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Abstract— Considering a stereoscopic visual system, this show that this is the case for the 3D reconstruction problem.
paper deals with the error involved by a 3D reconstruction  Following the work of Jaulin [13], this paper describes a
process. If image pixels are seen as surfaces instead of nethod to obtain a tighter approximation of this error using
points, interval analysis provides bounding boxes in which . f L o
the reconstructed 3D point lies with certainity. This paper a pavmg representatlon: In our appllca.tlon, the p"_’w,"?g IS
presents a method which refine this bounding box and gives the union of intervals which follow a particular subdivision
a tighter approximation of the error. Using bissection, and scheme and representend by a 8-tree called octree. The
z}fegg’ieaion :esttir(ljthe_ irtnage péamles, tth% space in which  core idea of this reconstruction is to solve a set inversion

e reconstructe oint ma e located IS given as an H H
octree. This is achievF:ed throu{;h the resolutio% of a set pro_blem usm_g the property of the uncertain based model
inversion problem using the SIVIA algorithm. For a lighter projection. Finally as octrees are.not ha”?'y to represent
manipulation of the result, an englobing ellipsoid is deduced large numbers of error spaces, for instance in the context of
from this approximation. Finally the three models are tested  disparity maps, it is proposed to build bounding ellipsoids.
on a recognition process for a humanoid robot. The remainder of this paper is organized as follows: Section
Il introduces the camera model used in the framework
of Interval Analysis. Section Il recalls briefly how the
reconstruction problem is solved using intervals. Section
IV explains how the paving representation is build. Section

This paper deals with the uncertainty related to the 3DV details how a bounded ellipsoid is build on the resulting
reconstruction problem. There are three sources of error iactree. Finally section VI provides some results in the
general : the segmentation process, the chosen parametemitext of a research behavior.
in the camera model, and the pixel information. Taking
into account this error may be done through an additive
term to the pixels position, the camera model or both. The The most popular camera model in computer vision is
Gaussian distribution has been extensivly used as such afe pinhole model. It allows to use the projective geometry
ditive term, and the applications include calibration procesgroperties; thus the projection observed by a camera is a
[1] [2], motion estimation [3], environment modeling [4], linear application given by Eq. (1). This model has 12
self localization applied to robots [5], registration [6], or degrees of freedom. The complete projection of a scene
visual servoing [7]. A statistical study on the influence of point Qn through the camera model is given by [14][15]:
modelization by Gaussian noise can be found in [8], but is o o
also possible to solve the 3D reconstruction problem using a=PQn=K(Rt)Qn @)
Interval Analysis as proposed in [9] and [10]. The latterwhereK is the matrix of intrinsic parameteréR|t) is the
approach provided a upper bounded evaluation of the erranatrix of extrinsic parameterf represents the orientation
and does not need a sufficient number of samples to bef the camera in the scene frame, and its position.Qy,
statistically representative. An application using this ap-is a 4 dimensional homogeneous vector of a 3 dimensional
proach to build partial boundaries representation of objectpoint in the scene. Matri® represents the linear applica-
is proposed in [11]. However the main inconvenient of thistion associated to the projection, its dimension(3s« 4),
method is the limitation related to the geometrical shapend q is the homogeneous vector associated to the image
of the intervals. Indeed the results provided may be seepoint of Qy by P. In the following, we consider the error
as a bounding box of the true shape of the reconstructiorelative to the projection of a 3D point in the image plane.
error. This problem is known as the wrapping effect [12].Classically this error add a Gaussian term to the projection
In this regard, the method proposed provides the optimadefined by Eq. 1. In this paper, we deal with bounded error
bounding box of this space. But if such a space is venby using the alternative model proposed in [11] which
close to the diagonal of its bounding box, then a betterepresents each pixel by an interval. Computation with
geometrical representation has to be find. Unfortunatly théntervals is a common way to make guarranted calculus
work on uncertainty using Gaussian distribution clearlyin numerical computation, and the detailed rules of this

Index Terms— 3D reconstruction, bissection, ellipsoids

I. INTRODUCTION

Il. CAMERA MODEL



arithmetic is given in [13]. Vision problems reformulated in where [A] is an interval matrix,[B] an interval vector,
the framework of interval analysis is presented extensiveland [«], the cross product function. This operator gives
in [9]. Thus only pertinent concepts and tools related tathe associate anti-symmetrical matrix. For a given interval

this field will be introduced. vector this operator is such aga][b][c])"
The uncertainty associated to the position of an image point al 0 =g [b
is introduced as the interval vect{g]. The projection is [([b])] . ( i 0 [—a])
now written:
H—E(PQ")Hs] o o], \-6 @ o
q P5Qn The exact set of 3D pointQs} which is solution of the

WhereE is the round operator which furnishes the nearestincertain linear system is :
integer of a value. The denominat®:Q, is the nor- . 3 _

malisation of data description in themigmage, whé&gis {Qs} = {QneR*SA€ A, 3B < [B.AQn=B}  (8)

the third column of the camera mod&. This allows In the next section we briefly introduce tools of interval
to fix the scale factor and to define the error vector:analysis providing a minimal external bounding o =
[e]=( [ea] [e2] O )t. According to the model, there is [{Qs}] of {Qs}. This is the first characterisation of the
no error on the scale factor, but only an uncertainty orbounded error related to the 3D reconstruction in this paper.
the position of the geometric point in the image plajeg.
is the resulting interval vector. Values {f] describes the

boundaries of the projections of the 3D point in the image In the framework of interval analysis, linear system such
plane. as Eqg. 8 can be solved usingiged point contractof13].

i The use of this tool has been developed in computer vision
A. 3D reconstruction in [11]. Applied to the linear system given by Eq. 8 it

Concerning a stereoscopic system, a couple of camerrovides a boXQs] which contains the solution séQs}
represented biA,P;, compensates the not full rank relation sych as:

in the algebraic representation given by Eqg. 1. Indeed, the
relation between a 3D point and its couple of projections ~ [Qs] = [{Qnn[3A € [A],3B< [Bl,AQun=B}]  (9)

provides the following over-determined system: Let's call Cos the Gauss-Siedel fixed point contractor and
(o] R Ck the Krawczyk fixed point contractor. Both seek for the
a ) \ P Qn G minimal [Xs] such as:

We observe 6 equations and 4 unknown data. It represents {Qs} C[Qs] = Cas([Al,[B]) (10)
the intersection of the two reprojected lines defined by the {Qs} C[Qs] = Ck([A],[B])

cente_r o_f each camera ano! each image p0|_nt. The resolut|0nApplying these operators solve the linear system 7 for a
of this linear system furnishes the coordinate of the 3D

d point. It i al q , (iouple of calibrated camera and a set of matched points.
reconstructed point. It is equivalent to an over-determineg, [11] a comparison is given which led us to chose
system in the form:

the Gauss Siedel contractor as it provides a good trade-
AQ\hw=B (4) off between accuracy and speed. The results applied to a
real scene depicted in Fig. 1 are represented in Fig. 2.
Data are provided by the VVV system [16]. This versatile
system using a trinocular stereo camera setup is able to
Peconstruct 3D information of a scene, to recognise an
object [17], to track a recognised object [18], and to build a
B. Handling data uncertainty model using a range finder system. The boxes represent the

Using equation 2, the pixels position are describedntervals in which lie the features points. The uncertainty
with intervals ([q], [o¢]). From [10] it provides the system Which have been taken into accotmt is digitalisation noise:
(equation 4) based on interval arithmetics rules. First, thé€] = ([~0.5,0.5][-0.5,0.5][0~,07])". As expected, due to

matrix P associated to a camera model is cut such as: the geometric model of the camera, deeper objects, or
objects far away from the optical axis intersection are less

P=(M]V) ®) precisely located.
WhereM is a(3x 3) matrix andV is a(3x 1) vector. From
Eq. 5, and by introducing the operafet, then the system
to solve (Eq. 4) may be written in the interval analysis
framework as:

IIl. BOUNDING BOX FOR3D RECONSTRUCTION ERROR

Matrix A and vectorB are build with the elements of
R,P,q andg,. Qn is the non homogeneous vector of the
3D point in the scene. Due to the projective representatio
of space, it is given up to a scale factor [10][14][15].

IV. PAVING OF 3D RECONSTRUCTION ERROR

The previous approach provides a bounding box of the

[A] Qui = [B] ©6) set{Qs}. However considering Eq. 8, and the fact that we
are using a bounding box, several points does not fullfill

with the property stated by Eq. 4. This problem is known
A ( >'[B] B < ) R as the wrapping effect [12]. Indeed the geometry of the
U] M S ([ W box does not map the true shape {@s}. Then in this



I _ Definition 1: Let [x]x be a series of intervals defined on
‘ X, the inclusion functiorif] defined onX is convergenif
! ‘ o and only if:
.

lim (rad([X],)) — 0= lim (rad ([f] ([x],))) =0 (15)

k— o0 k— o0

Fig. 1. Original images for 3D reconstruction. 2 kinds of objects areg Application to 3D reconstruction
considered: Geometrical form and free form. '

In our case, the inclusion functioff] is based on the
projection model without error entries, the round operator
E() and the additive uncertainty introduces in Eq. 2. Then

#

B “ given a set of camerda, X is the 3D uncertain point we
o x - are looking forX = {Qs}:
PQh
‘ I fi = 16
o s}‘ ? . | (Qh) F>It3 Qh ( )
- R [Qn]
4 fi 17

Fig. 2. Viewpoint of a 3D reconstruction with Boundaries representationThe numerator is a linear application, 'R)[Qh] is an
and interval bounding boxes. Only digitalisation noise is taken intooptimal inclusion function and is convergent [10]. So does
account. the denominatoP}[Qn]. The property of convergence of
[fi] is conditioned by the value of this ratio. With a
alibrated cameras, we use to obtaia P5[Qn] ands# 0.

section a new geometrical approximation based on pavin ) .
g bp P hen let choose a serig®y]x of intervals such as :

is proposed. It builds a better approximation which still
bound the real solutiofQs}. lim (rad ([Qn),)) — O (18)
ko0

We propose here to consider the projection in a set vk, s€ [Qnjk and s#0 (19)

inversion problem. Indeed, we can say that reconstructioOVe can bound the value of each dimension[6F([Qx))
h

consists in searching the set of 3D poif®s} such as . : . X .
. I . . L with two series which converge to a same point. Then it
their projection obtained with the camerash, (i =1...n) demonstrates thdf]([Qx]) is convergent. Indeed:

are the pixels imaggg;] (i = 1...n). By using the model of

camera we proposed (Eg. 2), we can write the following inf (P [Qnlk) < [H1((QHK) < sup(P[Qnlk)
relation: s+2rad(PylQnl) =~ s—2rad(Fy[Qul)
acie) » {E(pa)+Efelal (
i3'<h

fori=1.n
Set inversion algorithm with interval analysis is based

Let us now introduce the problem of set inversion. Iton the subdivision of a set of intervals which estimate the
COHSI.S'[S In retnevmg the doma_ln _Of definition of a given set{QS}_ In our application, this upper bounded estimation
function when the image domain is known. is provided as the result of the contractor.

A. Definitions for Set inversion

Let f be a function fromR™ to R" andY a subset of
R". Set inversion is the characterisationXfsuch as:

C. Paving and sub-paving

The paving is a collection of subsets without overlapping
such as their union is an approximation of the spgQg}.
X ={xeR"f(x) e Y} = (V) (12)  Let us call {Qs}, the initial approximation of the space

Lets call[f] the inclusion function off defined with the 1Qs} defined by:

following properties: {Qslo=1Qd (21)
Vx| € IR™, f([x]) C [f]([X]) (13)  The image spac¥ is the known set of pixelg&y] (Eq.11)
It which are the images ofQs} throught the differents
f —f 14 camera$.
[11(X) = () (14 Y o) -

then [f] is the optimal inclusion function associated fto

Under the condition that the inclusion functipij of f is ~ The SIVIA algorithm is used to construct iteratively the
convergent, the algorithm SIVIA, developed by Jaulin [13]paving of the approximation of spa¢€s} using an inclu-
allows us to findX with interval analysis. Convergence is sion test and a partionning of the spgeg;},. Considering
defined as following: the SIVIA algorithm at iteratiork the approximation of



{Qs} is the union of intervalsQpl; elements of{/QS\}0
defined by:

{(Qake = {Uj[Qu]; | [FI(IQu]))Nla] # {0} (23)

The inclusion test consists in verifying if the image of

[Qn]j through the inclusion functions of the projectiph]

intersect the pixe[q]. Then three cases are possible: the
intersection is empty, the intersection is complete, and the
intersection is partial (neither empty nor complete). In the

first case, the interval is discarded. In the second case, the

interval is included in the approximation ¢Qs}. In the

third case, the interval needs further refinement. To perform

this refinement, the interval is splitted in eight intervals,
and the SIVIA algorithm is performed recursively on those

intervals. The splitting operation is call&SSECTION.

The subdivision in eight three-dimensional intervals corre-
sponds to a well-known data structure in computer graphics

called the octree.

Algorithm 1 is our adaptation of SIVIA algorythm to

3D reconstruction problem. The variatdds the precision

of the reconstruction we want. This variable allows us to Fig. 3. bissection
control the depth of the octree. Indeed given the fact that

any interval[Qy] is splitted by two in the three directions

while using BISSECTION, and that the initial bounding & disparity map, it would be a burden to have an octree

box is [Qg], then the maximal depth of the octree andre
related as follows:

Miny_1,2.3;radg ([Qs)
2depth-1

With rady([Qs]) the radius of the intervalQs] along the
dimensiond. The algorythm is first call witHQp] = [Q]

and [Qs) = {0}.

<€ (24)

Algorithm 1 SIVIA (in - [fi], [Qnl, [qi], & in-out : @)
it (3i [ [fi]([Qn]) N [ai] ={0}) then

Return
else

it (vi, [f)(Qu)  [a]) then

S

{Qs} = {QJ U [Q]

Return

else J
” (mlr}j:{;dzésgtﬁld([Qs]) <E) then
{Qs) == {QJUlQn]
Return
else
[Qnlj=1..8 = BISSECTIONI[Qx])
for lil : Sgo\ -
(s} = {Qa}uSIVIA ([f [Quls o). {Qs})
end for
end if
end if
end if

for each reconstructed point. Thus in the next section,
from this representation, an ellipsoid including an octree
associated to each 3D point is computed in order to provide
a light representation of the uncertainty related to the 3D
reconstructed point.

V. BOUNDING ELLIPSOID REPRESENTATION

Octrees are a very convenient structure for describing
3D space. Nevertheless the manipulation of a set of octrees
for geometric computations is not so comfortable. Here is
shown a method which permit to compute the bounding
ellipsoid for a set of point. This method will be applied to
the octree we obtained in the previous stage. The "bounding
ellipsoid” (or "minimal spanning ellipsoid") is the smallest
volume ellipsoid that contains a set of poifQs}. It
can have any orientation. Thus, it also is a very tight
approximation for the object it contains, and is an excellent
container. Also, it is not difficult to test inclusion of a point
in an ellipsoid.

A. Data to be used from the octree representation

The next step is to use the information provided by
the bissection to compute the ellipsoid. The goal is to
extract points from the previously computed octree. Two
kinds of points are available for each subspace containing
some information: the centres and the extremities (figure
5). The main problem related to the center is the possi-
bility to lose some information because the surrounding
volume of those centres has been ignored. Thus using the
subspace extremities make sure that the overall subspace
will be included in the computed ellipsoid. Indeed as the

Also an octree is adaptated to the implementation otllipsoid and the subspace are convexes if the ellipsoid
this algorithm, its is difficult to use in the context of a include the extremities of the subspace it includes also
vision based robotic application. For instance, consideringhe subspace.The possible drawback related to the use of



subspace extremities is their redundancy. Indeed if theweights for redundant points. To enclose all the points
belong to adjacent rectangles containing information, theynside one ellipse, this initial matrix is scaled as it is shown
are counted once for each of such rectangle. Hopefully, thign Eq. 26. Scale factor is defined 8ssuch as:
can be regarded as a weighted average. This process gives T

more weight to the area included inside the space, and less S= miaX(Qi EoQi)

to its borders.

(29)

Then the ellipsoid is expanded in the following manner:

Center Extremities 1
==k 30

< I e "

/ The result of the previously described computation for

Blipse toteral / nteral an octree is depicted in Fig. 5. It is possible to remark

Ellipse

first that the bounding box is not so pessimistic compare

Fig. 4. Ellipse construction - In the left part of the figure points are t0 the real intersection volume. But the interval cannot be

taken into account only once but ellipse does not fit the whole intervalsgriented in order to fit better the real uncertain area. It

In the right part of the figure, points which belongs to intervals A and B : ; ;

or B and C are taken into account twice. |Ilust_raFes wrapping effect problem [12]. In comparison,
modifying depth of the octree allows to have a relatively
accurate description of the 3D reconstruction using the

B. Computation of a bouding ellipsoid proposed algorithm. At last, the ellipsoid is a trustworthy

For a set of non-collinear points (non-planar in 3D) the'®Presentation of the uncertainty domain.
bounding ellipsoid exists and is unique. [19] gives a fast
randomised algorithm for computing the bounding ellip-
soid. Fast implementation has been developed [20]. In the
case of 3 dimensional ellipsoid, the method proposed here
is a suboptimal solution. It is derived from statistical theory
and/or mechanical ones. It is known that the representation
of the covariance matrix for a set of point is an ellipsoid.
The tensor of inertia for a set of points with equal mass
has the same expression (up to a scale factor). Then let u:
write {Q} a set ofn points choosen in the s€Qs}, Q
one of its point andQ the gravity center or the mean of
{Q}. Tensor of inertia and covariance matrix of this set is
based on the following matrix:

J— t — 8
Eo=Y (-9 (Q-Q) (25)
|

. . . . Fig. 5. Results of the SIVIA algorithm on the reconstructed point.
Ep is a quadratic form. Covariance matrix scalgs by The true shape of the error space has been approximated by an octree.
the square inverse of the number of e|ement{(@} (ie The bounding box illustrate the result of the fixed point contractor. The
nfz), inertia matrix by the mass of the element. We aimssurroundmg ellipsoid build on the octree is also depicted.
to compute the smallest bounding ellips&davhich contain
the whole set of point. We scal® in order to fitE. The VI. EXPERIMENT
scale factor is defined by the poi,, the most far from

the center of the distribution. This method has been applied in the context of a recog-
nition process described in [21] applied to the humanoid

— 1 —Ep (26)  robot HRP-2 [22]. This process is based on the comparison

(Qfar —Q) Eo (Qfar —Q) between 3D lines detected in the environment and a CAD-
like 3D model. The previously described method has been
used to compute the error of reconstructed 3D points. The
object looked for is a T-shaped depicted in Fig. 6. The 3

Indeed, this scale factor ensure inclusion of the cl¢Qd
in the ellipsoidE. We can verify:

vQ e{Q}, (Q-Q'E(Q-Q <1 (27

Let be {Q} be the set of point§); given by the cloud of
extremal points for a given octree. It has been seen tha
covariance matrix is given by :

. . _O\T
oy (@000 28)

Wheren = Card({Q}), andQ is the average. It has been Fig. 6. Originalimages for 3D reconstruction. In this context the T-Shape
shown that this scale is not necessary, it allows us to usie the object to recognise.



(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(c) Bounding ellipsoid for the error space

[9]
Fig. 7. The three models detailed in the text are represented: the boundirtgo]
box, the paving, and the bounding ellipsoid. Different viewpoints of some
3D points reconstructed and used in the recognition process. For sake of
visibility, the selected 3D points are the extremities of the edges detecte(fll]
Only digitalisation noise is taken into account.

[12]
different boundaries are displayed in Fig. 7. The depth of!3]
the octree is 2, and the computation takes 1.3 seconds on 24
points using a Pentium IV 1.7 Ghz. The T shape displayed
in Fig. 7 is the model with the position and the orientation!*®
computed by [21]. Also such computation seems to not fif1¢)
a real-time process, using a resolution similar to the one
used in compression (12X 74 for instance) and a look- [17]
up-table implementation of the results computed off-line, it
might be possible to have a description of the error related
to the stereoscopic system to be used at frame-rate. (18]
For sake of visibility, the 3D points displayed in Fig.7 are
only the extremities of none adjacent segments. We caii9]
remark that not all the edges are detected. Indeed not all
the object parts are visible from the viewpoint displayed|2g)
in Fig. 6. Moreover, some real edges are not fully detected
which explain why some points are on the edges but nogl
at the extremities on the model.

[22]

VII. CONCLUSION

This paper has proposed a new method to build an
upper bounded approximation of the 3D reconstruction

error. Using a recursive constructive approach with the
SIVIA algorithm, it is possible to have a better geometric
model of the error space. As this approximation use a data
structure which may not be efficient for dealing with large
set of data, a bounding ellipsoid may be constructed. This
bounding ellipsoid is still an upper bound of the reconstruc-
tion error. This work may be used to compare bounded
error approach with results obtained while considering a
probabilistic framework. Finally this approach has been
illustrated in the context of a recognition process.
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