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Abstract— This paper presents a 3D object recognition
method based on spin-images for a humanoid robot having a
stereoscopic vision system. Spin-images have been proposed to
search CAD models database, and use 3D range informations.
In this context, the use of a vision system is taken into account
through a multi-resolution approach. A method for quickly
computing multi-resolution and interpolating spin-images is
proposed. The results on simulation and on real data are
given, and show the effectiveness of this method.

Index Terms— Spin-images, multi-resolution, 3D recogni-
tion, humanoid robot.

I. I NTRODUCTION

Efficient real-time tracking exists for collections of
2D views [1] [2]. However in a humanoid context, 3D
geometrical information is important because the high
redundancy of such robot allows several kinds of 3D
postures. Moreover if the information is precise enough,
it can also be used for grasping behaviour. Recent works
on 3D object model building make possible a description
based on geometrical features. Towards the design of a
search engine for databases of CAD models, several 3D
descriptors have been proposed to build signatures of 3D
objects [3], [4], [5]. The recognition process proposed here
is based on spin-images proposed initially by [3]. The main
difference in the conventional work and this one lies on
the targeted application and a search scheme based on
multi-resolution spin images. Moreover the computation
of the multi-resolution scheme is refined and allows a fast
implementation.

The targeted application us a “Treasure hunting” be-
haviour on a HRP-2 humanoid robot [6]. This behaviour
consists in two majors steps: first building an internal repre-
sentation of an object unknown to the robot, second finding
this object in an unknown environment. This behaviour is
useful for a robot used in an industrial environment, or as
an aid for elderly person. It may incrementally build its
knowledge of its surrounding environment and the object
it has to manipulate without any a-priori models. The time
constraint is crucial, as a reasonable limit has to be set
on the time an end user can wait the robot to achieve its
mission. Finally the method to cope with the widest set of
objects should rely on a limited set of assumptions.

The reminder of this paper is as follow: in section II
the computation of spin images are introduced, section
III details how the multi-resolution signature of objects

is computed, section IV details the search process, finally
section V presents the simulation and the experiments
realized with the presented algorithm.
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Fig. 1. Example of spin image computation.

II. SPIN IMAGES

A. Description

A spin-image can be seen as an image representing the
distribution of the object’s density view from a particular
point [3]. More precisely, it is assume that all the 3D
data are given as a meshMesh= V,E whereV are the
vertices andE the edges. Let’s consider a vertexP ∈ V.
The spin image axis are the normal to the pointP, and
a perpendicular vector to this normal. The former one is
calledβ, and the latter oneα. The support region of a spin-
image is a cylinder centred onP, and aligned around its
normal. From this, each point of the model is assigned to
a ring with a height along β, and aradius along α. An
example of spin-images for a dinosaur model is given in
Fig. 1.

They are two parameters of importance while using
the spin-images: the size of the rings(δα,δβ), and the
boundaries of the spin-image(αmax,βmax). The size of the
rings is similar to a resolution parameter. The limitation
(αmax,βmax) allows to impose constraints between the
points chosen for computing the spin-imageP and other
points of the modelP′. This is particularly meaningful to
take into account occlusion problem. In our implementa-
tion, two points should have less than 90 degrees between
their normals. A greater value would implies thatP′ is
occluded by some other points whileP is facing the camera.

B. Normal computation

When computing spin-images, the normal computation
should be as less sensitive as possible to noise. This is



specially important for vision based informations where
the noise might be significant. Following the tests done
in [7], 8 methods have been tested: gravity center of the
polynoms formed by neighbours of each point; inertia
matrix; normal average of each face; normal average of
faces formed by neighbour points only; normal average
weighted by angle; normal average weighted by sine and
edge length reciprocal; normal average weighted by areas
of adjacent triangles; normal average weighted by edge
length reciprocals; normal average weighted by square
root of edge length reciprocals. Using the Stanford Bunny
model, and adding a Gaussian noise of 20 percent from
the average adjacent edge, the most stable method found
was the gravity center of the polynoms formed by the
neighbours of each point.
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Fig. 2. Two ways to fill a spin-image: (a) direct way (b) bilinear
interpolation.

C. Spin-image filling

Regarding the spin-image filling, Johnson propose two
ways: either using a direct accumulation, or a bilinear
interpolation. Those two methods are depicted in Fig.
2. M is the projection of a pointP′ ∈ V . The first
solution relatesM = (α,β) in surface(αi ,β j)-(αi+1,β j)-
(αi+1,β j+1)-(αi ,β j+1) to the point (αi ,β j) regardless its
position in the surface. This makes the spin-image sensitive
to noise. Indeed ifM is close to a boundary, it will involves
important discrete modification. To solve this problem, a
bilinear interpolation allows to smooth the effect of noise
by sharing the density information among the 4 points
connected to the surface. This is achieved by computing the
distance ofM to those 4 points, using two parameters(a,b)
as depicted in Fig. 2. If the points are processed iteratively
in the following {0,1, ...,k,k+1, ...|V|−1}, then densities
are updated as follows:

Wi, j(k+1) = Wi, j(k)+(1−a)(1−b)
Wi+1, j(k+1) = Wi, j(k)+a(1−b)
Wi, j+1(k+1) = Wi, j(k)+(1−a)b

Wi+1, j+1(k+1) = Wi, j(k)+ab

wherea = (α−αi)/δα andb = (β−β j)/δβ. It is straight-
forward to check that for a pointM the sum of each
contribution is one. In the remainder of this paper, for sake
of clarity the iteration number is implicit.

III. M ULTI -RESOLUTION

One of the most important feature needed in our case, is
the possibility to perceive the object at different distances,
and thus at different resolutions. This implies to build a
multi-resolution signature of the object, and to be able to
compute the resolution at which the object has been per-
ceived. In the following, the finest spin-imageSIrmax has the
highest resolution which correspond to( δα

2rmax ,
δβ

2rmax), while
the spin-imageSIk has a resolution( δα

2k , δβ
2k ) = (δαk,δβk).

A. Computing resolution of an object
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Fig. 3. Model induces by the surface nature of the pixels.

The resolution of the perceived object depends upon the
stereoscopic system capabilities, the distance between the
robot and the object, and the possible sub-sampling scheme
during image processing. This error may also be induced
by the segmentation used to match two points in the right
and the left images, in our case a correlation. If the pixel is
considered as a surface on the image plane, the stereoscopic
vision system may be seen as a sensor which perceive
3D volumes. Those volumes are the intersection of the
cones representing the surfaces on the image planes. A 2D
representation is given in Fig. 3. They can be interpreted
also as the location error of a 3D point. [8] and [9] proposed
an ellipsoid based approximation of this volume, while [10]
proposed a warranted bounding box using interval analysis.
Both technics show the non-linearity of the uncertainty
related to the reconstruction of a 3D point. However from
those previous work, it is clear that the error estimation,
and here the resolution, may be different for different
parts of the object. While computing the signature, the
resolution of the model is given by the average edge’s
lengthLmodel= 1

|E| ∑e∈E ||E|| of its corresponding data. The
number of multiple resolutionm pictures can be deduced
from the following relationship:Bmodel =

Lmodel
2m where

Bmodel= min{Xmax,Ymax,Zmax} and{Xmax,Ymax,Zmax} is the
bounding box englobing the model. Thus in order to extract
a global resolution from the scene, the average edge’s
length Lscene is also used. The resolutionr is chosen in
the signature such as:

min{r ∈ N|Lscene< 2rLmodel|} (1)

B. Multi-resolution signature

The dyadic scheme consists in dividing by 2 each di-
mension of the spin image between two resolutions. Using



the direct filling way, it is possible to compute, from the
resolutionr to r + 1, the density of a pointM = (i, j) in
SIr by:

Wr
(i, j) = Wr+1

(2 j,2 j) +Wr+1
(2i+1,2 j) +Wr+1

(2i,2 j+1) +Wr+1
(2i+1,2 j+1)

Using the bilinear interpolated image, the relationship
betweenWr and Wr+1 is not so obvious. In Fig. 4, the
points from resolutionr and r +1 are depicted. Our goal
is to find a relationship between the densityWr

(i, j) and

the densitiesWr+1
(2i+k,2 j+l) for k ∈ {−2,−1,0,1,2} and l ∈

{−2,−1,0,1,2}. The main question is how to share the
information carried by the points which will disappear. In
Fig. 4 let’s considerN4. As this point is not present in
resolutionr +1, its contribution has to be redistributed to
the four adjacent points remaining at resolutionr. However
as the density of a pointM depends upon its distance,

if M was in Q
r(i, j)
0,2 = Q

r+1(2i−1,2 j−1)
2 , then its contribution

has already been partially taken into account byNr+1
(2i,2 j),

but not byNr+1
(2i,2 j−2), Nr+1

(2i−2,2 j−2), and Nr+1
(2i−2,2 j). For this

three points, an offset of( δα
2r , δβ

2r ) has to be introduce while
processingNr

(i, j).
We note Qr(i, j) the surface described by the points

Nr
(i−1, j−1),N

r
(i+1, j−1),N

r
(i+1, j+1),N

r
(i−1, j+1). This surface can

be cut in four quadrantsQ
r(i, j)
l l ∈ {0,1,2,3} as depicted

in Fig. 4. For convenience, and following those notations,
those quadrants may also be divided by four and will
be notedQ

r(i, j)
l ,k k ∈ {0,1,2,3}. One can notice that the

same quadrant may have several notations depending of
the reference point used. For instanceQ

r(i, j)
2 = Q

r(i+1, j+1)
0 ,

or Q
r(i, j)
0,2 = Q

r+1(2i−1,2 j−1)
2 .

The notation used for the variables(a,b) is now extended
as they change according to the resolution.a(M,Nr

(i, j)) is
the distance alongα from Nr

(i, j) to M. b(M,Nr
(i, j)) is the

same alongβ. The relationship between those variables
from one resolution to the next one is summarised in Tab.
I.

TABLE I

COEFFICIENTS FOR COMPUTING THE MULTI-RESOLUTION BILINEAR

INTERPOLATION

Areas Distances

Q
r(i, j)
0 a(M,Nr

(i, j)) = a(M,Nr+1
(2i,2 j)) b(M,Nr

(i, j)) = b(M,Nr+1
(2i,2 j))

Q
r(i, j)
1 a(M,Nr

(i, j)) = a(M,Nr+1
(2i+1,2 j))+ δα

2r+1

b(M,Nr
(i, j)) = b(M,Nr+1

(2i+1,2 j))

Q
r(i, j)
2 a(M,Nr

(i, j)) = a(M,Nr+1
(2i+1,2 j+1))+ δα

2r+1

b(M,Nr
(i, j)) = b(M,Nr+1

(2i+1,2 j+1))+ δβ
2r+1

Q
r(i, j)
3 a(M,Nr

(i, j)) = a(M,Nr+1
(2i,2 j+1))

b(M,Nr
(i, j)) = b(M,Nr+1

(2i,2 j+1))+ δβ
2r+1

Lemma: Let’s note Wr
(i, j)(Q) the contribution of the

quadrantQ for the density at point(i, j) of a spin image
having a resolutionr filled by bilinear interpolation. If
Nm ∈ {Nr+1

(2i+k,2 j+l)} for k ∈ {0,1,2} and l ∈ {0,1,2}, and
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Fig. 4. Computing bilinear interpolated spin-images from one resolution
to the other.

m= 3k+ l , then we have:

Wr
(i, j)(Q

r(i, j)
2 ) =

3

∑
n=0

8

∑
m=0

(1− aNm

δαr
)(1− bNm

δβr
)Wr+1

Nm
(Q

r(i, j)
2,n )

Wr
(i+1, j)(Q

r(i+1, j)
3 ) =

3

∑
n=0

8

∑
m=0

aNm

δαr
(1− bNm

δβr
)Wr+1

Nm
(Q

r(i, j)
3,n )

Wr
(i, j+1)(Q

r(i, j+1)
1 ) =

3

∑
n=0

8

∑
m=0

(1− aNm

δαr
)
bNm

δβr
Wr+1

Nm
(Q

r(i, j)
1,n )

Wr
(i+1, j+1)(Q

r(i, j)
0 ) =

3

∑
n=0

8

∑
m=0

aNm

δαr

bNm

δβr
Wr+1

Nm
(Q

r(i, j)
0,n )

(2)
with aNm = a(Mm,Nr

(i, j)), bNm = b(Nm,Nr
(i, j)), andWr+1

Nm
=

Wr+1
Nr+1

(2i+k,2 j+l)
. Finally

Wr
(i, j) =

3

∑
n=0

Wr
(i, j)(Q

r(i, j)
n ) (3)

Proof: We give here a partial proof to illustrate the
general concept. Lets consider the pointM ∈ Q

r(i, j)
2,2 =

Q
r+1(2i+1,2 j+1)
2 = Q

r+1N4
2 at resolutionr +1. The pointsN4,

N5 and N7 of the spin images mesh are considered. The
contribution provided byM to each of those points is
computed as follows:

Wr+1
N4

(Q
r+1N4
2 ) = ∑

M∈Q
r+1N4
2

a(M,N4)
δαr+1

(1− b(M,N4)
δβr+1

)

Wr+1
N5

(Q
r+1N4
2 ) = ∑

M∈Q
r+1N4
2

(1− a(M,N4)
δαr+1

)
b(M,N4)

δβr+1

Wr+1
N7

(Q
r+1N4
2 ) = ∑

M∈Q
r+1N4
2

(1− a(M,N4)
δαr+1

)(1− b(M,N4)
δβr+1

)

Wr+1
N8

(Q
r+1N4
2 ) = ∑

M∈Q
r+1N4
2

a(M,N4)
δαr+1

b(M,N4)
δβr+1



Now the same pointM ∈ Q
r+1N4
2 at resolutionr can be

computed through bilinear interpolation filling. This may
be written forNr

(i, j):

Wr
(i, j)(Q

r+1N4
2 ) = ∑

M∈Q
r+1N4
2

(1−
a(M,Nr

(i, j))

δαr
)

(1−
b(M,Nr

(i, j))

δβr
)

(4)

From Tab. I, and having 2δαr+1 = δαr Eq. 4 can be
rewritten:

Wr
(i, j)(Q

r+1N4
2 ) = Wr

(i, j)(Q
r(i, j)
2,2 ) =

= ∑
M∈Q

r+1N4
2

(1− a(M,N4)+δαr+1

2δαr+1
)

(1− b(M,N4)+δαr+1

2δβr+1
)

= ∑
M∈Q

r+1N4
2

1
2
(1− a(M,N4)

δαr+1
)

1
2
(1− b(M,N4)

δβr+1
) =

1
4

Wr+1
N4

(Qr+1
2 )

(5)

Using the same arguments, we can find:

Wr
(i, j)(Q

r(i, j)
2,0 ) = Wr+1

N0
(Q

r(i, j)
2,0 )+

1
2

Wr+1
N1

(Q
r(i, j)
2,0 )

+
1
2

Wr+1
N3

(Q
r(i, j)
2,0 )+

1
4

Wr+1
N4

(Q
r(i, j)
2,0 )

Wr
(i, j)(Q

r(i, j)
2,1 ) =

1
2

Wr+1
N1

(Q
r(i, j)
2,1 )+

1
4

Wr+1
N4

(Q
r(i, j)
2,1 )

Wr
(i, j)(Q

r(i, j)
2,3 ) =

1
2

Wr+1
N3

(Q
r(i, j)
2,3 )+

1
4

Wr+1
N4

(Q
r(i, j)
2,3 )

(6)

Thus

Wr
(i, j)(Q

r(i, j)
2 ) =

3

∑
n=0

Wr
(i, j)(Q

r(i, j)
2,n )

= Wr+1
N0

(Q
r(i, j)
2,0 )+

1
2

Wr+1
N1

(Q
r(i, j)
2,0 )

+
1
2

Wr+1
N3

(Q
r(i, j)
2,0 )+

1
4

Wr+1
N4

(Q
r(i, j)
2,0 )

+
1
2

Wr+1
N1

(Q
r(i, j)
2,1 )+

1
4

Wr+1
N4

(Q
r(i, j)
2,1 )

+
1
2

Wr+1
N3

(Q
r(i, j)
2,3 )+

1
4

Wr+1
N4

(Q
r(i, j)
2,3 )

=
3

∑
n=0

8

∑
m=0

(1− aNm

δαr
)(1− bNm

δβr
)Wr+1

Nm
(Q

r(i, j)
2,n )

(7)
The same arguments holds for the other points and

proof the lemma�.

The multi-resolution computation of the spin images
is done first by computing the most precise spin-image
through examination of every points. For each point of the
spin image, four densities corresponding to each quadrant
are stored. For lower resolution images, the density is
computed using the position of the point regarding the
quadrant considered and Eq. 2.

It should be stress here that in our current implementa-
tion, only the spin-images are submit to a multi-resolution
scheme. In this first step, no sub-sampling of the mesh has
been applied. Thus if the size of the spin-images decrease
in this process, the number of points does not.

IV. SEARCH PROCESS

Simulator scene being analysed
Simulator scene

Fig. 5. A 3D mesh extracted from the Stanford Bunny flying in the
OpenHRP simulator. The scene is cut according to the bounding box
model.

The search process described here is based on a 3D
mesh. This can be either a single view of the environment
or an incrementally build representation. In our current
implementation, it is a single view provided by the stereo-
scopic system. In the following, it is called the scene.
The scene is divided in sub-blocks. The sub-block size
is given by the bounding box of the searched object as
depicted in Fig. 5. On each of the sub-block the following
algorithm is applied:

1) Select the best resolution according to the average
edge-length;

2) Get the main rigid transformation which project the
model into the scene;

3) Check if if the model is in the scene using the previ-
ously computed rigid-transformation. This provides
a main correlation coefficient, and the position plus
orientation in the scene of the seen object.

A. Selection of the best resolution

From section III, the object resolution is the average
edge’s length in the scene. Then the resolution for the
model’s spin-images is chosen according to Eq. 1. Two
spin-images(p,q) with the same resolution are compared
using the following correlation function as proposed in [3]:

R =
N.∑N

i=0 pi .qi − ∑N
i=0 pi . ∑N

i=0qi√
N.∑N

i=0 p2
i −

(
∑N

i=0 pi
)2

.

√
N.∑N

i=0q2
i −

(
∑N

i=0qi
)2

R∈ [−1 ; 1]
(8)

with N the number of non-empty points in spin-image of
the scene. This correlation can be proven to be independent
to the normalisation of a spin-image. Thus during the multi-
resolution phase the spin-images are not normalised.

B. Rigid transformation evaluation

The main rigid transformation is obtained as follows:
Some points are randomly selected in the scene. Their cor-
responding points in the model are searched by comparing
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Fig. 6. Matching points.

their spin-image to all the model’s spin-images as depicted
in Fig. 6.

This gives a listLC of matching points sorted by their
correlation coefficients. To remove false matching, the last
20 % elements ofLC are discarded. From this, a list of
rigid transformationLRT is extracted by considering sets
of 4 points in the listLC as depicted in Fig. 7.

Matching−list couples tab.

Compute a rigid transformation for a set of 4 points.

Rigid transformation : RT

Get a list of RT.

RT
RT

RT
RT

Fig. 7. Sets of 4 points used to compute rigid transformation.

For each rigid transformatione∈ LRT, a mark is com-
puted by considering all the couples ofLC. If e is the real
rigid transformation, then it should project the maximum
number of points from the scene to the model.

C. Final correlation coefficient

On order to verify the main rigid transformation, points
of the model are chosen randomly and verified against the
scene using the proposed main rigid transformation. The
main correlation coefficient is the average of the 80 % best
correlation coefficients.

This procedure is applied to each of the sub-space.

V. EXPERIMENTS

A. Simulation

Stanford Bunny Stanford Bunny DinosaurStanford Bunny

Correlation

0.999999

coefficient

Correlation
coefficient

−0.194486

Fig. 8. Spin images comparison examples.

Fig. 9. The Stanford Bunny with a white noise based on the average
edge length.

Fig. 10. The Stanford Bunny with self occlusion.

The previously described algorithm was tested on dif-
ferent situations to check its efficiency. First, a Stanford
Bunny spin-image was tested against a spin-image of the
dinosaur represented in Fig. 1. This intended to evaluate
the correlation value against a very different spin-image.
The returned correlation was−0.19.

Next, a 20 % white noise has been added to the Stanford
Bunny after a rigid transformation including two rotations:
45 degrees around the X axis, and 90 degrees around the
Y axis and no translation as depicted in Fig. 9. This noise
was taken according to the average length of the connected
edge for a point. The returned correlation was 0.91 and
the rotation evaluated to 42 degrees around X, 92 degrees
around Y and−1 around Z.

The third case intends to simulate a single view of
the complete 3D model, and the subsequent self-occlusion
as shown in Fig. 10. The associated rigid transformation
has no rotation and no translation. The resulting main
correlation coefficient was 0.22. From those simulation we
can conclude that the search seems to be rotation invariant,
robust against noise but is sensitive to occlusion. However
the correlation coefficient is still higher when only partial
informations are available, than with a complete different
object. This provides a good candidate for the next view.

B. OpenHRP[11] simulator

In this context, the HRP-2 humanoid robot is simulated
inside a house environment. The goal of this simulation was
to try to cope with different objects present in the scene. In
order to discard any perturbation from the occlusion, and
the multi-resolution, the model used for the search process



Simulator view used as reference Simulator scene

Fig. 11. Simulation using the OpenHRP simulator.

Chocochips: "hand−made" model Chocochips: scene−image Chocochips: reconstructed data

Fig. 12. Experiment on a single view of the HRP2 humanoid robot

was a view of the Stanford Bunny from the OpenHRP
simulator.

This model is thereafter search inside a virtual house.
The Stanford Bunny is above a table, behind chairs, and
several objects are presents in the background, as depicted
in Fig. 11 and Fig. 5. Using the previously described
scheme, the model is found with a correlation coefficient
close to 0.99. In this context, we can conclude that the
other objects in the scene does not decrease the efficiency
of the search.

C. Real data

The HRP-2 humanoid robot is equipped with a trinoptic
vision system. In this particular case, only two cameras are
used. Using a correlation method to match points between
the left image and the right image, clouds of 3D points are
computed using epipolar geometry. The implementation is
a modified version of the VVV system [12]. The object
used for this test is a box of cookies depicted in Fig. 12.(b).
Its model, here hand-made, is represented in Fig. 12.(a).
The reconstructed mesh is displayed in Fig. 12.(c). The
recognition process returned a correlation coefficient equal
to 0.234 which is similar to the result obtained through
simulation.

D. Computation time

To build the Stanford Bunny model, it takes 6 minutes
and 24 seconds for 34834 points. The recognition process
takes 32 seconds for a scene, using 100 spin images to
compute the rigid transformation. The recognition process
applied to 8 scenes takes 2 minutes 19 seconds, using 50
spin images for the rigid transformation. Also our multi-
resolution approach decreased the initial results obtained
with this implementation, it is currently not sufficient for

our targeted application. This implementation has not been
optimised to take fully advantage of the newest Pentium
capabilities. Moreover during the recognition process, as
it has already been noted, if the size of the spin-images
is decreasing in the multi-resolution scheme, it is not
the case of the number of points. It has no impact on
the efficiency of the recognition as the correlation is not
sensitive to this problem. However, this is clearly time
consuming. Two kinds of improvement are possible: using
a compression scheme such as the Principal Component
Analysis as proposed in [3], or a Wavelet based approach
such as WaveMesh [13].

VI. CONCLUSION

A visual search process based on clouds of 3D points
has been presented in this paper. It relies on a multi-
resolution signature using spin-images as descriptors. A
fast iterative algorithm has been proposed to compute
efficiently lower resolution spin-images from the finest one.
A first implementation and its applications to simulated and
real data have been presented to validate the approach. It
shows the process robust against noise, rotation invariant,
able to cope with size, and still able to provide information
when an occlusion occurs. Our future work is too improve
the efficiency of this implementation, and applied it in the
context of a “Treasure Hunting” behaviour.
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