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Abstract— Considering a stereoscopic visual system, this
paper deals with the error involved by a 3D reconstruction
process. If image pixels are seen as surfaces instead of
points, interval analysis provides bounding boxes in which
the reconstructed 3D point lies with certainity. This paper
presents a method which refine this bounding box and gives
a tighter approximation of the error. Using bissection, and
a reprojection test in the image planes, the space in which
the 3D reconstructed point may be located is given as an
octree. This is achieved through the resolution of a set
inversion problem using the SIVIA algorithm. For a lighter
manipulation of the result, an englobing ellipsoid is deduced
from this approximation. Finally the three models are tested
on a recognition process for a humanoid robot.

Index Terms— 3D reconstruction, bissection, ellipsoids

I. I NTRODUCTION

This paper deals with the uncertainty related to the 3D
reconstruction problem. There are three sources of error in
general : the segmentation process, the chosen parameters
in the camera model, and the pixel information. Taking
into account this error may be done through an additive
term to the pixels position, the camera model or both. The
Gaussian distribution has been extensivly used as such ad-
ditive term, and the applications include calibration process
[1] [2], motion estimation [3], environment modeling [4],
self localization applied to robots [5], registration [6], or
visual servoing [7]. A statistical study on the influence of
modelization by Gaussian noise can be found in [8], but is
also possible to solve the 3D reconstruction problem using
Interval Analysis as proposed in [9] and [10]. The latter
approach provided a upper bounded evaluation of the error
and does not need a sufficient number of samples to be
statistically representative. An application using this ap-
proach to build partial boundaries representation of objects
is proposed in [11]. However the main inconvenient of this
method is the limitation related to the geometrical shape
of the intervals. Indeed the results provided may be seen
as a bounding box of the true shape of the reconstruction
error. This problem is known as the wrapping effect [12].
In this regard, the method proposed provides the optimal
bounding box of this space. But if such a space is very
close to the diagonal of its bounding box, then a better
geometrical representation has to be find. Unfortunatly the
work on uncertainty using Gaussian distribution clearly

show that this is the case for the 3D reconstruction problem.
Following the work of Jaulin [13], this paper describes a
method to obtain a tighter approximation of this error using
a paving representation. In our application, the paving is
the union of intervals which follow a particular subdivision
scheme and representend by a 8-tree called octree. The
core idea of this reconstruction is to solve a set inversion
problem using the property of the uncertain based model
projection. Finally as octrees are not handy to represent
large numbers of error spaces, for instance in the context of
disparity maps, it is proposed to build bounding ellipsoids.
The remainder of this paper is organized as follows: Section
II introduces the camera model used in the framework
of Interval Analysis. Section III recalls briefly how the
reconstruction problem is solved using intervals. Section
IV explains how the paving representation is build. Section
V details how a bounded ellipsoid is build on the resulting
octree. Finally section VI provides some results in the
context of a research behavior.

II. CAMERA MODEL

The most popular camera model in computer vision is
the pinhole model. It allows to use the projective geometry
properties; thus the projection observed by a camera is a
linear application given by Eq. (1). This model has 12
degrees of freedom. The complete projection of a scene
point Qh through the camera model is given by [14][15]:

q = PQh = K (R|t)Qh (1)

whereK is the matrix of intrinsic parameters,(R|t) is the
matrix of extrinsic parameters.R represents the orientation
of the camera in the scene frame, andt is its position.Qh

is a 4 dimensional homogeneous vector of a 3 dimensional
point in the scene. MatrixP represents the linear applica-
tion associated to the projection, its dimension is(3×4),
and q is the homogeneous vector associated to the image
point of Qh by P. In the following, we consider the error
relative to the projection of a 3D point in the image plane.
Classically this error add a Gaussian term to the projection
defined by Eq. 1. In this paper, we deal with bounded error
by using the alternative model proposed in [11] which
represents each pixel by an interval. Computation with
intervals is a common way to make guarranted calculus
in numerical computation, and the detailed rules of this



arithmetic is given in [13]. Vision problems reformulated in
the framework of interval analysis is presented extensively
in [9]. Thus only pertinent concepts and tools related to
this field will be introduced.
The uncertainty associated to the position of an image point
is introduced as the interval vector[ε]. The projection is
now written:

[q] = E

(
PQh

Pt
3Qh

)
+[ε] (2)

WhereE is the round operator which furnishes the nearest
integer of a value. The denominatorPt

3Qh is the nor-
malisation of data description in the image, whereP3 is
the third column of the camera modelP. This allows
to fix the scale factor and to define the error vector:
[ε] =

(
[ε1] [ε2] 0

)t
. According to the model, there is

no error on the scale factor, but only an uncertainty on
the position of the geometric point in the image plane.[q]
is the resulting interval vector. Values of[q] describes the
boundaries of the projections of the 3D point in the image
plane.

A. 3D reconstruction

Concerning a stereoscopic system, a couple of camera,
represented byPl ,Pr , compensates the not full rank relation
in the algebraic representation given by Eq. 1. Indeed, the
relation between a 3D point and its couple of projections
provides the following over-determined system:(

ql

qr

)
=

(
Pl

Pr

)
Qh (3)

We observe 6 equations and 4 unknown data. It represents
the intersection of the two reprojected lines defined by the
center of each camera and each image point. The resolution
of this linear system furnishes the coordinate of the 3D
reconstructed point. It is equivalent to an over-determined
system in the form:

AQnh = B (4)

Matrix A and vectorB are build with the elements of
Pl ,Pr ,ql andqr . Qnh is the non homogeneous vector of the
3D point in the scene. Due to the projective representation
of space, it is given up to a scale factor [10][14][15].

B. Handling data uncertainty

Using equation 2, the pixels position are described
with intervals([ql ], [qr ]). From [10] it provides the system
(equation 4) based on interval arithmetics rules. First, the
matrix P associated to a camera model is cut such as:

P = (M | V) (5)

WhereM is a(3×3) matrix andV is a(3×1) vector. From
Eq. 5, and by introducing the operator[∗]× then the system
to solve (Eq. 4) may be written in the interval analysis
framework as:

[A]Qnh = [B] (6)

with

[A] =
(

[[ql ]]×Ml

[[qr ]]×Mr

)
; [B] =

(
[[ql ]]×Vl

[[qr ]]×Vr

)
(7)

where [A] is an interval matrix,[B] an interval vector,
and [∗]× the cross product function. This operator gives
the associate anti-symmetrical matrix. For a given interval
vector this operator is such as:([a][b][c])t[a]

[b]
[c]


×

7→

 0 [−c] [b]
[c] 0 [−a]

[−b] [a] 0


The exact set of 3D points{Qs} which is solution of the

uncertain linear system is :

{Qs}=
{

Qnh∈ R3|∃A∈ [A],∃B∈ [B],AQnh = B
}

(8)

In the next section we briefly introduce tools of interval
analysis providing a minimal external bounding box[X] =
[{Qs}] of {Qs}. This is the first characterisation of the
bounded error related to the 3D reconstruction in this paper.

III. B OUNDING BOX FOR3D RECONSTRUCTION ERROR

In the framework of interval analysis, linear system such
as Eq. 8 can be solved using afixed point contractor[13].
The use of this tool has been developed in computer vision
in [11]. Applied to the linear system given by Eq. 8 it
provides a box[Qs] which contains the solution set{Qs}
such as:

[Qs] = [{Qnh|∃A∈ [A],∃B∈ [B],AQnh = B}] (9)

Let’s call CGS the Gauss-Siedel fixed point contractor and
CK the Krawczyk fixed point contractor. Both seek for the
minimal [Xs] such as:

{Qs} ⊂ [Qs] = CGS([A], [B])
{Qs} ⊂ [Qs] = CK([A], [B]) (10)

Applying these operators solve the linear system 7 for a
couple of calibrated camera and a set of matched points.
In [11] a comparison is given which led us to chose
the Gauss Siedel contractor as it provides a good trade-
off between accuracy and speed. The results applied to a
real scene depicted in Fig. 1 are represented in Fig. 2.
Data are provided by the VVV system [16]. This versatile
system using a trinocular stereo camera setup is able to
reconstruct 3D information of a scene, to recognise an
object [17], to track a recognised object [18], and to build a
model using a range finder system. The boxes represent the
intervals in which lie the features points. The uncertainty
which have been taken into account is digitalisation noise:
[ε] = ([−0.5,0.5][−0.5,0.5][0−,0+])t . As expected, due to
the geometric model of the camera, deeper objects, or
objects far away from the optical axis intersection are less
precisely located.

IV. PAVING OF 3D RECONSTRUCTION ERROR

The previous approach provides a bounding box of the
set{QS}. However considering Eq. 8, and the fact that we
are using a bounding box, several points does not fullfill
the property stated by Eq. 4. This problem is known
as the wrapping effect [12]. Indeed the geometry of the
box does not map the true shape of{Qs}. Then in this



Fig. 1. Original images for 3D reconstruction. 2 kinds of objects are
considered: Geometrical form and free form.

Fig. 2. Viewpoint of a 3D reconstruction with Boundaries representation
and interval bounding boxes. Only digitalisation noise is taken into
account.

section a new geometrical approximation based on paving
is proposed. It builds a better approximation which still
bound the real solution{Qs}.

We propose here to consider the projection in a set
inversion problem. Indeed, we can say that reconstruction
consists in searching the set of 3D points{Qs} such as
their projection obtained with then camerasPi (i = 1...n)
are the pixels image[qi ] (i = 1...n). By using the model of
camera we proposed (Eq. 2), we can write the following
relation:

Qh ∈ {Qs} ⇒
{

E

(
PiQh

Pt
i3Qh

)
+[ε]

}
∈ [qi ] (11)

for i = 1...n

Let us now introduce the problem of set inversion. It
consists in retrieving the domain of definition of a given
function when the image domain is known.

A. Definitions for Set inversion

Let f be a function fromRm to Rn and Y a subset of
Rn. Set inversion is the characterisation ofX such as:

X = {x∈ Rm| f (x) ∈ Y}= f−1 (Y) (12)

Lets call [ f ] the inclusion function off defined with the
following properties:

∀[x] ∈ IRm, f ([x])⊂ [ f ]([x]) (13)

If
[ f ]([x]) = f ([x]) (14)

then [ f ] is the optimal inclusion function associated tof .
Under the condition that the inclusion function[ f ] of f is

convergent, the algorithm SIVIA, developed by Jaulin [13]
allows us to findX with interval analysis. Convergence is
defined as following:

Definition 1: Let [x]k be a series of intervals defined on
X, the inclusion function[ f ] defined onX is convergentif
and only if:

lim
k→∞

(rad([x]k))→ 0⇒ lim
k→∞

(rad([ f ] ([x]k)))→ 0 (15)

B. Application to 3D reconstruction

In our case, the inclusion function[ f ] is based on the
projection model without error entries, the round operator
E() and the additive uncertainty introduces in Eq. 2. Then
given a set of camerasPi , X is the 3D uncertain point we
are looking forX = {Qs}:

fi(Qh) =
PiQh

Pt
i3Qh

(16)

[ fi ] ([Qh]) =
Pi [Qh]
Pt

i3 [Qh]
(17)

The numerator is a linear application, soPi [Qh] is an
optimal inclusion function and is convergent [10]. So does
the denominatorPt

i3[Qh]. The property of convergence of
[ fi ] is conditioned by the value of this ratio. With a
calibrated cameras, we use to obtains∈ Pt

i3[Qh] ands 6= 0.
Then let choose a series[Qh]k of intervals such as :

lim
k→∞

(rad([Qh]k))→ 0 (18)

∀k, s∈ [Qh]k and s6= 0 (19)

We can bound the value of each dimension of[ fi ]([Qh])
with two series which converge to a same point. Then it
demonstrates that[ f ]([Qh]) is convergent. Indeed:

in f (Pi [Qh]k)
s+2rad(Pt

i3[Qh]k)
≤ [ fi ]([Qh]k)≤

sup(Pi [Qh]k)
s−2rad(Pt

i3[Qh]k)
(20)

Set inversion algorithm with interval analysis is based
on the subdivision of a set of intervals which estimate the
set{Qs}. In our application, this upper bounded estimation
is provided as the result of the contractor.

C. Paving and sub-paving

The paving is a collection of subsets without overlapping
such as their union is an approximation of the space{Qs}.
Let us call {̂Qs}0 the initial approximation of the space
{Qs} defined by:

{̂Qs}0 = [Qs] (21)

The image spaceY is the known set of pixels[qi ] (Eq.11)
which are the images of{Qs} throught the differents
camerasPi .

Y = {∪i [qi ]} (22)

The SIVIA algorithm is used to construct iteratively the
paving of the approximation of space{Qs} using an inclu-
sion test and a partionning of the spacê{Qs}0. Considering
the SIVIA algorithm at iterationk the approximation of



{Qs} is the union of intervals[Qh] j elements of{̂Qs}0
defined by:

{̂Qs}k = {∪ j [Qh] j | [ fi ] ([Qh] j)∩ [qi ] 6= { /0}} (23)

The inclusion test consists in verifying if the image of
[Qh] j through the inclusion functions of the projection[ fi ]
intersect the pixel[qi ]. Then three cases are possible: the
intersection is empty, the intersection is complete, and the
intersection is partial (neither empty nor complete). In the
first case, the interval is discarded. In the second case, the
interval is included in the approximation of{Qs}. In the
third case, the interval needs further refinement. To perform
this refinement, the interval is splitted in eight intervals,
and the SIVIA algorithm is performed recursively on those
intervals. The splitting operation is calledBISSECTION.
The subdivision in eight three-dimensional intervals corre-
sponds to a well-known data structure in computer graphics
called the octree.

Algorithm 1 is our adaptation of SIVIA algorythm to
3D reconstruction problem. The variableε is the precision
of the reconstruction we want. This variable allows us to
control the depth of the octree. Indeed given the fact that
any interval[Qh] is splitted by two in the three directions
while using BISSECTION, and that the initial bounding
box is [Qs], then the maximal depth of the octree andε are
related as follows:

mind={1,2,3}radd([Qs])
2depth−1 < ε (24)

With radd([Qs]) the radius of the interval[Qs] along the
dimensiond. The algorythm is first call with[Qh] = [Qs]
and {̂Qs}= { /0}.

Algorithm 1 SIVIA
(

in : [ fi ], [Qh], [qi ],ε; in-out : {̂Qs}
)

if (∃i | [ fi ]([Qh])∩ [qi ] = { /0}) then
Return

else
if (∀i , [ fi ]([Qh])⊂ [qi ]) then
{̂Qs} := {̂Qs}∪ [Qh]
Return

else
if

(
mind={1,2,3}radd([Qs])

2depth−1 < ε
)

then

{̂Qs} := {̂Qs}∪ [Qh]
Return

else
[Qh] j=1...8 = BISSECTION([Qh])
for j = 1 : 8 do

{̂Qs} := {̂Qs}∪SIVIA
(
[ fi ], [Qh] j , [qi ],ε, {̂Qs}

)
end for

end if
end if

end if

Also an octree is adaptated to the implementation of
this algorithm, its is difficult to use in the context of a
vision based robotic application. For instance, considering

Fig. 3. bissection

a disparity map, it would be a burden to have an octree
for each reconstructed point. Thus in the next section,
from this representation, an ellipsoid including an octree
associated to each 3D point is computed in order to provide
a light representation of the uncertainty related to the 3D
reconstructed point.

V. BOUNDING ELLIPSOID REPRESENTATION

Octrees are a very convenient structure for describing
3D space. Nevertheless the manipulation of a set of octrees
for geometric computations is not so comfortable. Here is
shown a method which permit to compute the bounding
ellipsoid for a set of point. This method will be applied to
the octree we obtained in the previous stage. The "bounding
ellipsoid" (or "minimal spanning ellipsoid") is the smallest
volume ellipsoid that contains a set of point{Qs}. It
can have any orientation. Thus, it also is a very tight
approximation for the object it contains, and is an excellent
container. Also, it is not difficult to test inclusion of a point
in an ellipsoid.

A. Data to be used from the octree representation

The next step is to use the information provided by
the bissection to compute the ellipsoid. The goal is to
extract points from the previously computed octree. Two
kinds of points are available for each subspace containing
some information: the centres and the extremities (figure
5). The main problem related to the center is the possi-
bility to lose some information because the surrounding
volume of those centres has been ignored. Thus using the
subspace extremities make sure that the overall subspace
will be included in the computed ellipsoid. Indeed as the
ellipsoid and the subspace are convexes if the ellipsoid
include the extremities of the subspace it includes also
the subspace.The possible drawback related to the use of



subspace extremities is their redundancy. Indeed if they
belong to adjacent rectangles containing information, they
are counted once for each of such rectangle. Hopefully, this
can be regarded as a weighted average. This process gives
more weight to the area included inside the space, and less
to its borders.

Ellipse Interval

Center
Extremities

Interval
Ellipse

B CA

Fig. 4. Ellipse construction - In the left part of the figure points are
taken into account only once but ellipse does not fit the whole intervals.
In the right part of the figure, points which belongs to intervals A and B
or B and C are taken into account twice.

B. Computation of a bouding ellipsoid

For a set of non-collinear points (non-planar in 3D) the
bounding ellipsoid exists and is unique. [19] gives a fast
randomised algorithm for computing the bounding ellip-
soid. Fast implementation has been developed [20]. In the
case of 3 dimensional ellipsoid, the method proposed here
is a suboptimal solution. It is derived from statistical theory
and/or mechanical ones. It is known that the representation
of the covariance matrix for a set of point is an ellipsoid.
The tensor of inertia for a set of points with equal mass
has the same expression (up to a scale factor). Then let us
write {Q} a set ofn points choosen in the set{Qs}, Qi

one of its point andQ the gravity center or the mean of
{Q}. Tensor of inertia and covariance matrix of this set is
based on the following matrix:

E0 = ∑
i

(
Qi −Q

)t (
Qi −Q

)
(25)

E0 is a quadratic form. Covariance matrix scalesE0 by
the square inverse of the number of element in{Q} (ie
n−2), inertia matrix by the mass of the element. We aims
to compute the smallest bounding ellipsoidE which contain
the whole set of point. We scaleE0 in order to fitE. The
scale factor is defined by the pointQf ar the most far from
the center of the distribution.

E =
1(

Qf ar−Q
)t

E0
(
Qf ar−Q

)E0 (26)

Indeed, this scale factor ensure inclusion of the cloud{Q}
in the ellipsoidE. We can verify:

∀Qi ∈ {Q} ,
(
Qi −Q

)t
E

(
Qi −Q

)
≤ 1 (27)

Let be {Q} be the set of pointsQi given by the cloud of
extremal points for a given octree. It has been seen that
covariance matrix is given by :

E0 = ∑
i

(Qi −Q)(Qi −Q)T

n2 (28)

Wheren = Card({Q}), andQ is the average. It has been
shown that this scale is not necessary, it allows us to use

weights for redundant points. To enclose all the points
inside one ellipse, this initial matrix is scaled as it is shown
in Eq. 26. Scale factor is defined asS such as:

S= max
i

(
QT

i E0Qi
)

(29)

Then the ellipsoid is expanded in the following manner:

E =
1
S

E0. (30)

The result of the previously described computation for
an octree is depicted in Fig. 5. It is possible to remark
first that the bounding box is not so pessimistic compare
to the real intersection volume. But the interval cannot be
oriented in order to fit better the real uncertain area. It
illustrates wrapping effect problem [12]. In comparison,
modifying depth of the octree allows to have a relatively
accurate description of the 3D reconstruction using the
proposed algorithm. At last, the ellipsoid is a trustworthy
representation of the uncertainty domain.

Fig. 5. Results of the SIVIA algorithm on the reconstructed point.
The true shape of the error space has been approximated by an octree.
The bounding box illustrate the result of the fixed point contractor. The
surrounding ellipsoid build on the octree is also depicted.

VI. EXPERIMENT

This method has been applied in the context of a recog-
nition process described in [21] applied to the humanoid
robot HRP-2 [22]. This process is based on the comparison
between 3D lines detected in the environment and a CAD-
like 3D model. The previously described method has been
used to compute the error of reconstructed 3D points. The
object looked for is a T-shaped depicted in Fig. 6. The 3

Fig. 6. Original images for 3D reconstruction. In this context the T-Shape
is the object to recognise.



(a) Bounding box of the error

(b) Paving of the error space

(c) Bounding ellipsoid for the error space

Fig. 7. The three models detailed in the text are represented: the bounding
box, the paving, and the bounding ellipsoid. Different viewpoints of some
3D points reconstructed and used in the recognition process. For sake of
visibility, the selected 3D points are the extremities of the edges detected.
Only digitalisation noise is taken into account.

different boundaries are displayed in Fig. 7. The depth of
the octree is 2, and the computation takes 1.3 seconds on 24
points using a Pentium IV 1.7 Ghz. The T shape displayed
in Fig. 7 is the model with the position and the orientation
computed by [21]. Also such computation seems to not fit
a real-time process, using a resolution similar to the one
used in compression (127× 74 for instance) and a look-
up-table implementation of the results computed off-line, it
might be possible to have a description of the error related
to the stereoscopic system to be used at frame-rate.
For sake of visibility, the 3D points displayed in Fig.7 are
only the extremities of none adjacent segments. We can
remark that not all the edges are detected. Indeed not all
the object parts are visible from the viewpoint displayed
in Fig. 6. Moreover, some real edges are not fully detected
which explain why some points are on the edges but not
at the extremities on the model.

VII. C ONCLUSION

This paper has proposed a new method to build an
upper bounded approximation of the 3D reconstruction

error. Using a recursive constructive approach with the
SIVIA algorithm, it is possible to have a better geometric
model of the error space. As this approximation use a data
structure which may not be efficient for dealing with large
set of data, a bounding ellipsoid may be constructed. This
bounding ellipsoid is still an upper bound of the reconstruc-
tion error. This work may be used to compare bounded
error approach with results obtained while considering a
probabilistic framework. Finally this approach has been
illustrated in the context of a recognition process.
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