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Abstract— This paper present a framework called the Stack tJ; is assumed to be of full rank. Assuming that the robot is
Of Tasks (SoT) implementing a Generalized Inverted Kine- controlled usingg, we can compute its value using:
matics. This particular implementation provides a run-time
graph of computational nodes. It can be modified through a q; = J;“e’i* (2)
specifically targeted scripting language. It allows hybrid control ) . ) )
scheme necessary for complex robot applications such as aWhere &" is the desired motion in the task space, and
HRP-2 humanoid robot in a collaborative working environment. ~ whereJ;" is the pseudo-inverse . The motion is usually

We also show through a case study that this framework cgnstrained to follow a differential equation:
allows an efficient integration in nowadays middleware such

as CORBA. 6% = — ey 3)
. INTRODUCTION Thus the control law is:
The Generalized Inverted Kinematics (GIK) introduced by a4 = M e (4)

Nakamura et al. [1] to control redundant robots is widelyina 1y 5 taske; is defined as a difference between a desired
used in humanoid robotics [2][3], as well as its counter Pal4tures* and its current valus::

in the force domain the Operational Space approach [4].
Based on the notion of task [5], priority between tasks is e =i — S )

introduced by projecting the tasks with lower priority ireth The current value of the feature and the velositgf a point

kernel of tasks having a higher priority. Initially consittey h v rel h L
only two tasks the work of Nakumura has been extended t?yn the robot are usually related by the equation:

Siciliano [6] to an iterative scheme shortly presented Wwelo S;i = Lg,v (6)
Software projects to control robots already exist, such Bherel

VISP [7] dedicated to provide all the tools necessary t

realize visual servoing. Other projects such as Orocos |

provides a framework and tools to build robots controllers.

The Stack of Tasks is mostly dedicated to implement the Ji =Ly MJg (7

GIK formalism in an efficient manner. The scripting intedac hereM is matrix expressing the velocity from J

allows a simple and fast bounding to several c:omponen\{\éone can remark that according fo (4) and (531.a task is

based approach. In this paper, this is illustrated through a

S . ostly defined by the feature it is handling, ;) and its
*sjlew/g]rg to the OpenHRP control architecture and CORB'(Ig‘;nain ). The Jacobian (7) is then simply computed from the

. . . . interaction matrix provi he feature and the articul
After introducing the GIK formalism in Sectioh!ll, the teraction matrix provided by the feature and the articula

Stack Of Tasks framework is detailed in Section IIl. A caséJ acobian of the robot.

study presented in Sectidn 1V illustrates the use of thiB. Handling set of tasks
framework in a complex application were the robot interacts | et (e;,J;) ... (e, Jn) be n tasks. The control law

with a human. computed from these tasks should ensure the priority, that

is the taske; should not disturb the task; if ¢ > j. A
recursive computation of the joint velocity is proposed in

s, is called the interaction matrix in the field of visual
rvoing. We finally get the task Jacobignaccording to the
bot articular Jacobiady, and the interaction matrix:

Il. STACK OF TASKS

A. Task definition [6]:
Let g be the vector of the robot articular positions. legt 4o =20 (®)
be a task. Its Jacobiak; is defined by: G =41+ (TPA )T (& - Jidiq), i=1.n

. Oep I 1 where P2 is the projector onto the null-space of the aug-
ST Bq @ mented Jacobiad® = (Jy,...J;). The robot joint velocity




realizing all the tasks in the stack ég= ¢,. The projector new feature has been implemented with some specific new
can be recursively computed by control parameters.
1) Factory of entities:More precisely it allows to load
PL =P, — (PR, TIPE, ©) clas?ses of gntities using dynar?wic Iibrgridzea(:lPlugin and
ll. SOFTWARE FRAMEWORK unloadPlugin), create and destroy entitiesiev and de-
. . stroy), run scripts (un), and finally triggers computation.
A. Entities and graph of entities The entity producing entities is thgool.

At time ¢t one control iteration has to be performed. For 2) Entity: An entity provides methods which takes string
each active task the system computes the error related t@m@uments and convert them internally to appropriate for-
task. For this it is necessary to compute the feasegt),t) mats. The methods either change some internal states of the
related to the robot state at timeFor some tasks the desiredentities or send back a stream of strings. For the user to know
feature values* also depends on. An efficient system the methods provided by an entity in interactive mode, the
should implement a mecanism which ensure that a value éstity creator can provide a help method listing the other
not computed twice. The solution implemented in the Staciethods provided by the entity. For instance typing
of Tasks is to consider computational unit callEdtities
which provides and consumes signals. A signal providin
information is called amnput signal and a signal consuming returns:
information is called aroutput signal An output signal is
linked with an internal method of the entity which computes

Bool.help

list

the needed information. An output signal can provide its li st Feat ur e
information to any input signals. An input signal is linked li st Task

with one output signal. The relation between an input and an _
output signal is specified by a scripting language described
in the next paragraph. Signals are time dependant and triggehe first method list all the entities created in the current
computation when an entity access a signal input asking fitstance of the factory. The second lists only the features,
a data which is after the last evaluation. while the third provides the name of the task entities. The

Each entity is created through a plugin mechanism. Firgast one finally generates dot graph which can be displayed
a dynamic library is loaded providing a class of entity, theras presented in Fig.1.
following a factory design pattern it is possible to create 3) Signals: Entities can communicate with each other
on the fly instances of this entity. Following the formalthrough signals of the same type. The connection of the
description given in the previous section, among the abtgila Signals is done through tipug command. It is also possible
entities two special classes are explicitly handled by th&® set and get signals values or references uskeigand
framework:tasksand features get The following paragraphs gives some examples. Signals

In addition to the graph of signals more complex relaintegrate a temporal dependency which allow to trigger
tionships between the entities are provided in this contrglomputation only when it is needed. In the graph depicted
framework. It is for instance the case with tBeackOfTasks in Figi1, the node OpenHRP is an entity and an OpenHRP
object which relates tasks using the priority mechanisrlugin computed every 5 ms. It has an input node asking a
specified previously. The mediator also allows to providéommand to an entity of type StackOfTasks.
interfaces for diverses componentization tool. At thisent ~ 4) Features: Features objects provide the vectesgs s;
stage, a CORBA server provides the possibility to interac@nd the matrixLs, MJ for a taske;. The role of the features
with the StackOfTasks by creating, reading and sendin@ere is strictly limited to:
signals as well as sending script commands. Other proxies toe receiving the desired values, the current value of the
component based framework could be used such as GeNom. feature according to the robot state, and the robot

o articular Jacobian in the proper reference frame i.e.

B. Scripting MJ,.

The scripting interface purpose is mostly to handle the « compute the feature Jacobidy, .
underlying framework. The main idea behind this interfac&hus a feature used to control the center of mass (CoM) will
is to offer a mean for controlling the framework, withoutbe expressed as:
developing a full featured language for which it alreadysexi .
numercr))us alternatives. More?)ve%1 the script is mostly kahit new FeatureGeneric featureCom

. . . . | ug dyn.com featureComerrorlN

to basic operations. New functionalities are added wheh . .
loading the plugins. This extend naturally the possileiitof plug dyn. Jcom featureCom jacobi ani N
the script within the frame of the SoT. While designing thisvhere the entitydyn provides the current CoM of the robot
scripting interface, one of the major goal was to minimize thwith the signalcom, and the CoM Jacobian with the signal
external interface of the framework and make it resilient tdcom.
internal algorithmic changes. For instance, it does notanak For instance here is a simple example that creates a desired
sense to recompile a client using this framework becausefeature of the robot’s CoM and specify a fixed value:

writegraph Fil eNane
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Fig. 1. Graph of entities at a given time of the control.
new Feat ureGeneri c feat ureConDes The current implementation provide several features such

set featureConmDes.errorlIN[3](0,-0,0.64) as generic ones, 6D positiong position and orientation),

] ) relative 6D position and visual points.
To relate this desired reference to the current state of the )
robot for computing the control: 5) Tasks:A task uses the features provided by the graph

to compute a control law:

set featureCom sdes featureConDes
new Task taskCom
To specify a more complex desired CoM, it is possible t® askCom add f eat ur eCom
plug another feature inside the desired one:
To aggregate several elementary taskst is possible to add
pl ug PGCsel ec. sconref featureConDes. errorlN several features to a task. Indeed to have a éskwhich



concatenatee; = s; — s} andez = sp — s4 such that: for controlling robots such as the humanoid robot HRP-
. 2. OpenHRP is based upon CORBA and proposed several
e1a— [Sl - 51] (10) CORBA servers dedicated to dynamical simulation, colfisio
’ S2 — Sy detection, loading robot models and control architectlihe
server dedicated to control is based upon a list of contolle
which can be dynamically loaded and created. Its main

is enough. T ; A
6) Stack of tasksThe entities of typeSOT compute the limitation is the rel_at|onsh|p I.|nk|ng the controllers tther
through a sequential evaluation.

coqtrol law foIIowm'g €q.(8) considering the tasks added in The second one oshellwhich provides a CORBA server
their stack and their order. ) )
for externals programs to interact with the Stack of Tasks as

Therefore it is possible to push a task in the stack Wlth:depicted in Fig.2. The IDL interface provided by this server
sot . push taskCom is:

adding the two features to the same task withatid method

It can be removed either by usipgp if it is at the top of the i nterface SOT_Server_Comrand
stack, or by usingm. The priority of a task can be changed{
usingup anddown. t ypedef sequence<doubl e> Doubl eSeq;
7) Entity for robot dynamical modelOne entity is in typedef sequence<char> Char Seq;
charge of providing the current state of the robot. By typedef sequence<char> StringStreaner;
reading the sensors values, and applying the Newton-Euler
algorithm, articular Jacobian, CoM, ZMP, position, torgue void run( in CharSeq cmd );
and positions can be computed. In order to avoid unnecessaryvoi d runAndRead( in Char Seq cnd,

computation, the user specifies the needed operationaispoin out StringStreamer os );
and plug the associated information with the desired featur ~ voi d readVector( in CharSeq signal Name,
Frame transformation are handled through small entitiés ab out Doubl eSeq val ue );
to perform basic matrix and vector computations. Here is an

example to create two operational points: | ong creat eQut put Vect or Si gnal

( in CharSeq signal NameCorba );
| ong creat el nput Vect or Si gnal

( in CharSeq signal NaneCorba );
The number is the rank of the joint in the state vector of the voi d readl nput Vect or Si gnal

dyn2. createCpPoint rleg 6
dyn2.createQPoint Ileg 12

robot. The creation of the operational point creates sgtwal ( in long signal Rank,
read position and articular Jacobian to be used by features: out Doubl eSeq val ue );
. . voi d writeCQutput Vect or Si gnal
new Feat ur ePoi nt 6dRel ati ve feat ur eTwof eet (in | ong si gnal Rang
plug dyn.Jrleg featureTwofeet.Jq in Doubl eSeq val ue, )i
plug dyn.Jlleg featureTwofeet. JgRef }: '

plug dyn.rleg featureTwofeet. position
plug dyn.lleg featureTwofeet. positionRef The two methodsun andrunAndRead allow to execute

8) Entity f King: O . ledpg in Fig'd script commands. The former one do not wait for answer,
) Entity for walking: One entity, calledpg in Fig.l, \ije the other one returns the answer as a stream of

provides rgferences values for'gh_e HRP-2 to_walk. Thisy&mitstrings. The methodeadVector acts as probe and write
can work in two '.'“OdeS: providing leg a_rt|Cu|e_1r referenc_:qhe value of the signal specified by signalName with the
values, or providing CO.M and feet trajectories. Ir_1 th'st pe vector invalue. The four last methods make possible
Wo_rk, the former que IS useq, gnd a task to realize e oqre input and output vector signals for writing and
articular refe'rences'ls present inside the graplsm._egs. reading informations. Those methods have been used in the
The h“f"a_”o'd wa_lkmg_pattern generator used to 'mpleme@&periment presented in paragraph IV-D to synchronize the
this entily is described in [9]. The framework to generate thdecision layer and the end of the walking execution. In [11]

references trajectories is an earlier version of this sogp it was used extensively to realize a wide-range telepresenc
system. To interact with the pattern generator a methodal:allexperiment with a HRP-2 humanoid robot

parsemcdis used. For instance to specify the single support

time: IV. CASE STUDY

pg. parsecrd : si ngl esupporttime 0.780 A. Integrating a humanoid robot in a collaborative environ-
ment

C. Componentization In [12] we described the integration of the HRP-2 hu-

In order to externalize the Stack of Tasks, two entities achanoid robot inside a collaborative working environment
as proxies to compenentization frameworks. The first onealled BSCW [13]. The robot is able to pull tasks from this
is the OpenHRP entity which allow to interact with the environment initially targeted for human users and intetrpr
OpenHRP architecture introduced by Kanehiro et al. [L0hem to perform a task in the real world. The work in [12]
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Fig. 2. Functional block implemented as CORBA and OpenRTMessrv

presented a specific case where the robot was mostly askbd control computation. In this specific experiment thd tas
to go to one place, take a picture and fill a report to théaskLegs makes the robot walks. The desired features are
requester on BSCW. We present here an extension wheasicular values for the complete body provided by the patte
the robot is then asked to switch to an interaction mode witgenerator. It is possible to take into account only the legs,
the user. the full body. Here the full body is used. While walking the
The software architecture used during this experiment BecisionServertests every 1s through the CORBA server if
the one depicted in Fig.2. They are 4 CORBA servers providhe entitypg is still providing reference values. Once this is
ing vision information LowLevelVisionServer), planning notthe case, the server removes the taskLegsand pushes
(PathPlannerServel), decision making DecisionServe}, taskForce andtaskForceLH. Those two tasks are based on
and motion generatiolotionGeneratorServer). Each of the generic controller described in the next paragraphllV-C
this server implements a framework specific to the roboti& Force-Based Control
problems solved. For instance, the planner is using Kine=’
oWorks which provides all the necessary tools to solve The generalized inverse kinematics formalism presented
complex planner problems such as the A380 grand itineraﬁ} the first section allows the realization of many tasks
[14], or humanoid robots paths [15]. We also described orig the free space. However, for constrained tasks such as

framework for walking pattern generation in [9]. tasks involving contact or force-based control tasks, the
redundancy formalism does not directly apply. A solution
B. SoT to this problem is thelynamic inverses proposed in [17],

" . 18] (rather than using thkinematic inverse€?2)). However,
The graph of entities used in our StackOfTasks module is solution requires the robot to be torque controlledicivh

depicted in Fig.1. The blue box represents a set of entifl 18 not the case for our robot. Hence we propose a solution

VSV?'CE gfr_? t"f’k?ﬁnd tZat can b? r][ﬁndg?d bg/ an. € dr!t't); of ;Latsosobtain a similar behavior based on the kinematic inverse.
ac asks The red arrows in the biue box Indicates the -4, space in which the control is designed is the op-

pr|or|t|es_ betvx_/een the tasks. Th_e green-gray arrows q‘Spl%rational space (6D position) of the contact point denoted
the relationship between the desired features and therésatu r. On position-controlled robots, a common scheme for

;Ii—r?:S fé)glf[r?t repr)]reshenr:s the St?dtien Oft thtﬁ grapr>ih tat %nglv:f rce-based control is admittance control, which defines th
€, bul 1t can change according to the Schipt Commangy ,, i pehavior of the contact point in response to the

send either by the local interpretor, or through the CORB ontact forces through a differential equation. Genertiig

server. Another possibility could be a local Finite States lected dynamics for the contact point is the dynamics of a

Machine as described by Mansard et al. [16] implementelgfass_Olamloer system:

through an entity. The tasks present in the subgraph sot
indicates which task are currently taken into account for Mi + B =f (12)



Fig. 3. Left: Robot HRP-2 walking using the SoT Right: Inttfan
between human and HRP-2

whereM andB are arbitrary mass and damping matrices o - D"
the equivalent virtual system, arfdare forces and torques
exerted on the contact point, measured by a force sensor.
In (2), the matrixJ# can be chosen asy pseudo-inverse.
We now choose to apply a weighted pseudo-inverse [19],
defined whenJ is full-row-rank by

Fig. 4. Robot HRP-2 walking and interacting with a human

is the one described in the previous paragraph. The time
J#EW _ w-13T (JW*lJT)_l (12) measurement indicates 300 nanoseconds of overhead induced
by the local graph structure. The most time consuming part is
with W an arbitrary invertible matrix that represents thehe computation of the SVD to evaluate the pseudo-inverse.
weights on the joints. Taking the derivative of (2) (with thewe have used recently exactly the same architecture to
taske set toe = r) and introducing (12) yields: perform a tele-presence experiment [11] with HRP-2 walking
. _ _ —1. ) as depicted in Fig.4. In this set-up the robot was using the
A=W IJT(JW lJT) M™H(f-Bi) (13 task taskLegs using only the 12 DOFs of the legs, and
Selecting the weighW as the inertia matriXA of the robot With the taskstaskForce and taskForcelLH. For the latter

and the virtual masdI asA — (JAflJT)*l, the apparent tasks a signal provided by the remote operator was used in

inertia of the end-effector of the robot, we obtain: the computation of the final control law. This addition was
. T . realized using the CORBA interface described in paragraph
Ag=J"f-Bgq (14)  [-C] The computation of this control law takes about 3 ms
on HRP-2.

where By = JTBJ is the friction factor of the whole
body structure. This last equation corresponds to a siraglifi V. CONCLUSION
version of the dynamic equation of the whole-body compliant
robot with gravity compensation, with forcefs acting on
r and a frictionB, that may be tuned by selectifig to
stabilize the system. d

Consequently, if the control parameters are chosen @e%

?:;Célbne;m?f:\é?}htgfoggia$ﬁg c%onr::';)?lrles rigzlr:/?sl Znt;ﬁetrspeciﬁcally target for this purpose. It has been integrated
y : P 9 hoa complex architecture to realize collaborative work.

ization of [8), which means that both force-based Contagea/eral modalities have been presented: interactionghrau

ta;k; an_d position-based free space .tasks can be reallzc‘?assical IT Collaborative Working Environmnent (BSCW),
within this control structure. No specific values have to b

chosen or tuned. excent for the dampina aBinthat has orce-control based interaction with a human, force-aaintr
. ' Pt Ping gain based interaction with a human while walking.
been experimentally verified to be very robust.

We have presented a versatile implementation of the
Generalized Inverted Kinematics for a humanoid robot HRP-
2 called the Stack Of Tasks. This implementation allows
namic modification of the graph of computation, reference
neration, task switching thanks to a scripting language
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D. Experiments
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which assign to the overall control space the articulareval
to realize. During all the execution as explained earlieg, t
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