
A Versatile Generalized Inverted Kinematics Implementation
for Collaborative Working Humanoid Robots:

The Stack of Tasks

Nicolas Mansard1,3, Olivier Stasse3, Paul Evrard2,3, Abderrahmane Kheddar2,3

1CNRS-LAAS, France,2CNRS-LIRMM, France
3CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/CRT

nmansard@laas.fr, {olivier.stasse, paul.evrard, abderrahmane.kheddar}@aist.go.jp

Abstract— This paper present a framework called the Stack
Of Tasks (SoT) implementing a Generalized Inverted Kine-
matics. This particular implementation provides a run-time
graph of computational nodes. It can be modified through a
specifically targeted scripting language. It allows hybrid control
scheme necessary for complex robot applications such as a
HRP-2 humanoid robot in a collaborative working environment.
We also show through a case study that this framework
allows an efficient integration in nowadays middleware such
as CORBA.

I. I NTRODUCTION

The Generalized Inverted Kinematics (GIK) introduced by
Nakamura et al. [1] to control redundant robots is widely
used in humanoid robotics [2][3], as well as its counter part
in the force domain the Operational Space approach [4].
Based on the notion of task [5], priority between tasks is
introduced by projecting the tasks with lower priority in the
kernel of tasks having a higher priority. Initially considering
only two tasks the work of Nakumura has been extended by
Siciliano [6] to an iterative scheme shortly presented below.

Software projects to control robots already exist, such as
ViSP [7] dedicated to provide all the tools necessary to
realize visual servoing. Other projects such as Orocos [8]
provides a framework and tools to build robots controllers.
The Stack of Tasks is mostly dedicated to implement the
GIK formalism in an efficient manner. The scripting interface
allows a simple and fast bounding to several components
based approach. In this paper, this is illustrated through a
binding to the OpenHRP control architecture and CORBA
servers.

After introducing the GIK formalism in Section II, the
Stack Of Tasks framework is detailed in Section III. A case
study presented in Section IV illustrates the use of this
framework in a complex application were the robot interacts
with a human.

II. STACK OF TASKS

A. Task definition

Let q be the vector of the robot articular positions. Letei

be a task. Its JacobianJi is defined by:

ėi =
∂ei

∂q
= Jiq̇ (1)

tJi is assumed to be of full rank. Assuming that the robot is
controlled usingq̇, we can compute its value using:

q̇i = J+
i ėi

∗ (2)

where ėi
∗ is the desired motion in the task space, and

whereJ+
i is the pseudo-inverse ofJi. The motion is usually

constrained to follow a differential equation:

ėi
∗ = −λei (3)

Thus the control law is:

q̇i = −λJ+
i ei (4)

Finally a taskei is defined as a difference between a desired
features∗i and its current valuesi:

ei = si − s∗i (5)

The current value of the feature and the velocityv of a point
on the robot are usually related by the equation:

ṡi = Lsiv (6)

whereLsi is called the interaction matrix in the field of visual
servoing. We finally get the task JacobianJi according to the
robot articular JacobianJq, and the interaction matrix:

Ji = LsiMJq (7)

whereM is matrix expressing the velocityv from Jq.
One can remark that according to (4) and (5) a task is

mostly defined by the feature it is handling (si, s
∗

i ) and its
gain λ. The Jacobian (7) is then simply computed from the
interaction matrix provided by the feature and the articular
Jacobian of the robot.

B. Handling set of tasks

Let (e1,J1) ... (en,Jn) be n tasks. The control law
computed from thesen tasks should ensure the priority, that
is the taskei should not disturb the taskej if i > j. A
recursive computation of the joint velocity is proposed in
[6]:

{

q̇0 = 0
q̇i = q̇i−1 + (JiP

A
i−1)+(ėi − Jiq̇i−1), i = 1..n

(8)

wherePA
i is the projector onto the null-space of the aug-

mented JacobianJA
i = (J1, . . .Ji). The robot joint velocity



realizing all the tasks in the stack iṡq = q̇n. The projector
can be recursively computed by

PA
i = PA

i−1 − (JiP
A
i−1)+JiP

A
i−1 (9)

III. SOFTWARE FRAMEWORK

A. Entities and graph of entities

At time t one control iteration has to be performed. For
each active task the system computes the error related to a
task. For this it is necessary to compute the features(q(t), t)
related to the robot state at timet. For some tasks the desired
feature values∗ also depends ont. An efficient system
should implement a mecanism which ensure that a value is
not computed twice. The solution implemented in the Stack
of Tasks is to consider computational unit calledEntities
which provides and consumes signals. A signal providing
information is called aninput signal, and a signal consuming
information is called anoutput signal. An output signal is
linked with an internal method of the entity which computes
the needed information. An output signal can provide its
information to any input signals. An input signal is linked
with one output signal. The relation between an input and an
output signal is specified by a scripting language described
in the next paragraph. Signals are time dependant and trigger
computation when an entity access a signal input asking for
a data which is after the last evaluation.

Each entity is created through a plugin mechanism. First
a dynamic library is loaded providing a class of entity, then
following a factory design pattern it is possible to create
on the fly instances of this entity. Following the formal
description given in the previous section, among the available
entities two special classes are explicitly handled by the
framework:tasksand features.

In addition to the graph of signals more complex rela-
tionships between the entities are provided in this control
framework. It is for instance the case with theStackOfTasks
object which relates tasks using the priority mechanism
specified previously. The mediator also allows to provide
interfaces for diverses componentization tool. At this current
stage, a CORBA server provides the possibility to interact
with the StackOfTasks by creating, reading and sending
signals as well as sending script commands. Other proxies to
component based framework could be used such as GeNom.

B. Scripting

The scripting interface purpose is mostly to handle the
underlying framework. The main idea behind this interface
is to offer a mean for controlling the framework, without
developing a full featured language for which it already exists
numerous alternatives. Moreover the script is mostly limited
to basic operations. New functionalities are added when
loading the plugins. This extend naturally the possibilities of
the script within the frame of the SoT. While designing this
scripting interface, one of the major goal was to minimize the
external interface of the framework and make it resilient to
internal algorithmic changes. For instance, it does not make
sense to recompile a client using this framework because a

new feature has been implemented with some specific new
control parameters.

1) Factory of entities:More precisely it allows to load
classes of entities using dynamic libraries (loadPlugin and
unloadPlugin), create and destroy entities (new and de-
stroy), run scripts (run ), and finally triggers computation.
The entity producing entities is thepool.

2) Entity: An entity provides methods which takes string
arguments and convert them internally to appropriate for-
mats. The methods either change some internal states of the
entities or send back a stream of strings. For the user to know
the methods provided by an entity in interactive mode, the
entity creator can provide a help method listing the other
methods provided by the entity. For instance typing

pool.help

returns:

Pool:
- list
- listFeature
- listTask
- writegraph FileName

The first method list all the entities created in the current
instance of the factory. The second lists only the features,
while the third provides the name of the task entities. The
last one finally generates dot graph which can be displayed
as presented in Fig.1.

3) Signals: Entities can communicate with each other
through signals of the same type. The connection of the
signals is done through theplug command. It is also possible
to set and get signals values or references usingset and
get. The following paragraphs gives some examples. Signals
integrate a temporal dependency which allow to trigger
computation only when it is needed. In the graph depicted
in Fig.1, the node OpenHRP is an entity and an OpenHRP
plugin computed every 5 ms. It has an input node asking a
command to an entity of type StackOfTasks.

4) Features: Features objects provide the vectorssi, s∗i
and the matrixLsiMJq for a taskei. The role of the features
here is strictly limited to:

• receiving the desired values, the current value of the
feature according to the robot state, and the robot
articular Jacobian in the proper reference frame i.e.
MJq.

• compute the feature JacobianLsi .
Thus a feature used to control the center of mass (CoM) will
be expressed as:

new FeatureGeneric featureCom
plug dyn.com featureCom.errorIN
plug dyn.Jcom featureCom.jacobianIN

where the entitydyn provides the current CoM of the robot
with the signalcom, and the CoM Jacobian with the signal
Jcom.

For instance here is a simple example that creates a desired
feature of the robot’s CoM and specify a fixed value:



TeleOperationGraph

Tasks

sot

wso t

legs

task

gain

er ro r

e r ro r

taskChest

taskCom

gainCom
er ro r

e r ro r

taskComPD taskTwofeet

taskForce taskForceLH

taskGrip

taskHead

gainHead
er ro r

e r ro r

taskHeadWB

gainHeadWB

er ro r

e r ro r

taskHeadWPG

taskJl

taskLegs

taskTwofeetPD

tasklh

waistRh

0wtR
in1

o u t

hRwaist
in

o u t

invVwin
o u t

dyn

in

0

Aactin

iner t iaRea l

pg

c o m

c o m

jointlimit
j o in t

pos i t ion

PGselec

s c o m r e f 0

c o m

RefFeetRelselec
Foo t0

r leg

Foo t1

l leg

JFoot0

Jr leg

JFoot1

Jlleg

JRefFoot0

Jlleg

JRefFoot1

Jr leg

RefFoot0

l leg

RefFoot1

r leg

dynL0

in

lh

dynR0
in

0

featureComerror IN

c o m

jacobianIN

Jcom

griperPosin1

pos i t ion

in2

pos i t ion

featureHeadWPG
Jq

JHeadWPG

posi t ion

HeadWPG

featureJl
j o in t

pos i t ion

lowerJl

lowerJl

upperJ l

upperJ l

forceContactPoint

jacob ianIN

J0

forceContactPointLH
jacob ianIN

Jlh

sljl
in

lowerJl

sujl
in

upperJ l

lowerJl
in1

lowerJl

upperJl
in1

upperJ l

waistLh
in

lh

p6
Jq

J0

pos i t ion

0

p6lh
Jq

Jlh

pos i t ion

lh

phead
Jq

Jhead

pos i t ion

h e a d

wrtPoseIni t

in2

0

wrtPoseInitLH
in2

lh

massRH

i ne r t ia

o u t

massLHi ne r t ia

o u t

p3

JLHact
in

j a c o b i a n

JRHactin

j a c o b i a n

j a c o b i a n

o u t

j a c o b i a n
o u t

Rdes_head

Mdes_headin1

o u t

pheaddpos i t ion
o u t

OpenHRPat t i tude IN

wa is ta t t i t ude

s e l e c

inp rocess

pg_comrefin1

c o m r e f

pg_rightfootref
in1

r ight footref

s e l e c

S u p p o r t F o o t

pg_leftfootref
in1

lef t footref

SupportFootSelecpg_H_sf0

r ight footref

pg_H_sf1

lef t footref

s e l e c

S u p p o r t F o o t

featureTwofeetDes
dotpos i t ion

dot r ight foot re f

dotpos i t ionRef

dot le f t foot ref

footselec
s e l e c

S u p p o r t F o o t

lfo_H_zmp
in1

z m p r e f

mo to rcon t ro l

mo to rcon t ro l

pos i t ion

s t a t e

zmpprev iouscon t ro l l e r

zmpprev iouscon t ro l l e r

possmall
in

s t a t e

gripdes

torqueFul l IN

p t o r q u e

posHead
in

s t a t e

f lexsensorWor ldRotat ion

a t t i t u d e

forceCompLH
torsorIN

forceLARM

forceCompRHtorsorIN
forceRARM

posKFat t i tude IN

a t t i t u d econ t ro l

con t ro l

lfo_H_wa

posi t ionIN

o u t

ffpos_from_pg
in

o u t

wa_H_lfoin
o u t

wa_H_zmp

z m p

o u t

featureComDes
error IN

scomre f

s c o m r e f 1

o u t
D e s F o o t 0

o u t

DesRefFoot1

o u t

featureTwofeet
Jq

JFoot

JqRef
JRefFoot

pos i t ion
F o o t

posi t ionRef
RefFoot

pos i t ion

DesFoo t

posi t ionRef

DesRefFootD e s F o o t 1

o u t

DesRefFoot0

o u t

Rwt0in1
o u t

Vw
in

o u t

lhRwaist

Rwtlh
in1

o u t

Vwlh

in

o u t

pg_H_wain1

pg_H_sf

sf_H_wa
in

wa_H_sf

dyn2

wa_H_sf0

r leg

wa_H_sf1

l leg

c o n t a c t E m b e d d e d P o s i t i o n

l leg

senso rEmbeddedPos i t i on

c h e s t

Jcon tac t0

Jr leg

Jcon tac t1

Jlleg

c o n t a c t

l l eg

pos i t ion

c h e s t

s tepper
pos i t ion

0

fgermany
in2

o u t

fgermanyLHin2
o u t

dq_q
WRHin1

o u t
w r hin

o u t

wrtPoseIni t inShoulder absRrhin
o u t

wrtPoseIn i tQuat
in

o u t

qrhin
o u t

addForce
in1

o u t

addForceLHin1
o u t

eye3 compin1
o u t

p6d
pos i t ion

o u t

t

in2

o u t

eye3lh

complhin1

o u t

p6dlhpos i t ion
o u t

t lh
in2

o u t

contactPointRotat ion

contactPoint
in1

o u t

contactPointPosit ion

in2

o u t

dqrh in1
o u t

invqrh

in2

o u t

in

o u t

ino u t

xrh
dxrhin

o u t

vrh
in1

o u t

zero

a c c e l e r a t i o n

o u t

ve loc i ty

o u t

a c c e l e r a t i o n

o u t

ve loc i ty

o u t

f fposi t ion

o u t

pos i t ion

o u t

pos i t ion
o u t

wor ldRhand

o u t

wor ldRhand

o u t

featureGrip
error IN

o u t

featureGripDeserror IN
r e f e r e n c e

lowerLimitlowerLimitReducedOUTupperLimi t
upperLimi tReducedOUT

griptorq
in1

torqueReducedOUT

featureHead
error IN

o u t

featureHeadDes
necklimit

error IN

jo intL imi ted

featureHeadWPGDes

vectorLegs

featureLegs

error IN

o u t

jacobianLegs jacob ianIN
o u t

flexVin
a n g l e s

torsorNull i f iedINto rso r

forceIntLH

f o r ce

torsorNul l i f ied

torsorNull i f iedINto rso r

forceInt

f o r ce

torsorNul l i f ied

fsensor

in1

torsorNul l i f ied

jacobianIN
j a c o b i a n

p3LH

jacob ianIN

j a c o b i a n

error IN

ve loc i ty

friction

f r ict ion

o u t

fr ict ion

o u t

mass Inve rsemass Inve rse

iner t ia Inverseinert iaInverseOUT

errorIN

ve loc i tymass Inve rse

mass Inve rse

iner t ia Inverseinert iaInverseOUT

in2

o u t

lowerLimitFullIN

o u t

t o r q u e

o u t

upperLimitFull IN

o u t

controlsmall

contro l IN

o u t

lowerJl
o u t

upperJ l

o u t

lfo_H_pg

in1

o u t

in2

o u t

in2
o u t

in2

o u t

in2

o u t

in2
o u t

in1

o u t

in

o u t

protectJl
in2

o u t

in2

o u t

in2

o u t

a c c e l e r a t i o na c c e l e r a t i o n 2 H a n dve loc i tyve loc i ty2Hand

featureChest

in2

o u t

poseInit

wRh0in

in

in1
o u t

in2
o u t

poseInitLH

wRh0LHin

in

in1o u t

wrtPoseInit inShoulderLH
in2o u t

in2

o u t

in1

o u t

in1

o u t

in

o u t

wrtPoseIni tQuatLHin
o u t

cluster_sot in1
con t ro l

Fig. 1. Graph of entities at a given time of the control.

new FeatureGeneric featureComDes
set featureComDes.errorIN [3](0,-0,0.64)

To relate this desired reference to the current state of the
robot for computing the control:

set featureCom.sdes featureComDes

To specify a more complex desired CoM, it is possible to
plug another feature inside the desired one:

plug PGselec.scomref featureComDes.errorIN

The current implementation provide several features such
as generic ones, 6D position (i.e. position and orientation),
relative 6D position and visual points.

5) Tasks:A task uses the features provided by the graph
to compute a control law:

new Task taskCom
taskCom.add featureCom

To aggregate several elementary tasksei, it is possible to add
several features to a task. Indeed to have a taske1,2 which



concatenatese1 = s1 − s∗1 ande2 = s2 − s∗2 such that:

e1,2 =

[

s1 − s∗1

s2 − s∗2

]

(10)

adding the two features to the same task with theadd method
is enough.

6) Stack of tasks:The entities of typeSOT compute the
control law following eq.(8) considering the tasks added in
their stack and their order.

Therefore it is possible to push a task in the stack with:

sot.push taskCom

It can be removed either by usingpop if it is at the top of the
stack, or by usingrm . The priority of a task can be changed
usingup anddown.

7) Entity for robot dynamical model:One entity is in
charge of providing the current state of the robot. By
reading the sensors values, and applying the Newton-Euler
algorithm, articular Jacobian, CoM, ZMP, position, torques
and positions can be computed. In order to avoid unnecessary
computation, the user specifies the needed operational points
and plug the associated information with the desired features.
Frame transformation are handled through small entities able
to perform basic matrix and vector computations. Here is an
example to create two operational points:

dyn2.createOpPoint rleg 6
dyn2.createOpPoint lleg 12

The number is the rank of the joint in the state vector of the
robot. The creation of the operational point creates signals to
read position and articular Jacobian to be used by features:

new FeaturePoint6dRelative featureTwofeet
plug dyn.Jrleg featureTwofeet.Jq
plug dyn.Jlleg featureTwofeet.JqRef
plug dyn.rleg featureTwofeet.position
plug dyn.lleg featureTwofeet.positionRef

8) Entity for walking: One entity, calledpg in Fig.1,
provides references values for the HRP-2 to walk. This entity
can work in two modes: providing leg articular reference
values, or providing CoM and feet trajectories. In this
work, the former mode is used, and a task to realize the
articular references is present inside the graph (taskLegs).
The humanoid walking pattern generator used to implement
this entity is described in [9]. The framework to generate the
references trajectories is an earlier version of this scripting
system. To interact with the pattern generator a method called
parsemcd is used. For instance to specify the single support
time:

pg.parsecmd :singlesupporttime 0.780

C. Componentization

In order to externalize the Stack of Tasks, two entities act
as proxies to compenentization frameworks. The first one
is the OpenHRP entity which allow to interact with the
OpenHRP architecture introduced by Kanehiro et al. [10]

for controlling robots such as the humanoid robot HRP-
2. OpenHRP is based upon CORBA and proposed several
CORBA servers dedicated to dynamical simulation, collision
detection, loading robot models and control architecture.The
server dedicated to control is based upon a list of controllers
which can be dynamically loaded and created. Its main
limitation is the relationship linking the controllers together
through a sequential evaluation.

The second one iscoshellwhich provides a CORBA server
for externals programs to interact with the Stack of Tasks as
depicted in Fig.2. The IDL interface provided by this server
is:

interface SOT_Server_Command
{
typedef sequence<double> DoubleSeq;
typedef sequence<char> CharSeq;
typedef sequence<char> StringStreamer;

void run( in CharSeq cmd );
void runAndRead( in CharSeq cmd,

out StringStreamer os );
void readVector( in CharSeq signalName,

out DoubleSeq value );

long createOutputVectorSignal
( in CharSeq signalNameCorba );

long createInputVectorSignal
( in CharSeq signalNameCorba );

void readInputVectorSignal
( in long signalRank,

out DoubleSeq value );
void writeOutputVectorSignal

( in long signalRank,
in DoubleSeq value );

};

The two methodsrun and runAndRead allow to execute
script commands. The former one do not wait for answer,
while the other one returns the answer as a stream of
strings. The methodreadVector acts as probe and write
the value of the signal specified by signalName with the
type vector invalue. The four last methods make possible
to create input and output vector signals for writing and
reading informations. Those methods have been used in the
experiment presented in paragraph IV-D to synchronize the
decision layer and the end of the walking execution. In [11]
it was used extensively to realize a wide-range telepresence
experiment with a HRP-2 humanoid robot.

IV. CASE STUDY

A. Integrating a humanoid robot in a collaborative environ-
ment

In [12] we described the integration of the HRP-2 hu-
manoid robot inside a collaborative working environment
called BSCW [13]. The robot is able to pull tasks from this
environment initially targeted for human users and interpret
them to perform a task in the real world. The work in [12]



Control Flow Domain

User

Internet

Domain

Data Flow

Remote Brain

Domain

Autonomous

Actuators

Sensors

* *

LLVS

Low Level Vision Server

MGS

Motion Generator Server

PPS

Path Planner Server

DS

Decision Server

Model Loader

Server

GUI with user

Auditor with Python

PDA − Other GUIs

Fig. 2. Functional block implemented as CORBA and OpenRTM servers

presented a specific case where the robot was mostly asked
to go to one place, take a picture and fill a report to the
requester on BSCW. We present here an extension where
the robot is then asked to switch to an interaction mode with
the user.

The software architecture used during this experiment is
the one depicted in Fig.2. They are 4 CORBA servers provid-
ing vision information (LowLevelVisionServer), planning
(PathPlannerServer), decision making (DecisionServer),
and motion generation(MotionGeneratorServer). Each of
this server implements a framework specific to the robotic
problems solved. For instance, the planner is using Kine-
oWorks which provides all the necessary tools to solve
complex planner problems such as the A380 grand itinerary
[14], or humanoid robots paths [15]. We also described one
framework for walking pattern generation in [9].

B. SoT

The graph of entities used in our StackOfTasks module is
depicted in Fig.1. The blue box represents a set of entities
which are tasks and that can be handled by an entity of class
StackOfTasks. The red arrows in the blue box indicates the
priorities between the tasks. The green-gray arrows display
the relationship between the desired features and the features.
This figure represents the state of the graph at a given
time, but it can change according to the script command
send either by the local interpretor, or through the CORBA
server. Another possibility could be a local Finite State
Machine as described by Mansard et al. [16] implemented
through an entity. The tasks present in the subgraph sot
indicates which task are currently taken into account for

the control computation. In this specific experiment the task
taskLegs makes the robot walks. The desired features are
articular values for the complete body provided by the pattern
generator. It is possible to take into account only the legs,or
the full body. Here the full body is used. While walking the
DecisionServertests every 1s through the CORBA server if
the entitypg is still providing reference values. Once this is
not the case, the server removes the tasktaskLegsand pushes
taskForce and taskForceLH. Those two tasks are based on
the generic controller described in the next paragraph IV-C.

C. Force-Based Control

The generalized inverse kinematics formalism presented
in the first section allows the realization of many tasks
in the free space. However, for constrained tasks such as
tasks involving contact or force-based control tasks, the
redundancy formalism does not directly apply. A solution
to this problem is thedynamic inverseas proposed in [17],
[18] (rather than using thekinematic inverse(2)). However,
this solution requires the robot to be torque controlled, which
is not the case for our robot. Hence we propose a solution
to obtain a similar behavior based on the kinematic inverse.

The space in which the control is designed is the op-
erational space (6D position) of the contact point denoted
by r. On position-controlled robots, a common scheme for
force-based control is admittance control, which defines the
dynamic behavior of the contact point in response to the
contact forces through a differential equation. Generally, the
selected dynamics for the contact point is the dynamics of a
mass-damper system:

Mr̈ + Bṙ = f (11)



Fig. 3. Left: Robot HRP-2 walking using the SoT Right: Interaction
between human and HRP-2

whereM andB are arbitrary mass and damping matrices of
the equivalent virtual system, andf are forces and torques
exerted on the contact point, measured by a force sensor.

In (2), the matrixJ# can be chosen asanypseudo-inverse.
We now choose to apply a weighted pseudo-inverse [19],
defined whenJ is full-row-rank by

J#W = W−1JT
(

JW−1JT
)

−1
(12)

with W an arbitrary invertible matrix that represents the
weights on the joints. Taking the derivative of (2) (with the
taske set toe = r) and introducing (12) yields:

q̈ = W−1JT
(

JW−1JT
)

−1
M−1 (f − Bṙ) (13)

Selecting the weightW as the inertia matrixA of the robot
and the virtual massM asΛ =

(

JA−1JT
)

−1
, the apparent

inertia of the end-effector of the robot, we obtain:

Aq̈ = JTf − Bqq̇ (14)

where Bq = JTBJ is the friction factor of the whole
body structure. This last equation corresponds to a simplified
version of the dynamic equation of the whole-body compliant
robot with gravity compensation, with forcesf acting on
r and a frictionBq that may be tuned by selectingB to
stabilize the system.

Consequently, if the control parameters are chosen as
described above, the obtained control is equivalent to the
real dynamics of the robot. The control represents a general-
ization of (8), which means that both force-based contact
tasks and position-based free space tasks can be realized
within this control structure. No specific values have to be
chosen or tuned, except for the damping gainB, that has
been experimentally verified to be very robust.

D. Experiments

Fig. ?? depicts the robot walking using the tasktaskLegs
which assign to the overall control space the articular value
to realize. During all the execution as explained earlier, the
entity pg indicates to the DecisionLayer CORBA server that
the walking is being realized. Once this is not the case
anymore the DecisionLayer trigger a transition to another
state, and run a script changing the tasks and rewiring the
graph of entities to perform a compliant based interaction
task with a user as depicted in Fig.3. The controller used

Fig. 4. Robot HRP-2 walking and interacting with a human

is the one described in the previous paragraph. The time
measurement indicates 300 nanoseconds of overhead induced
by the local graph structure. The most time consuming part is
the computation of the SVD to evaluate the pseudo-inverse.
We have used recently exactly the same architecture to
perform a tele-presence experiment [11] with HRP-2 walking
as depicted in Fig.4. In this set-up the robot was using the
task taskLegs using only the 12 DOFs of the legs, and
with the taskstaskForce and taskForceLH. For the latter
tasks a signal provided by the remote operator was used in
the computation of the final control law. This addition was
realized using the CORBA interface described in paragraph
III-C. The computation of this control law takes about 3 ms
on HRP-2.

V. CONCLUSION

We have presented a versatile implementation of the
Generalized Inverted Kinematics for a humanoid robot HRP-
2 called the Stack Of Tasks. This implementation allows
dynamic modification of the graph of computation, reference
generation, task switching thanks to a scripting language
specifically target for this purpose. It has been integrated
in a complex architecture to realize collaborative work.
Several modalities have been presented: interaction through a
classical IT Collaborative Working Environmnent (BSCW),
force-control based interaction with a human, force-control
based interaction with a human while walking.

ACKNOWLEDGMENT

This work is supported by grants from the ROBOT@CWE
EU CEC project, Contract No. 34002 under the 6th Research
programwww.robot-at-cwe.eu.

REFERENCES

[1] Y. Nakamura and H. Hanafusa, “Optimal redundancy control of robot
manipulators,” International Journal of Robotics Research, vol. 6,
no. 1, pp. 32–42, 1986.

[2] M. Gienger, H. Janßen, and C. Goerick, “Task-oriented whole body
motion for humanoid robots,” inIEEE/RAS Intl. Conf. on Humanoids
Robot.

www.robot-at-cwe.eu


[3] N. E. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K. Tanie,“A switch-
ing command-based whole-body operation method for humanoid
robots,” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 5,
pp. 546–559, 2005.

[4] O. Khatib, “A unified approach for motion and force controlof
robot manipulators: The operational space formulation,”International
Journal of Robotics Research, vol. 3, no. 1, pp. 43–53, 1987.

[5] C. Samson, M. Le Borgne, and B. Espiau,Robot Control: the Task
Function Approach. Clarendon Press, Oxford, United Kingdom, 1991.

[6] B. Siciliano and J.-J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” inIEEE Int. Conf.
on Advanced Robotics (ICAR’91), Pisa, Italy, Juin 1991, pp. 1211–
1216.

[7] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robotics and Automation Magazine, vol. 12, no. 4, pp. 40–52,
December 2005.

[8] H. Bruyninckx, “Open robot control software: The orocosproject.” in
IEEE/RAS Intl. Conf. on Robotics and Automation, vol. 3, 2001, pp.
2523–2528.

[9] O. Stasse, B. Verrelst, P.-B. Wieber, B. Vanderborght, P. Evrard,
A. Kheddar, and K. Yokoi, “Modular architecture for humanoid
walking pattern prototyping and experiments,”Advanced Robotics,
Special Issue on Middleware for Robotics –Software and Hardware
Module in Robotics System, vol. 22, no. 6, pp. 589–611, 2008.

[10] F. Kanehiro, K. Fujiwara, S. Kajita, K. Yokoi, K. Kaneko,
H. Hirukawa, Y. Nakamura, and K. Yamane, “Open architecture
humanoid robotics platform,” inInternational Conference on Robotics
and Automation, May 2002, pp. 24–30.

[11] P. Evrard, N. Mansard, O. Stasse, A. Kheddar, T. Schauss, C. Weber,
A. Peer, and M. Buss, “Intercontinental, multimodal wide-range tele-
cooperation using a humanoid robot,” inIEEE/RSJ Intelligent Confer-
ence on Intelligent Robots and Systems, 2009, p. submitted.

[12] O. Stasse, F. Lamiraux, A. Kheddar, K. Yokoi, R. Ruland, and
W. Prinz, “Integration of humanoid robots in collaborative working
environment: A case study on motion generation,” inInternational
Conference on Ubiquitious Robots and Ambient Intelligence, 2008,
pp. 211–216.

[13] W. Prinz, H. Loh, M. Pallot, H. Schaffers, A. Skarmeta, and S. Decker,
“Ecospace - towards an integrated collaboration space for eprofes-
sionals,” in International Conference on Collaborative Computing:
Networking, Applications and Worksharing, 2006. CollaborateCom
2006., 2006, pp. 1–7.

[14] F. Lamiraux, J.-P. Laumond, C. V. Geem, D. Boutonnet, and G.Raust,
“Trailer-truck trajectory optimization for airbus a380 component trans-
portation,” IEEE Robotics and Automation Magazine, vol. 12, no. 1,
2005.

[15] E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond, T. Sakaguchi, and
K. Yokoi, “Planning 3-d collision-free dynamic robotic motion through
iterative reshaping,”IEEE Transactions on Robotics, vol. 24, no. 5, pp.
1186–1198, 2008.

[16] N. Mansard and F. Chaumette, “Task sequencing for sensor-based
control,” IEEE Trans. on Robotics, vol. 23, no. 1, pp. 60–72, February
2007.

[17] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation,”International
Journal of Robotics Research, vol. 3, no. 1, pp. 43–53, Fevrier 1987.

[18] J. Park and O. Khatib, “Contact consistent control framework for
humanoid robots,” inIEEE Int. Conf. on Robotics and Automation
(ICRA’06), Orlando, USA, Mai 2006.

[19] K. Doty, C. Melchiorri, and C. Bonivento, “A theory of generalized
inverses applied to robotics,”Int. J. Robotics Research, vol. 12, no. 1,
pp. 1–19, Dcembre 1993.


	Introduction
	Stack of Tasks
	Task definition
	Handling set of tasks

	Software Framework
	Entities and graph of entities
	Scripting
	Factory of entities
	Entity
	Signals
	Features
	Tasks
	Stack of tasks
	Entity for robot dynamical model
	Entity for walking

	Componentization

	Case study
	Integrating a humanoid robot in a collaborative environment
	SoT
	Force-Based Control
	Experiments

	Conclusion
	References

