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Abstract— This paper proposes a real-time implementation of
collision and self-collision avoidance for robots. On the basis of
a new proximity distance computation method which ensures
having continuous gradient, a new controller in the velocity
domain is proposed. The gradient continuity encompasses no
jump in the generated command. Included in a stack of
tasks architecture, this controller has been implemented on the
humanoid platform HRP-2 and experienced in a grasping task
while walking and avoiding collisions with the environment and
auto-collisions.

Index Terms— stack of tasks, proximity distance with contin-
uous gradient, self-collision and obstacle collisions avoidance.

I. I NTRODUCTION

It is crucial for a robot to have, among others, the ability to
(i) avoid undesirable collisions with both obstacles and own
parts –for example undesirable auto-collisions for redundant
robots such as humanoids– and (ii) detect desired collisions
such as those necessary to perform contact-based tasks –for
example haptic interaction with an environment or with own
robot parts–. Collision detection and avoidance functionsare
needed either in simulation or in real implementation and can
be used in off-line or on-line trajectory generation. Planning
collision-free trajectories is an active area of research [1].
Open-loop planning is generally made off-line and can
make use of simple binary collision detection algorithms
whereas closed-loop trajectory generation is on-line, mostly
embedded with the controllers and makes use of proximity
distance collision to predict and prevent collisions [2]. In
this paper we address the problem of on-line collision
avoidance (including auto-collision avoidance) in the context
of robotics and more particularly in humanoid robotics;
although several closed-loop controllers have been proposed
for various reactive task purpose full body motion, see for
instance [3][4], surprisingly none of them guarantee, in an
explicit way, non desirable collisions or auto-collisions. We
propose an efficient algorithm to compute fast proximity
distances that can be efficiently integrated in a low-level
reactive control. We used strict-convexity bounding volumes
close to polyhedral convex hulls in order to guarantee the
continuity of the proximity distance gradient [5] and in the
same time satisfying real-time control requirement. In [6]
authors make use of cylinders and spheres to cover a redun-
dant manipulator and compute in a efficient way proximity
distance to be used as a secondary task in a kinematics task
prioritization scheme and experimented on a 7dof redundant
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Fig. 1. STP-BV representation of HRP-2.

manipulator. Instability that may occur from discontinuity
of the witness points has been addressed in configurations
where the cylinders are nearly parallel. Our algorithm makes
use of patches of spheres and toruses to cover in a more
precise way the convex hull of robot’s part and get rid of
this problem. Our algorithm description and its technical
implementation issues are presented in the first section.

The very nature of reactive controllers is that they are
local and not global such as in [7]. They are more suited
to interactive task, and unstructured varying environments;
they are also computationally lighter than planning. Our
algorithm has been integrated as an additional task in the
stack of the task sequencing architecture proposed in [8][9].
In humanoid robotics, a similar idea has been proposed
in [10] where self-collision avoidance has been implemented
on the simulator of ASIMO, their method makes use of an
artificial force which changes the value of the desired posture
in the gradient of a posture cost function projected in the null
space of the main tasks; tasks are described in derivative
of joints or Cartesian spaces (velocity). This virtual force
penalizes a close proximity distance obtained from sphere
swept lines [11] bounding volume of the humanoid. Their
approach is very elegant and simple to implement, yet they
did not consider stability problems that may occur from
discontinuous witness points and their formalism would not
allow marking auto-collision avoidance with higher priority.
This is possible by our method.



Our method has been ported and exemplified on an actual
experiment involving the HRP-2 humanoid robot. The tasks
consist in performing a ball-grasp guided by vision while
at the same time walking stably and avoiding obstacles and
auto-collisions. As a result of this experiment, open issues
appear to be linked to task sequencing and prioritization and
more generally the way to tackle tasks described through
unilateral constraints... consisting in future work.

II. PROXIMITY DISTANCE HAVING CONTINUOUS

GRADIENT

A. A new strictly convex bounding volume

Proximity distance and more generally collision avoidance
have been widely studied, which results in numerous al-
gorithms and schemes (the interested reader may refer to
the recent, exhaustive and excellent review books [12][13]).
However, little attention has been paid to the continuity
properties of the proximity distance. It has been pointed out
however that in singular cases, the gradient of this distance
is not continuous, generating oscillations or misbehaviours
in the control scheme [6]. For a complete discussion on the
continuity problem as well as a method to regularize the
proximity distance gradient, see [5]. The main idea is to
build strictly convex hulls of the robot bodies in a way that
can be seen as a slight blowing up of the usual convex hull.
It is realized through patches of spheres and toruses. Such
a volume is called Sphere-Torus-Patches Bounding Volume
(STP-BV). Its advantages are (i) to ensure continuity of
the gradient, and (ii) to accurately approximate the convex
hull of the object (in typical cases we experienced, the
volume increase from convex hull to STP-BV is 1–2%),
while maintaining the number of collision pairs low (one
volume per body) as well as the computation time for each
of them.

One of the most interesting property of STP-BV main
result presented is it is sufficient to have only one strictly
convex body to have a continuous minimum distance be-
tween two witness points of two convex bodies. This means
that the STP-BV construction is not mandatory for obstacles
to hold the continuity. It is sufficient to build the patches only
for the robot’s bodies. The HRP-2’s associated representation
is depicted in figure 1. The computation of the gradient then
from [5] of this distance is now detailed, as it is a key point
to compute a control law to avoid self-collision.

B. Computing Proximity Distance’s Gradients

Let us noteδ the distance between two convex objects
O1 and O2. The relative position between two objects is
parameterized by the actuated joints of the robot notedq.
Assuming that the witness points of the STP-BV of objects
O1 and O2 are respectivelySP 1

min and SP 2
min then the

gradient of the distance can be written:

∂δ

∂q
= n⊤

d

(
∂SP 1

min

∂q
(q) −

∂SP 2
min

∂q
(q)

)
(1)

with nd the normal unit vector derived from the features.
Intuitively the gradient is orthogonal to the vector defined
by the two witness points.

For a pointP of fixed coordinates(x, y, z) in the local
frame of an objectO at the configurationq, the gradient has
the following expression:

∂P

∂q
(q) = xJ1(q) + yJ2(q) + zJ3(q) + J4 (2)

obtained by deriving

P (q) = R(q)(x, y, z)⊤ + T (q)

= xC1(q) + yC2(q) + zC3(q) + T (q)
(3)

where R is a rotation matrix,Ci its columns andT is
the translation vector. TheJi are the gradient matrices of
the Ci and T . This matrices can be analytically computed
beforehand and are called hereafterpregradient matrices.

III. STACK OF TASKS

The stack of tasks is a structure that orders the set of tasks
that are currently active. Only the tasks in the stack are taken
into account in the control law. The task at the bottom level
has priority over all the others, and the priority decreasesas
the stack level increases. The control law is computed from
the tasks in the stack, in accordance with three rules:

- any new task added in the stack does not disturb the
tasks already in the stack.

- the control law is continuous, even when a task is added
or removed from the stack. The robot is controlled
through the joint velocityq̇. A break of continuity
would mean an infinite acceleration during a short
period of time, which would imply that the control is
not correctly applied.

- if possible, the additional constraints should be added
to the control law, but without disturbing the tasks in
the stack.

The control law is computed from the stack, using the
redundancy formalism introduced in [14]. The additional
constraints are added at the very top of the stack, which
means that they are taken into account only if some degrees
of freedom (DOF) remain free after applying the active tasks.
This priority order may seem illogical, considering that the
constraints are obstacles that the robot should avoid above
all. However, the positioning task has priority since it is the
task we want to see completed, despite the presence of the
obstacles. The high-level controller is then used to ensure
that the constraints are respected when it is obvious that the
robot will violate them.

1) Ensuring the priority: Let (e1,J1) ... (en,Jn) be n

tasks. The control law computed from thesen tasks should
ensure the priority, that is the taskei should not disturb the
taskej if i > j. A recursive computation of the joint velocity
is proposed in [14]:

{
q̇0 = 0
q̇i = q̇i−1 + (JiP

A
i−1)+(ėi − Jiq̇i−1), i = 1..n

(4)

wherePA
i is the projector onto the null-space of the aug-

mented JacobianJA
i = (J1, . . .Ji) and J̃i = JiP

A
i−1 is

the limited Jacobian of the taski . The robot joint velocity



realizing all the tasks in the stack iṡq = q̇n. The projector
can be recursively computed by

PA
i = PA

i−1 − (JiP
A
i−1)+JiP

A
i−1 (5)

2) Ensuring the continuity: From (4), the control law is
obtained by imposing a reference velocityėi for each task in
the stack. Generally, a exponential decrease is required by
imposing the first order differential equatioṅei = −λiei.
However, this equation does not ensure the continuity of
the robot velocity when the stack is changed. In [15], we
proposed a solution to properly smooth the robot velocity at
the transition, by imposing a specific second order equation:

ëi + (λi + µ) ėi + (λiµ) ei = 0 (6)

whereλi is the gain that tunes the convergence speed of task
ei, andµ sets the transition smoothness of the global control
law. The control law is obtained by introducing (6) in (4):

{
q̇i = q̇i−1 + (JiP

A
i−1)+(−λiei − Jiq̇i−1)

q̇ = q̇n + GAe−µ(t−τ)
(
ė(τ) + Λe(τ)

) (7)

where τ is the time of the last modification of the stack,

Λ = diag(λi) andGA is defined so thaṫqn = GA




ė1

...
ėn




in (4).
3) Adding the secondary constraints: The constraints are

added using the Gradient Projection Method [16], [2]. The
constraints are described by a cost functionV. The gradient
g(q) of this cost function can be considered as an artificial
force, pushing the robot away from the undesirable config-
urations. It is introduced as the last task of the stack. It has
thus to be projected onto the null space of each task into the
stack. Using (7), the complete control law is finally

q̇ = q̇n + GAe−µ(t−τ)
(
ė(τ) + Λe(τ)

)
− κPA

n g (8)

The reader is invited to refer to [15], [17] for more details.

IV. T HE CONTROL LAW RELATED TO SELF-COLLISION

A. Gradient Projection Method

We want now to find the cost function to be minimized
in order to respect the constraint of self-collision avoidance.
This problem is written

min V (q), q ∈ R
n (9)

with n the number of DOFs of the robot. The classical
iterative solution is then to move the robot along the gradient
of the function:

q̇ = −κg(q) = ∇⊤
q (10)

The task to avoid self-collision is straightforward and in-
spired from the joint limit avoidance scheme proposed by
Khatib [2].

Let us considerΦ a set of parameters to span the constraint
space. The optimal force to satisfy this problem is then [18]:

gΦ(q) =

(
∂Φ

∂q

)
∇⊤

ΦVΦ (11)

For instance as proposed by [2] we can set:

V (q) =
1

2

n∑

i=1

α2
i

∆q̄i

(12)

with ∆q̄i = q̄max
i − q̄min

i the size of the joint space for joint
i, and

αi =





qi − q̄min
li , if qi < q̄min

li

qi − q̄max
li , if qi > q̄max

li

0, otherwise

(13)

we would like to find a similar function to avoid the self
collision.

B. A cost function to avoid self-collision

As we want to keep distance between two bodies of the
robot to be above a certain thresholda, we propose the
following cost function:

V (q) =
∑

i∈Cp

gi(q)

gi(q) =

{
(δi(q) − ai)

2 if δi(q) < ai

0 otherwise

(14)

with Cp = {Cj ,∀gj(q) < αaj}, 1 < α ∈ N. and C =
{C0, ..., Cm} is the set ofm pairs of bodies which are checked
for collision. ai represents theactivation distance between
the two bodies of pairCi.

C. Gradient of the cost function

The gradient of the cost function is obtained by simple
derivation:

∂Vi(q)

∂q
= 2(δi(q) − ai)

∂δi(q)

∂q
(15)

if δi(q) < ai,
∂Vi(q)

∂q
= 0 otherwise. The final Jacobian for

the cost function is:

∂V (q)

∂q
=

∑

i∈Cp

Ji(q) (16)

which size is1 × n. It is also possible to have a weighted
function on all the pair of bodies formulate as:

gi(q) = wi(δi(q) − ai) (17)

But this will imply to compute the gradient on each pair.

D. Exponential decay

As self-collision avoidance (SCA) is of prime interest for
safety reason, we would like to put it as one of the first task
to be realized. In order to insert the SCA task inside the stack
of tasks, we need to create a projector to constraint the lower
priority tasks inside the null space of SCA’s task. Integrating
the Jacobian of the SCA task directly and its related null-
space as proposed in 4, is not a good idea. Indeed there is
no constraint regarding the evolution of the function with
respect to time. Therefore we finally introduce the following
task: e = V (q), ė∗ = −λe. The second equation means
that the desired task velocity is an exponential decay.



Fig. 2. Using a one-dimensional task for collision avoidanceallows the
violation of constraints.

E. A multi-dimensional task to avoid self-collision

In case of simultaneous collisions, it appears that task (14)
can cause some problems. The null space of the task (14)
allows collisions to occur, because the avoidance of potential
collision is considered as a one-dimension task; the gradients
of all the collision distances are summed. The null space of
this task will thus be of higher dimension than it would have
been if we had considered each collision separately. This is
illustrated on figure 2. Let us suppose the operational space
is a plane with two collisions detected. The figure represents
the velocity plane.G1 and G2 represent the gradients of
the collision distances. The hatched area represent the locus
of velocities for which a collision will occur.C1 and C2

represent the collision constraints. In the framework of the
stack of tasks, no motion is possible in such a case because
the velocity along bothG1 andG2 will be constrained to be
zero and sinceG1 andG2 are independant, no more degree
of freedom is available. However, if we use task (14), lower
priority tasks will be projected onto the null space ofthe
sum of G1 andG2. This null space is one-dimensional and
thus allows motion along the dashed line which cause the
violation of the collision constraints. In order to avoid this
behavior, we replaced task (14) with the following:

V (q) =




...
gi(q)

...


 i ∈ Cp

gi(q) =

{
(δi(q) − ai)

2 if δi(q) < ai

0 otherwise

(18)

The dimension of (18) can change depending on the number
of potential collisions. To avoid implementing dimension-
varying tasks, we fixed the dimension of (18) to a constant
Nc, so that it is possible to handle up toNc collisions. We
tested the case whereNc = 5.
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F. Problem of remaining stuck in collision

In some other experiments of the collision avoidance
control, we observed that the robot was stuck at distance
a0 to contact, after it occurred. This behavior was observed
even if another task with a lower priority was pushing the
robot away from the collision. Such a behavior is due to
the collision-avoidance task that exponentially decreases the
distance between two bodies to the minimum distance. The
minimum distance is thus asymptotically reached after a
long time. The collision task is deactivated only when this
minimum distance is reached. While the collision task is
converging, no other task with a lower priority can act in its
space to quit the collision. For the experiments presented
in this paper, we believe this problem was not observed
because collision constraints are strictly convex and thatit
is possible to quit a collision in the null-space of a collision
task thanks to the high-redundancy of HRP-2. Solving such a
problem requires to develop a new theoretical framework to
deal with collision constraints, that are inequality constraints
rather than equality constraints.

V. EXPERIMENTS

A. Control the distance between two objects.

In order to have a better understanding of the collision
distance behavior and its jacobian inside the stack of tasks,
let us consider a simpler version of the collision avoidance
control law proposed previously. The cost function is set to:

V (q) = (δ0(q) − a0)
2 (19)

whereδ0(q) is the distance between the head and the right
gripper, anda0 is set to0.01 m. Here the testδ0(q)−a0 > 0
is removed. This task is interesting because as there are eight
articulations from the gripper to the head it is redundant,
so an infinite number of solutions is possible. Thus face
crossings triggering discontinuities are very likely to occur.
The evolution of the distances between the two bodies return
by V-Clip and STP-BV are given in figure 3. Note that
the graph’s is very close to an exponential decrease. The
evolution of the Jacobian’s relevant components are depicted
in figure 4. As expected, the legs were equal to zero, as well
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as the chest, the head’s tilt, the free-flyer and the left arm.
The only moving parts of the robot are the right arm and
the head’s pan. Between iterations 50 and 60 a discontinuity
seems to have occur (figure 4 up), but a careful examination
shows that this is only a quick continuous change (figure 4
bottom). This especially appears when two faces are parallel
during which the witness points thus move very quickly
along the STB-BV geometric shapes.

B. Avoiding known obstacle

In this section, the experiment fully exploits the redun-
dancy of the HRP-2 humanoid robot by combining several
tasks. The robot has to grasp a ball while walking. An image
centering task ensures that the robot is always seeing the
ball. An arm-orientation task makes sure that the gripper is
ready to grasp. When the gripper is close enough the ball is
catched. If the gripper misses, it is detected by monitoring
the torque. A detailed description of the control laws can be
found in [9]. The priorities of the tasks are the same, with
the collision avoidance task having the second priority just
after walking. Two original modifications have been realized
to implement obstacle avoidance in the stack of tasks. Firstly
a set of 116 pairs are chosen to track auto-collision. Bodies
linked to each other are not included because they are treated
by the joint limits constraints. The second originality is done
through the inclusion of a 25 cm diameter ball in the collision
pairs. The ball position is put in such way that the robot’s
hand comes into collision, see figure 5. The value starting

Fig. 5. Initial motion with collision

Self−Collision

Avoidance

Fig. 6. Avoiding Self-Collision (ai = 0.01 m).

the inclusion of the distance inside the control law is set to
ai = 0.1 m.

The robot avoids the ball in two occasions. First by holding
the hand when moving forward. Then the avoidance stops
while the robot is moving away. In second when the robot
swing back to the left for the next step the hand and the arm
moves to the right to avoid collision.

As in [9]the high-level controller removes the orientation
and grasp tasks right after grasping, and a task extending the
right arm is put inside the stack. The CoM task then uses the
left arm to maintain the CoM given by the pattern generator.
However this motion makes the robot reach its joint limits.
The left arm then moves toward the left leg, and avoid it
thanks to self-collision pairs in the controller, see figure6.
This behavior do not appear when using CoM or Collision-
avoidance alone. The described experiment can be watch in
the companion video, and is depicted in figure 7.

VI. CONCLUSION

We have presented a new controller which can be used
to avoid self-collision and collision with an external object.
This new controller is based on a proximity distance which
has a continuous gradient. A new geometric representation



Fig. 7. HRP-2 reactively avoids the biggest ball.

of the robot bodies bouding volume is at the heart of this
new result. This controller has been implemented and tested
on a real full-size humanoid robot.

The main limitation of the current system is that the
Jacobian components related to the free flyer’s humanoid
are not considered. Indeed this might involve to change in
real-time the CoM trajectory [19] and in some cases the
foot position [20]. A new challenge is to include obstacle
avoidance in real-time biped walking engine.
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