approach. Since the highest priority is the
evaluation time (because approximations are used multiple
times at each iteration of the RRT algorithm), we use a
generic approximation algorithm which stores the results in
compact tree structures that, in our case, can be used to very
quickly check for collisions with obstacles of the environment.
This algorithm is a slight variant of the one introduced in
[31]; the variant is presented in details in [30]. The use of
swept volumes is widespread in robotics, especially for path
planning (see [34], [15]), but relatively absent in the field
of humanoid robotics, where, for the sake of computational
efficiency, simpler bounding volumes are often preferred ([39],
[10]).

c) An RRT variant for footstep planning:
The last part of our framework is the planning phase. Since

we have a large transition model, the traditional A* search
would perform poorly. Alternatives to A* have already been
proposed. For example in [13], Harada uses a PRM (Proba-
bilistic Roadmap Method, see [21]) approach to plan footsteps:
a tree of “milestone configurations” is grown from an initial
configuration to a goal configuration. At first collisions are
checked only at milestone configurations, and only once a
candidate path has been found is the full trajectory verified.
An issue of this approach is that even though the milestones
are collision-free, collisions might occur in the candidate path.
Thus the process might have to be restarted several times,
leading to lengthy computations.

The idea of using an RRT algorithm [26] for footstep plan-
ning was introduced in [38], where a single-node-extending
and a multi-node-extending RRT methods are proposed. In
section IV we follow the single-node-extending method and
present a new variant of the RRT algorithm for footstep
planning, where we deal separately with the sets of left and
right footsteps. When a new transition (i.e. a new footstep) is
considered by the RRT algorithm, we test the corresponding
approximated swept volume against all the points of the ob-
jects that are close enough (we suppose that the environment is
known and that obstacles are represented by point clouds: each
object is contained in a bounding box, and a finite set of points
is covering the object exterior surface). If one of the points
lies inside the swept volume, the transition is discarded. Using
point clouds for collision detection is certainly not the safest
nor the most efficient approach, but we believe that it illustrates
well the performance of our framework: indeed, it is important
to show that we are able to rapidly plan motions even if during
each iteration of the RRT algorithm the number of collision
queries is high, because in real applications unknown obstacles
are often acquired as untreated sets of voxels, or large triangle
soups or meshes. Preliminary experiments are presented in
section V, where the robot HRP-2 quickly solves complicated
footstep planning problems in environments cluttered with 3D
obstacles.

In section VI, we improve our implementation by using
meshes to represent the swept volume approximations and the
PQP algorithm [24] for collision checks. This yields a further
speed-up that enables us to perform some experiments of real-
time replanning.

Section VII contains a brief discussion on an extension
of our framework to a continuous transition model, and
section VIII is the conclusion.

II. A WALKING PATTERN GENERATOR BASED ON
HALF-STEPS AND A SMOOTHING HOMOTOPY

We use a classical simplified model of the robot dynamics:
the Linear Inverted Pendulum Model (see [19]). In this model
the mass of the robot is assumed to be concentrated in its
CoM (center of mass) which is supposed to be rigidly linked
to and above the robot waist at all time. Besides, the robot is
supposed to have only point contacts with the walking surface.
The contact points are coplanar on a horizontal plane. Thus
it behaves like an inverted pendulum, and an analysis of the
subsequent equations leads to a further approximation which

IEEE TRANSACTIONS ON ROBOTICS 3

enables the decoupling of the dynamic differential equations
for the x-axis and y-axis. They can be written as follows:

px = Z(x) (1)

py = Z(y) (2)

with Z , Id− zc
g

d

dt2
(3)

(x, y) are the (x-axis,y-axis) coordinates of the CoM of the
robot, and zc the height of the robot center of mass which is
supposed constant during the step. Let us notice that Z is a
linear operator acting on functions of time. (px, py) are the
(x-axis,y-axis) coordinates of the virtual Zero Moment Point
(ZMP). A classical balance criterion for biped walking is that
the ZMP should stay at all time inside the polygon of support
(see [37]).

In the article [14], Harada et al. show how analytical
trajectories for both the CoM and the ZMP can be derived
from these equations. The ZMP trajectory is a polynomial of
the time variable t, and the CoM trajectory

(
x(t)
y(t)

)
has the

general following form:

cosh(

√
g

zc
·t)
(
Vx
Vy

)
+sinh(

√
g

zc
·t)
(
Wx

Wy

)
+

(
rx(t)

ry(t)

)
(4)

where rx(t) and ry(t) are polynomials entirely determined by
px(t) and py(t), respectively.

From this equation we see that for a given ZMP profile,
there are just enough free parameters (Vx, Vy,Wx,Wy) to set
the initial horizontal position and speed of the CoM:(

x(0)

y(0)

)
=

(
Vx + rx(0)

Vy + ry(0)

)
(5)

(
ẋ(0)

ẏ(0)

)
=

√

g
zc
·Wx + ṙx(0)√

g
zc
·Wy + ṙy(0)

 (6)

Using these equations, next we show how to produce the
C-space (configuration space) trajectory corresponding to an
isolated half-step. We just need to obtain a unique C-space
trajectory from a small number of half-step parameters (as we
will see, in our case it will be 3 parameters). If each of the
robot legs has 6 degrees of freedom or more (the redundancy
can be treated using generalized inverse kinematics, see [27]),
this problem can be reduced to the generation of trajectories
for the waist and the feet. Besides the compulsory constant
waist height, we also made a few arbitrary and convenient
restrictions (which reduce the number of parameters): the pitch
and roll parameters of the waist orientation will stay at zero,
and similarly the swing foot will always stay parallel to the
walking surface. Thus, the lower body trajectory is entirely
defined by 7 functions of the time:
• the waist horizontal position: x(t), y(t) (we recall that

the waist and CoM are rigidly fixed)
• the waist orientation: θ(t)
• the swing foot position: SFx(t), SFy(t), SFz(t)
• the swing foot orientation SFθ(t)

A. Producing isolated half-steps

In this section we only consider upward half-steps, but the
method for the generation of downward half-steps trajectories
is similar.

So, let us consider an upward half-step. In order to reduce
the dimensionality of the parameter space, we make several
assumptions. First, we fix and denote by T the duration of any
half-step. Then, we assume that the initial and final speed of
the ZMP and swing foot are 0, but we do not assume that the
CoM initial and final speed are zero.

ṗx(0) = ṗy(0) = ṗx(T) = ṗy(T) = 0 (7)

θ̇(0) = θ̇(T) = 0 (8)

˙SFx(0) = ˙SFy(0) = ˙SFz(0) = ˙SFθ(0) = 0 (9)

˙SFx(T) = ˙SFy(T) = ˙SFz(T) = ˙SFθ(T) = 0 (10)

Second, the initial vertical projection on the ground of the
CoM is equal to the ZMP initial position, i.e. at the barycenter
of the feet centers. Taking the center of the support foot as
the origin of the Euclidean space, it gives us:

x(0) = px(0) =
SFx(0)

2
(11)

y(0) = py(0) =
SFy(0)

2
(12)

We also assume that the final horizontal position of the CoM
and ZMP coincide at the center of the support foot, and
that the final swing foot orientation and the initial and final
orientation of the waist are equal to the support foot orientation
(at this stage the orientation of the waist changes only during
downward half-steps). Besides, the line passing through the
centers of the final positions of the feet is orthogonal to this
orientation:

x(T) = px(T) = 0 (13)

y(T) = py(T) = 0 (14)

θ(0) = θ(T) = SFθ(T) = 0 (15)

SFx(T) = 0 (16)

As a consequence of these equations, the final and initial
configurations are entirely determined by 5 parameters (as
shown on Fig. 1):

SFx(0), SFy(0), SFθ(0), SFy(T) and SFz(T).

Besides, concerning the derivatives at the boundaries, the only
free parameters are ẋ(0), ẋ(T), ẏ(0), and ẏ(T). This adds up
to a total of 9 free parameters.

Now, we show how the ZMP trajectory is defined. An
upward half-step is divided into 3 phases: during the first
one, of duration t1, the ZMP stays at the barycenter of the
feet (and the feet keep their positions as well), so we have
px(t) = SFx(0)

2 , py(t) =
SFy(0)

2 , and thus ṗx(t) = ṗy(t) = 0.
Then there is the “shift” phase, during which the ZMP quickly
shifts from its initial position to its final position, reached
at time t2. Then, from t2 to T , the ZMP stays at its final
position, so we have px(t) = py(t) = ṗx(t) = ṗy(t) = 0.
During the “shift” phase we set px and py as third-degree

IEEE TRANSACTIONS ON ROBOTICS 4

y

x

(SFx(0), SFy(0), 0)

(0, 0, 0) (0, SFy(T), SFz(T))

SFθ(0)

z

Fig. 1. Here we show an upward half-step from above. It is fully determined
by the 5 parameters SFx(0), SFy(0), SFθ(0), SFy(T) and SFz(T). A
downward half-step is also fully determined by 5 parameters.

polynomials determined by the respective boundary conditions
px(t1) = SFx(0)

2 , px(t2) = ṗx(t1) = ṗx(t2) = 0, and
py(t1) =

SFy(0)
2 , py(t2) = ṗy(t1) = ṗy(t2) = 0. For the

downward half-step, even if the phase of double support and
single support are inverted, we keep the same durations: the
ZMP shift occurs between time t1 and t2. In practice, we set
t1 = T − t2.

Thanks to eq. (4), if we fix SFx(0), SFy(0), ẋ(0), and ẏ(0),
we can get an analytical expression of the unique C2 solution
for x(t) and y(t) over [0, T]. The solution is unique because
during the first phase, Vx, Vy , Wx and Wy are fixed by the
following equations (obtained from eq. (5) and eq. (6)):

Vx =
SFx(0)

2
− rx(0) (17)

Vy =
SFy(0)

2
− ry(0) (18)

Wx =

√
zc
g

(ẋ(0)− ṙx(0)) (19)

Wy =

√
zc
g

(ẏ(0)− ṙy(0)) (20)

Moreover, the unique solution during the first phase leads to
unique values for x(t1), y(t1), ẋ(t1), and ẏ(t1). This fixes
the free parameters of the unique C2 extension of the solution
on [t1, t2], and subsequently the free parameters of the unique
C2 extension over [t2, T]. Nevertheless, those two unique C2

solutions might violate the constraints x(T) = 0 and y(T) = 0
(eq. (13) and eq. (14)). Analyzing the impact of ẋ(0) and
ẏ(0) in the anayltical solutions, we can see that they have a
monotonic influence over respectively x(T) and y(T), and that
to one value of x(T) (resp. y(T)) corresponds a unique value
ẋ(0) (resp. ẋ(0)). We implemented a dichotomic search for
those values, and with simple methods avoided problems of
numerical unstability (using the fact that with only one ZMP
shift and the boundary conditions CoM(0) = ZMP (0) and
CoM(T) = ZMP (T), the solution CoM trajectories x and y
are necessarily monotone).

−0.1

−0.02

 0

 0.02

 0.04

 0 0.2 0.4 1 1.2

−0.08

(m)

SFy(0)

2

t2t1 (s)

the ZMP shift

T

Fig. 2. We consider the upward half-step of Fig. 1, and show the
corresponding ZMP trajectory along the y-axis: py(t) (solid line). To this
trajectory corresponds an infinity of C2 solutions for y(t) which all verify
y(0) = py(0) =

SFy(0)

2
, each of them being fully defined by ẏ(0). We

show several such C2 solutions (dotted lines); the thick dotted line is the
solution retained: it is the unique one verifying y(T) = 0.

Fig. 2 considers the half-step of Fig. 1, and it shows the
trajectory of the ZMP along the y-axis as well as several
C2 solutions for y(t), for different values of ẏ(0). Only one
solution is retained, the one with y(T) = 0. If the durations
t1 and T − t2 are long enough, the values obtained for
ẋ(0), ẋ(T), ẏ(0) and ẏ(T) can be neglected, and thus the
CoM trajectories obtained are supposed to be C2 continuous
over (−∞,∞). Performing tests on a real humanoid robot
empirically validated this asumption: time discretization of the
control law itself makes the neglected velocity unnoticeable.
For the trajectories other than x(t) and y(t) (θ(t), SFx(t),
SFy(t), SFz(t), SFθ(t)), we simply use polynomials of
degree 3 that ensure C2 smoothness and satisfying profiles,
with a few specific constraints (e.g. in our implementation
the swing foot always leaves the ground and lands vertically).
So, we can completely define a half-step with 5 parameters
(whether it is an upward half-step or a downward half-step).
In our application, we decided to fix the maximum height of
the swing foot (SFz(T)), and the horizontal distance between
the feet when the maximum height is reached (which fixes
SFy(T)). This puts us in the conditions of [23] where two “via
point configurations” Qright and Qleft are fixed. With these
constraints only 3 parameters are needed to completely define
a half-step. Once these parameters are set, we are capable of
generating unique analytical solutions for the 7 functions of
time that are required to produce the lower body trajectory in
the C-space.

B. Smoothing a sequence of half-steps

Using the results of the previous section, we can generate
C-space trajectories for isolated half-steps. Since they start and
finish with zero speed, we can simply join them to produce
sequences of half-steps. Alternating upward and downward
half-steps will produce a walking motion. Each half-step
trajectory is dynamic in the sense that the inertial forces play
an important role in maintaining the balance (the trajectories
are not quasi-static). However at the end of each half-step a

IEEE TRANSACTIONS ON ROBOTICS 5

half-step
first

t

half-step
second

δ2

δ3

g1
∆1

(y1) + g2
∆1

(y2)

g1
∆1

(py1) + g2
∆1

(py2)

g1
∆2

(y1) + g2
∆2

(y2) g1
∆3

(y1) + g2
∆3

(y2)

g1
∆2

(py1) + g2
∆2

(py2) g1
∆3

(py1) + g2
∆3

(py2)

∆2 = δ1 + δ2

∆3 = δ1 + δ2 + δ3

δ1

T

CoM ZMP

y = g1
0(y1) + g2

0(y2)

0

∆1 = δ1

y

T

The plot on the left shows the trajectories y(t) and py(t) for a raw sequence of two half-steps,

shown on Fig. 2. Notice that the CoM reaches the ZMP between the half-steps. On the other plots,
we show the effect of progressively increasing the overlap, using the operators g1

∆ and g2
∆.

We can see that the CoM trajectory becomes more natural: it does not need to reach the ZMP curve
between the two ZMP shifts anymore. Indeed, the overlap works a bit
like a preview control: the first CoM trajectory is influenced by the
second one during the overlap, so it is as if it already ”knew” that
there will be another ZMP shift, and adapted consequently.

with no overlap, the first half-step being the one of Fig. 1, whose CoM and ZMP trajectories are

py = g1
0(py1) + g2

0(py2)

000SFy(0)

2

Fig. 3. Progressively increasing the overlap between two half-steps.

balanced posture is reached with zero speed. This is not a
satisfactory result because between each half-step the robot
comes to a stop, so the walk motion is not visually smooth,
and rather slow. Recent walking pattern generators achieve
much better results by using preview control (see [19]). In
this section, we show how to continuously modify a sequence
of half-steps using a simple homotopy, in order to make it
faster and smoother along the same footstep sequence. We first
show how to do so for a sequence of two half-steps, and start
with the case of an upward half-step followed by a downward
half-step.

1) Upward then downward: We consider an upward half-
step followed by a downward half-step. Together the two half-
steps make a classical full step: double support phase, then
single support phase, and then double support phase again.

We recall that the whole C-space trajectory of the lower
body during one half-step is generated by inverse geometry
from 7 functions of the time. Since here we are dealing
with two consecutive half-steps (with the same support foot),
we have to consider 14 functions. Let us first consider for
example the position of the waist (or CoM) along the y-axis,
respectively for the upward half-step: y1(t), and the downward
half-step: y2(t). We have y1(T) = y2(0) = 0. Let us define
two operators g1

∆ and g2
∆ such that:

g1
∆(f)(t) =

{
f(t) for t ∈ (0, T)

f(T) for t ∈ (T, 2T −∆)
(21)

g2
∆(f)(t) =

{
0 for t ∈ (0, T −∆)

f(t− T + ∆)− f(0) for t ∈ (T −∆, 2T −∆)
(22)

g1
0(y1) + g2

0(y2) corresponds to the simple concatenation of
y1 and y2 without overlap. Knowing that py1 = Z(y1), py2 =
Z(y2), and y1(T) = y2(0) = 0, it is quite easy to verify
that for any 0 ≤ ∆ ≤ T , g1

∆(py1) = Z(g1
∆(y1)), g2

∆(py2) =
Z(g2

∆(y2)). And, since Z is a linear operator:

g1
∆(py1) + g2

∆(py2) = Z(g1
∆(y1) + g2

∆(y2)) (23)

Operators g1
∆ and g2

∆ enable us to obtain new combined
CoM and ZMP trajectories that still verify the Linear Inverted
Pendulum equations (eq. (1) and eq. (2)). Starting with ∆ = 0
and progressively increasing the value of ∆ continuously
modifies the CoM trajectory (starting from the initial trajectory
g1

0(y1)+g2
0(y2)) to make the second ZMP shift (the one of py2)

happen earlier, creating an overlap of duration ∆ between the
two trajectories y1 and y2. Fig. 3 illustrates this effect: when
we increase the value of ∆ we can see that the position of the
CoM does not need to reach the center of the support foot.

We use the same operators, g1
∆ and g2

∆, to produce an
overlap between the functions of time corresponding to the
waist orientation and swing foot position and orientation. Since
the inverse geometry for the legs is a continuous function as
long as we stay inside the joint limits, these operators used on
the bodies trajectories actually implement a simple homotopy
that continuously deforms the initial C-space trajectory into a
smoother, more dynamic trajectory. The linearity of simplified
differential equations has already been used in a similar way to
produce mixtures of motions ([28] and [29]), but the purpose
was to create new steps, not to smooth them nor speed them
up.

In the case of an upward half-step followed by a downward
half-step, increasing ∆ reduces the duration of the single
support phase, and therefore it increases the speed of the swing
foot. To limit this effect we must bound ∆. Besides, if ∆ is
too large undesirable phenomena can occur, such as a negative
swing foot height. To avoid these problems we set an upper
bound such that the maximum overlap results in a moderately
fast gait.

2) Downward then upward: We can apply the same tech-
nique to produce an overlap in the case of a downward half-
step followed by an upward half-step. Since the last phase of
the downward half-step and the first phase of the upward half-
step are double support phases, the constraint on the swing foot
motion disappears and the maximum bound on ∆ becomes
simply T (that is if t1 = T − t2, and it results in a double

IEEE TRANSACTIONS ON ROBOTICS 6

Fig. 4. We illustrate the “smoothing” of a raw sequence of half-steps. On
the initial raw sequence (on the left), the support paths of the ZMP and CoM
trajectories are superimposed. Then, after adjusting the overlaps, the ZMP
support path stays the same but the CoM support path becomes smoother (on
the right). We can smooth even more, but it reduces the duration of the single
support phase that is directly linked with the swing foot speed. Therefore
limitations on the swing foot speed constrain the smoothing process.

support phase whose duration is t2− t1).
For longer sequences of half-steps, we can simply repeat the

procedure to smooth the whole trajectory, setting the overlaps
one by one. Fig. 4 shows the results obtained with an example
of raw sequence. After the smoothing, the CoM trajectory
is visually smoother and besides, the new trajectory is much
faster (about 3 times faster).

Changing overlaps inside a sequence of half-steps modifies
the whole C-space trajectory: not only the CoM and ZMP, but
also the swing foot trajectory: when the overlap is increased,
the swing foot tends to move faster and closer to the ground.
If one property must be preserved (for instance absence of
collision), it must be checked after every modification. Since
the smoothing by overlap is a continuous operator, we can
use dichotomies to quickly find large acceptable values of
overlaps. Let us consider an example for two consecutive half-
steps. We predefine a maximum overlap ∆max and, first, we
simulate the part of the trajectory modified by the overlap
∆max, and check for collisions, self-collisions and joint limit
violations. If none of these events occur, we set the overlap
to ∆max. Otherwise, we use a dichotomy starting at ∆max/2
to quickly converge towards the largest “good” overlap value
below ∆max. Fig. 5 shows the effect of the smoothing process
on the swing foot trajectory: with the dichotomy we can
quickly find a large overlap that keeps the trajectory collision-
free.

III. BUILDING THE TRANSITION MODEL AND THE SWEPT
VOLUME APPROXIMATIONS

A. The transition model

Thanks to the walking pattern generator described in the
previous section, we can produce isolated half-steps with only
three parameters. If we join a downward half-step with the
corresponding upward half-step, we obtain a trajectory that
goes from Qleft to Qright or Qright to Qleft, and which is
entirely defined by only three parameters, as shown on Fig. 6.

Fig. 5. On the left: a raw sequence of two half-steps avoiding a box on
the ground. We can see that the swing foot reaches a high position. After
smoothing (on the right), the trajectory has been modified so that the foot
moves very close to the obstacle.

(0, 0)(0, 0)
x

(x, y)

y
Qleft

Qright

x

y

θ

Fig. 6. Thanks to the two via point configurations Qleft and Qright, a raw
sequence of two half-steps can be entirely defined by only three parameters:
x, y, and θ. Qleft and Qright were chosen such that the swing foot is quite
high. This provides good obstacle avoidance capabilities to raw sequences
of steps and in the absence of obstacles, smoothing significantly reduces the
height.

We denote such a trajectory (expressed in the frame of the left
foot) by 〈Qleft, (x, y, θ), Qright〉 or (expressed in the frame
of the right foot) 〈Qright, (x, y, θ), Qleft〉. We also denote:

Tl = {〈Qleft, (x, y, θ), Qright〉 | (x, y, θ) ∈ R3},

and:

Tr = {〈Qright, (x, y, θ), Qleft〉 | (x, y, θ) ∈ R3}

We will interchangeably call the elements of Tl or Tr
points (because of the bijection with R3), transitions (because
the transition model will be a finite set of elements of Tl),
sequences (each element corresponds to a downward half-step
- upward half-step sequence), or trajectories. By concatenating
alternatively trajectories from Tl and trajectories from Tr, we
obtain walk motions. With a symmetric robot (like HRP-2),
Tl and Tr are symmetric in the sense that the feasibility of a
sequence 〈Qleft, (x, y, θ), Qright〉 is equivalent to the feasibil-
ity of the sequence 〈Qright, (x,−y,−θ), Qleft〉, and that the
corresponding swept volumes are symmetric. Therefore, only

IEEE TRANSACTIONS ON ROBOTICS 7

initial grid

37cm

70cm

y

x

pruned grid
after feasibility tests:
the transition model

Fig. 7. An initial grid of 600 points covers the input space. To each of the
120 values of (x, y) correspond 5 possible orientations. All the corresponding
trajectories (generated by the walking pattern generator presented in section II)
are sequences of two half-steps. We test each of them, checking for self-
collisions and joint limit violations, and remove all the unfeasible ones. The
276 remaining points form the transition model Ml used for planning.

C(p) < 0

C(p) > 0

C(p) = 0
On the left, a 2D representation of a cube
moving along a discretized trajectory. We
denote its successive configurations by c0,
c1, . . . , cq . For a point p of the Euclidean
space, C(p) is defined as the minimum
distance from p to any configuration of
the cube, minus a fixed margin τ . The
margin is important to avoid errors due to
the discretization, and besides, it makes the

thus easier to approximate.
level set {p ∈ R3 | C(p) = 0} smoother,

C(p) = min (dist(p, ci)− τ, i = 0, . . . , q)

The 2D plot on the bottom-left shows how the approximation algorithm
recursively divides the Euclidean space into small boxes in order to

plot on the bottom right.
A view of this swept volume approximation is displayed on the 3D

adaptively approximate the surface C(p) = 0. The approximated
surface defines an approximation of the volume swept by the cube.

Fig. 8. An example of swept volume approximation. The data structure
obtained is a bit similar to an adaptively sampled distance field (see [11]).

one transition model was built, on the space Tl, but it can be
used by symmetry on Tr. To build it, as explained on Fig. 7,
we first covered a reasonably large domain of Tl with regularly
spaced points. Considering the robot (HRP-2) dimensions and
joint limits, this domain was defined as the following box:

Bl = {〈Qleft, (x, y, θ), Qright〉 | x ∈ [−0.35m,+0.35m],

y ∈ [−0.37m,−0.02m], θ ∈ [−30◦,+30◦]}

We covered the box Bl with 600 points (15 possible values
for x, 8 possible values for y, 5 possible values for θ),
and for each point, using discretized trajectories –one for
each body of the robot legs–, we verified the feasibility
of the corresponding downward half-step - upward half-step
sequence. If any self-collision (which were checked using the
algorithm introduced in [3]) or joint limit violation occurred,
the point was discarded.

The 276 remaining points all correspond to feasible se-
quences, and they form the transition model.

We denote by Ml ⊂ Bl this finite transition model, Mr ⊂
Br is defined by symmetry. We denote by S(Ml,Mr) the set
of finite feasible sequences (s1, s2, . . . sn) alternating left foot
and right foot support.

B. The swept volume approximations

For each of the 276 points of the transition model, we build
an approximation of the volume swept by the lower part of the
robot (from the knees down) during the corresponding down-
ward half-step - upward half-step sequence. The algorithm
used is the one described in [30]: given a transition z ∈ Ml

it learns through adaptive sampling the sign of the mapping
Cz(p) which returns the distance (minus a fixed margin –1cm
in our case–) between a point p of the Euclidean space and the
finite set of polyhedra consisting of all the configurations of
the robot legs bodies along their discretized trajectories during
the sequence corresponding to z. Fig. 8 illustrates an example
of this process. The important property of the approximation
algorithm used is that it stores the result in a tree structure
which can be evaluated extremely quickly. The computation
time saved is considerable: with the approximation, checking
whether a point is outside or inside one of the swept volumes
we consider is done in 4µs. This is about 2,000 times faster
than with the normal evaluation of Cz(p).

For a transition z = 〈Qleft, (x, y, θ), Qright〉 ∈ Ml, we de-
note by Vz(p) the corresponding swept volume approximation
(Vz(p) > 0 if and only if p is outside the approximated swept
volume). If z′ = 〈Qleft, (x,−y,−θ), Qright〉 ∈ Mr, we can
easily obtain the approximation Vz′ by applying a symmetry to
Vz; thus only 276 swept volume approximations are needed.
With an Intel(R) Xeon(R) 2.00Ghz CPU, it took a bit less
than 48 hours to generate them all, but we believe that by
using state-of-the art swept volume approximation algorithms
(and maybe only afterwards apply our algorithm to obtain
reapproximations that can be evaluated very fast), we should
be able to significantly reduce this offline computation time.

Fig. 9 shows 5 of the 276 swept volume approximations.

IEEE TRANSACTIONS ON ROBOTICS 8

Fig. 9. 3D representations of 5 swept volumes approximations

IV. FOOTSTEP PLANNING WITH A VARIANT OF RRT

In this section, we present a simple adaptation of the
RRT algorithm for footstep planning, quite similar to the one
introduced in [38].

Let us first define the search space. Since in our formal-
ism we connect single support phases, the search space is
S = {(q, x, y, θ) | q ∈ {Qleft, Qright}, (x, y, θ) ∈ R3}, where
q is the support foot, (x, y) the position of the support foot
(relatively to a fixed reference), and θ its orientation (relatively
to a fixed reference). The transition model being an alternation
between Ml and Mr, we can apply transitions to states of
the search space using the operator δ:

δ ((q, x, y, θ), 〈q, (x′, y′, θ′), q〉)
= (q, x′cos(θ)− y′sin(θ), x′sin(θ) + y′cos(θ), θ + θ′),

where Qleft = Qright and Qright = Qleft. In practice, we
will use only a compact subset of the search space, depending
on the environment E . We denote it by S|E . For example, if
the robot stays in a 5m × 5m room, we naturally use these
dimensions to define S|E and bound x and y. Considering
the classical RRT algorithm (see [26]), the only operation
that cannot be straightforwardly adapted to the context of
footstep planning is the extension towards random samples
(to find the nearest neighbor we use the Euclidean metric,
ignoring the orientations). Let (q, x, y, θ) ∈ S be a random
sample of the search space, and (q′, x′, y′, θ′) the nearest
state in the search tree. In [38], two options are considered:
either add to the tree all the successors of (q′, x′, y′, θ′), or
just one random successor. Due to the size of our transition
model, we chose to follow the latter strategy. Fig. 10 shows
one issue of this approach: in some cases, it is difficult to
extend the search tree towards a given region. To cope with
this problem, many options are possible. We simply chose
to alternatively look for nearest states with left support foot
and nearest states with right support foot. It leads to our RRT
variant presented in Algorithm 1 (we stop the while loop when
a path to the goal region has been found, or when a sufficiently
short path has been found). We based our implementation on
a fast and modular open-source code by Karaman and Frazzoli
which uses kd-trees for fast nearest neighbor queries (this code
implements RRT and RRT*, the algorithm introduced in [20]).

Further analyses and improvements of the variants of RRT
for footstep planning can probably help to obtain faster results,
but are out of the scope of this paper.

Qleft

Qleft
Qleft

Qright Qright

Qleft

Qright

3

1

2

3

1

2

Fig. 10. The advantage of separating left and right support feet during nearest
neighbor queries.
- On the left (global nearest neighbor): all the points in the gray region have the
same nearest neighbor (Qright, x, y, θ), but no successor of (Qright, x, y, θ)
is inside the gray region. Therefore numerous samples are required before
extending the search tree towards the gray region.
- On the right (alternate nearest neighbors): when only states with left support
foot are considered, the nearest neighbor will not be (Qright, x, y, θ), but
maybe one of its successors. With the alternation strategy, the search tree is
more likely to quickly grow inside the gray region.

V. PRELIMINARY EXPERIMENTS

The framework presented in this paper was experimentally
tested on the robot HRP-2.

We studied the two Experimental Setups described on
Fig. 11, where 2D obstacles (holes in the ground) are com-
bined with 3D obstacles. The 3D obstacles shown on Fig. 11
have the same size as the ones in the real environment (see
Fig. 12), but are smaller than the ones used for the collision
checks (a margin is needed because of the robot drift during
the real-world experiments).

The construction of the solution trajectory is divided into
two parts: first, during the planning phase, just as explained in
the previous section, we use a specific variant of RRT to find
a sequence (s1, s2, . . . , sn) ∈ S(Ml,Mr) which reaches the
goal. Then, we use the homotopy of section II-B to smooth
the sequence (s1, s2, . . . , sn), so that to obtain the final fast

IEEE TRANSACTIONS ON ROBOTICS 9

Algorithm 1 RRT variant for footstep planning
1: T.init(xinit ∈ S|E)
2: i← 0
3: stop condition← false
4: while ¬stop condition do
5: Pick a random state xrand ∈ S|E
6: i++
7: if i == 0 mod 2 then
8: xnear ←

{ among states with left support foot,
nearest neighbor of xrand in the tree T

9: Pick a random transition srand ∈Ml.
10: else
11: xnear ←

{ among states with right support foot,
nearest neighbor of xrand in the tree T

12: Pick a random transition srand ∈Mr.
13: end if
14: Using the approximated swept volumes, verify that

starting from state xnear, the transition srand does not
collide with any point of the obstacle point clouds.

15: if NO COLLISION then
16: T.add node(δ(xnear, srand))
17: T.add edge(xnear, srand, δ(xnear, srand))
18: if δ(xnear, srand) is close enough to the goal and

the path to δ(xnear, srand) is short enough then
19: stop condition← true
20: end if
21: end if
22: end while

and dynamic trajectory that will be performed by the robot.

A. The planning phase: RRT vs. A*

We implemented a classical A* search algorithm and com-
pared it with the RRT variant introduced in the previous
section. For the costs required by A* we used a simple
heuristic where the estimated remaining cost is derived from
the Euclidean distance, and the cost of a path is the sum
of each (fixed) transition cost. Better heuristics can often
be obtained, such as for example heuristics derived from a
mobile robot planner that looks for continuous paths between
the initial position and the goal, but because they do not take
stepping over capabilities into account, such heuristics tend to
severly misjudge costs in very constrained environments like
the ones we consider here (for a review on the association {
A* + heuristic } see [5], chapter 8). Finding a robust heuristic
that would perform well in challenging environments is as hard
as solving the problem without using A*: that is why we tried
to directly apply RRT. Other approaches of interest include
planning algorithms based on inflated heuristics (see [12]):
they usually find solutions faster than a classical A* search, but
they are not as efficient as RRT to avoid local minima. Their
main advantage over RRT is that they provide suboptimality
bounds; however, due to the particularity of the problem of
footstep planning, it is not clear whether such bounds can still
be obtained in our context. Finally it might be interesting to
try to adapt control-based strategies such as [35] , but the
adaptation would be far from straightforward.

A* search:

of calls to thetime to

the solution

number

is to touch the

one foot.

is to touch the
Setup 2: the goal

reach a
solution

Setup 1: the goal

8.60s

(average on 10 attempts)

approximations

1,700,000

– –

one foot.
circled zone with

24.3 steps

6 steps7.14s

circled zone with

A* search:

RRT variant:

of steps of swept volumes

number

21.1 steps

(>10min)
FAIL

1,920,00029.8s

RRT variant: (average on 10 attempts)

1,560,000

Fig. 11. Experimental setups and results of the planning. The computations
are made with an Intel(R) Xeon(R) 2.00Ghz CPU. Remark: in Setup 1, the
exterior surface of the 3D obstacles (the boxes on the ground) is covered by
250 points. In Setup 2, the exterior surface of the 3D obstacles is covered by
75 points.

Fig. 12. Experimental results: the robot HRP-2 executing planned trajectories.
Above: the so-called toy problem of walking in a child’s bedroom avoiding
toys on the ground.

IEEE TRANSACTIONS ON ROBOTICS 10

In Setup 1 and 2 we fixed an upper bound, and stopped the
execution of RRT or A* as soon as a path of cost smaller than
this upper bound was found.

As shown by the results on Setup 1, without strong local
minima, the time needed by RRT and A* to find a solution is
approximately the same, but A* finds a better trajectory cost
(it finds solutions with fewer steps).

On the other hand we can see with the results on Setup 2
that when the transition model is large, A* seems much more
sensitive to local minima than RRT: indeed A* fails to find
a solution on Setup 2, whereas the RRT method consistently
finds solutions in less than 40 seconds (and 29.8 seconds in
average).

This is easily explainable because A* usually has to explore
a subtree of fixed height h (which depends on the heuristic
costs used) before being able to avoid a local minimum.
Therefore it will try about (|M|h − 1)

(
|M|
|M|−1

)
transitions

(|M| being the size of the transition model) before overcoming
the local minimum. This can be done if both |M| and h
are relatively small, but since in our case |M| = 276, the
complexity can quickly become insurmountable.

As a randomized approach, RRT does not have this caveat,
and that is why we think it is more suitable than A* when the
transition model is large.

A remark on the time saved thanks to the swept volume
approximations: on the Setup 1 whose environment contain
a lot of points (250), we can see that during their execution
both the RRT variant and A* make about 200,000 calls to
a swept volume approximation every second. Without the
approximations, these 200,000 calls would be replaced by
more than 26 minutes spent in collision checking.

B. The smoothing phase

Once a trajectory avoiding the obstacles has been found by
the planner, since it consists in a concatenation of isolated half-
steps, we can use the homotopy described in section II-B to
smooth it. One overlap parameter has to be set for each pair of
consecutive half-steps, and since the overlaps are independant,
they can be set sequentially. This means that we can start to
execute the trajectory on the robot even if only a few initial
overlaps have been set, the next overlaps being computed
during the execution of the trajectory. Let us notice that the
dichotomy search for the best overlap time is an “any-time
process” that can be interrupted if computation time is too
long, the current result being anyway not worse than the initial
raw motion. Another important remark: since we cannot know
in advance the swept volumes for the trajectories involved in
the smoothing processes, we have to use classical collision
checks. We measured the overlaps computation time for 10
raw sequences of half-steps obtained in Setup 1, and 10 raw
sequences obtained in Setup 2. In all cases, the duration of
the smoothing was less than the final trajectory execution
time. For the solutions in Setup 1, the average time needed
for the smoothing was 14.4s, and the average execution time
of the final trajectory was 31.1s. For the solutions in Setup
2, the average duration of the smoothing was 13.4, and the

Fig. 13. Above: a raw sequence of two half-steps. Below: the smoothed
sequence. When there are no obstacles, the swing foot trajectory of the
smoothed sequence depends on the minimum time between two ZMP shifts,
which is fixed in advance in order to bound the speed of the feet.

average execution time of the final trajectory was 41.6s. Fig. 13
illustrate the effect of the smoothing on the foot trajectories.

VI. A MORE ADVANCED IMPLEMENTATION

The way we deal with collisions in the preliminary ex-
periments is clearly not optimal: we represent obstacles by
covering them with points on their exterior surface, and all the
points are always taken into account. The results showed that
the swept volume approximations can be called a great number
of times in a short period, proving that significant speed-up
can be obtained compared to frequent collision checks along a
priori unknown trajectories. What is more, in some case, point
clouds are a very natural input, and it would be interesting to
see if we can organize them in a good structure so that to
use our approximation functions in an efficient way. This is
beyond the scope of this paper, but we can already obtain better
results by using state-of-the-art collision detection algorithms.
First, we can notice that our swept volume approximations are
defined by intersections of small boxes with planes. Thus, it
is easy to construct meshes that describe the swept volume
approximations (we actually use simplified meshes, i.e. they
have a slightly simpler geometry than the initially precomputed
approximations). With these 276 meshes, we will use the PQP
algorithm [24] for collision checks. The main advantage we
obtain by doing so is that when the obstacles are represented
by classical meshes as well, PQP stores them in bounding
volume hierarchies that reduce the complexity of collision
checks.

With this method a significant speed-up is reached: with the
Setup 2 of Fig. 11, we performed 1000 trials with a slightly
faster CPU (Intel(R) Xeon(R) 2.40GHz) but overall in similar
conditions. A solution was always found, and the average time
required was only 1.60 seconds, which is almost 20 times

IEEE TRANSACTIONS ON ROBOTICS 11

Fig. 14. On the left: a sequence of steps found in a complex environment.
On the right, we show for one sequence of steps the concatenation of the
swept volumes which are simplified meshes obtained from the original swept
volume approximations. For the upper body simpler bounding boxes are used
for the collision checks.

faster than the preliminary results. The average number of
steps of the solution was 28.5 steps, and in average 18,000
collision checks were needed before finding a solution.

With this new implementation we tested our algorithm in
more complex environments in simulation and also used it to
perform real-time replanning in experiments where the posi-
tion of the robot and obstacles is acquired by motion capture.
The details of the framework used for these experiments are
described in [2]. Fig. 14 shows two simulations, and Fig. 15
shows an experiment during which a bar placed 5cm above
the ground is moved while the robot is executing its initial
plan. The robot is then able to quickly find a new plan and
successfully steps over the bar in its new configuration before
reaching the goal.

VII. DISCUSSION ON AN EXTENSION TO CONTINUOUS
TRANSITION MODELS

Even if the expressiveness of a continuous transition model
can be approached by the one of a large finite transition model,
a continuous transition model would still be preferable.

Several useful techniques would be easier to apply with
a continuous transition model: local footstep modifications
([9], [8]), extraction of convex regions in the transition model
in order to use optimization techniques to determine foot
placements ([16]), path deformation ([18]), etc.

RRT and other sampling-based algorithms (e.g. PRM, see
[21]) would be easier to adapt with a continuous transition
model, so it would cause no problem at the planning phase.
Besides, it would not be difficult to approximate the feasibility
regions so as to obtain continuous transition models Ml and
Mr (although it might be hard to obtain the guarantee that all
transitions are indeed feasible). But then, the main issue would
be the need to approximate swept volumes which depend on a
continuous parameter z ∈ Ml: instead of approximating (the
sign of) Cz(p) for a finite set of values of z, we would need to
approximate C(z,p) which depends on 6 parameters. It does
not correspond anymore to the approximation of a single swept
volume, so the state-of-the-art algorithms for swept volume
approximation cannot be directly used, and we would probably
need to keep a generic approximation algorithm, like the one
used in this paper. Since it took already almost 48 hours to
approximate the swept volumes of the finite transition model,
for a continuous transition model an accurate approximation

Fig. 15. (1): HRP-2 starts to execute the sequence initially found. (2): the bar
is suddenly moved, and the current sequence of step would lead to collisions.
(3): while walking, HRP-2 is able to compute a new sequence of steps towards
the goal (we show the concatenation of the swept volumes which indeed avoid
the bar). (4): the robot finally steps over the bar while at the same time it tries
to optimize the rest of the path towards the goal. Remark: due to uncertainty
on positions, we use a model of bar that is thicker than the actual bar.

would probably be excessively time consuming. In that case it
is likely that instead of trying to compute the swept volumes
more efficiently, other collision detection routines should be
taken into account, such as continuous collision detection [40],
GPU-based approaches [25] or other variants (e.g. [36], [33],
. . .).

VIII. CONCLUSION

In this paper, we have described a novel and coherent
framework for footstep planning, which includes a walking
pattern generator based on half-steps, a simple homotopy for
trajectory smoothing, swept volume approximations for fast
collision checking, and an RRT variant for footstep planning.

IEEE TRANSACTIONS ON ROBOTICS 12

We used this framework on the robot HRP-2 to quickly plan
dynamic sequences of walk in environments cluttered with
3D and 2D obstacles. Although computed in a few seconds
and with the theoretical guarantee that they actually avoid
the obstacles, the executed trajectories seem very natural: no
pauses, no exaggerated motions to avoid small obstacles, and
a large diversity of foot placements.

ACKNOWLEDGMENT

This work was supported by a grant from the RBLINK
Project, Contract ANR-08-JCJC-0075-01.

REFERENCES

[1] Y. Ayaz, K. Munawar, M. Bilal Malik, A. Konno, and M. Uchiyama.
Human-like approach to footstep planning among obstacles for hu-
manoid robots. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’06), 2006.

[2] L. Baudouin, N. Perrin, T. Moulard, O. Stasse, and E. Yoshida. Real-
time replanning using 3D environment for humanoid robot. Sub-
mitted to the 11th IEEE-RAS Int. Conf. on Humanoid Robots (Hu-
manoids’11). Available at http://homepages.laas.fr/nperrin/submitted/
humanoids11-lbaudouin.pdf, 2011.

[3] M. Benallegue, A. Escande, S. Miossec, and A. Kheddar. Fast c1 prox-
imity queries using support mapping of sphere-torus-patches bounding
volumes. In IEEE Int. Conf. on Robotics and Automation (ICRA’09),
pages 483–488, 2009.

[4] J.-M. Bourgeot, N. Cislo, and B. Espiau. Path-planning and tracking
in a 3D complex environment for an anthropomorphic biped robot. In
IEEE Intl. Conf. on Intelligent Robots and Systems (IROS’02), pages
2509–2514, 2002.

[5] J. Chestnutt. Navigation Planning for Legged Robots. PhD thesis,
Carnegie Mellon University, 2007.

[6] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami. Planning biped
navigation strategies in complex environments. In IEEE Int. Conf. on
Humanoid Robots (Humanoids’03), 2003.

[7] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade.
Footstep planning for the honda asimo humanoid. In IEEE Int. Conf.
on Robotics and Automation (ICRA’05), pages 631–636.

[8] J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and S. Kagami. An
intelligent joystick for biped control. In IEEE Int. Conf. on Robotics
and Automation (ICRA’06), pages 860–865, 2006.

[9] J. Chestnutt, K. Nishiwaki, J.J. Kuffner, and S. Kagami. An adaptive
action model for legged navigation planning. In IEEE/RAS Int. Conf.
on Humanoid Robots (Humanoids’07), pages 196–202, 2007.

[10] M. Elmogy, C. Habel, and J. Zhang. Online motion planning for hoap-2
humanoid robot navigation. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS’09), 2009.

[11] S.F. Frisken, R.N. Perry, A.P. Rockwood, and T.R. Jones. Adaptively
sampled distance fields: a general representation of shape for computer
graphics. In 27th annual conference on Computer graphics and
interactive techniques (SIGGRAPH’00), pages 249–254, 2000.

[12] J. P. Gonzalez and M. Likhachev. Search-based planning with provable
suboptimality bounds for continuous state spaces. In 4th Annual
Symposium on Combinatorial Search (SOCS’11), 2011.

[13] K. Harada. Motion planning for a humanoid robot based on a biped
walking pattern generator. In Motion Planning for Humanoid Robots,
pages 192–197. Springer, 2010.

[14] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa. An analytical
method for real-time gait planning for humanoid robots. I. J. Humanoid
Robotics, 3(1):1–19, 2006.

[15] T. Hasegawa, K. Nakagawa, and K. Murakami. Collision-free path plan-
ning of a telerobotic manipulator based on swept volume of teleoperated
manipulator. In 5th IEEE Int. Symp. on Assembly and Task Planning,
2003.

[16] A. Herdt, N. Perrin, and P.-B. Wieber. Walking without thinking about
it. In IEEE Int. Conf. on Intelligent Robots and Systems (IROS’10),
2010.

[17] J.C. Himmelstein, E. Ferre, and J.-P. Laumond. Swept volume approx-
imation of polygon soups. IEEE Transactions on Automation Science
and Engineering, 7(1):177–183, 2009.

[18] L. Jaillet and T. Simon. Path deformation roadmaps. In 7th Workshop
on the Algorithmic Foundations of Robotics (WAFR’06), 2006.

[19] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, and K. Yokoi.
Biped walking pattern generation by using preview control of zero-
moment point. In IEEE Int. Conf. on Robotics and Automation
(ICRA’03), pages 1620–1626, 2003.

[20] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for
optimal motion planning. In Robotics Science and Systems VI, 2010.

[21] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
1996.

[22] Y.J. Kim, G. Varadhan, M.C. Lin, and D. Manocha. Fast swept volume
approximation of complex polyhedral models. In 8th ACM symposium
on Solid modeling and applications, pages 11–22, 2003.

[23] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep
planning among obstacles for biped robots. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS’01), pages 500–505, 2001.

[24] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast proximity
queries with swept sphere volumes. In IEEE Int. Conf. on Robotics and
Automation (ICRA’00), pages 3719–3726, 2000.

[25] C. Lauterbach, Q. Mo, and D. Manocha. gproximity: Hierarchical gpu-
based operations for collision and distance queries. Comput. Graph.
Forum, pages 419–428, 2010.

[26] S.M. LaValle and J.J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In 4th Workshop on the Algorithmic Foundations of
Robotics (WAFR’00), pages 293–308, 2000.

[27] Y. Nakamura and H. Hanafusa. Optimal redundancy control of robot
manipulators. Int. Journal of Robotics Research, 6:32–42, 1987.

[28] K. Nishiwaki, K. Nagasaka, M. Inaba, and H. Inoue. Generation of
reactive stepping motion for a humanoid by dynamically stable mixture
of pre-designed motions. In IEEE Int. Conf. on Systems, Man, and
Cybernetics, pages 902 – 907, 1999.

[29] K. Nishiwaki, T. Sugihara, S. Kagami, M. Inaba, and H. Inoue. On-
line mixture and connection of basic motions for humanoid walking
control by footprint specification. In IEEE Int. Conf. on Robotics and
Automation (ICRA’01), pages 4110–4115, 2001.

[30] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. Adaptive sampling-
based approximation of the sign of multivariate real-valued functions.
Technical report, 2010. Available at http://hal.archives-ouvertes.fr/docs/
00/54/48/91/PDF/approx.pdf.

[31] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. Approximation
of feasibility tests for reactive walk on hrp-2. In IEEE Int. Conf. on
Robotics and Automation (ICRA’10), pages 4243–4248, 2010.

[32] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. A biped walking
pattern generator based on ”half-steps” for dimensionality reduction. In
IEEE Int. Conf. on Robotics and Automation (ICRA’11), pages 1270–
1275, 2011.

[33] H. Schmidl, N. Walker, and M. C. Lin. Cab: Fast update of obb trees
for collision detection between articulated bodies. Journal of Graphics
Tools, 9:1–9, 2004.

[34] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact collision checking
of robot paths. In 5th Workshop on the Algorithmic Foundations of
Robotics (WAFR’02), 2002.

[35] I.A. Sucan and L.E. Kavraki. Kinodynamic motion planning by
interior-exterior cell exploration. In 8th Workshop on the Algorithmic
Foundations of Robotics (WAFR’08), 2008.

[36] M. Tang, Y. J. Kim, and D. Manocha. CCQ: Efficient local planning
using connection collision query. In 9th Workshop on the Algorithmic
Foundations of Robotics (WAFR’10), pages 229–247, 2010.

[37] M. Vukobratovic and B. Borovac. Zero-moment point – thirty five years
of its life. Int. Journal of Humanoid Robotics, 1(1):157–173, 2004.

[38] Z. Xia, G. Chen, J. Xiong, Q. Zhao, and K. Chen. A random
sampling-based approach to goal-directed footstep planning for hu-
manoid robots. In IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics (AIM’09), pages 168–173, 2009.

[39] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond. Humanoid
motion planning for dynamic tasks. In IEEE/RAS Int. Conf. on
Humanoid Robots (Humanoids’05), pages 1–6, 2005.

[40] X. Zhang, S. Redon, M. Lee, and Y. J. Kim. Continuous collision
detection for articulated models using taylor models and temporal
culling. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2007), 26(3):15, 2007.

IEEE TRANSACTIONS ON ROBOTICS 13

Nicolas Perrin graduated from the Ecole Normale
Supérieure de Lyon in 2009. He received the M.Sc.
degree in Mathematical Logic and Foundations of
Computer Science from the University of Paris VII
in 2008. He is currently Ph.D. student at LAAS-
CNRS, Toulouse, France. During his Ph.D. studies
he worked from 2008 to 2011 at CNRS-AIST JRL
(Joint Robotics Laboratory), Tsukuba, Japan. His
current research is in humanoid robots and motion
planning.

Olivier Stasse is a Senior Researcher (CR-1) at
LAAS-CNRS, Toulouse. He has been assistant pro-
fessor in Computer Science at University of Paris 13.
He received a Ph.D. in Intelligent Systems (2000)
from University of Paris 6. His research interests
include humanoids robots, and more specifically
motion generation motivated by vision. From 2003
to 2011, he was with the Joint French-Japanese
Robotics Laboratory (JRL) in Tsukuba, Japan. He
has been Finalist for the Best Paper Award at ICAR
2007, finalist for the Best Video Award at ICRA

2007 and received the Best Paper Award at ICMA 2006.

Léo Baudouin graduated in Master Image and
Vision from Blaise Pascal University of Clermont-
Ferrand in 2011. He will graduate from Clermont-
Ferrand IFMA engineering school of mechatronics
in 2012. In 2011 he worked at CNRS-AIST JRL
(Joint Robotics Laboratory) in Japan and at LAAS-
CNRS in France on humanoid robot real-time re-
planning.

Florent Lamiraux graduated from the Ecole Poly-
technique Paris in 1993. He received the Ph.D. de-
gree in Computer Science from the Institut National
Polytechnique de Toulouse in 1997 for his research
on Mobile Robots. He worked two years at Rice
University as a Research Associate. He is currently
Directeur de Recherche at LAAS-CNRS, working in
humanoid robots.

Eiichi Yoshida received M.E. and Ph.D. degrees
on Precision Machinery Engineering from Graduate
School of Engineering, the University of Tokyo in
1993 and 1996 respectively. In 1996 he joined for-
mer Mechanical Engineering Laboratory, Tsukuba,
Japan. He is currently senior research scientist, in
Intelligent Systems Research Institute, National In-
stitute of Advanced Industrial Science and Technol-
ogy (AIST), Tsukuba, Japan. From 1990 to 1991,
he was visiting research associate at Swiss Federal
Institute of Technology at Lausanne (EPFL). He

served as Co-Director of AIST/IS-CNRS/ST2I Joint French-Japanese Robotics
Laboratory (JRL) at LAAS-CNRS, Toulouse, France, from 2004 to 2008. He
is currently Co-Director of CNRS-AIST JRL (Joint Robotics Laboratory),
UMI3218/CRT, AIST, Japan, since 2009. His research interests include robot
task and motion planning, modular robotic systems, and humanoid robots.

