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Abstract— This papers presents an application of Interval
Analysis to a 3D reconstruction problem. The aim is to build
a partial boundaries representation of an object including
guaranteed information according to the camera model.
Features points coordinates are described using intervals. This
representation is used together with a method to search stereo
correspondence based on the connectivity of segments.

I. I NTRODUCTION

This papers deals with the problem of error estimation in
3D reconstruction. In this problem, errors may arise from
the physical camera in the choosen camera model, from the
segmentation process, and from the pixel information. Er-
ror is usually taking into account through an additive term
on estimated measures, i.e. the pixel information, or the
parameters of the camera model or both. The most common
form of this additive term is a Gaussian distribution. This
model was used in common camera calibration process
[1] [2]. Concerning applications, the mathematical tools
provided by this model lead to numerous results, such as
camera self-calibration and motion estimation [3], environ-
ment modeling [4], self localization applied to robots [5],
registration [6], or visual servoing [7]. This model is based
on several hypothesis such as centered distribution and
indenpendance variables. These hypothesis are known to
be approximative, but as they are statistically representative
of the physical model through numerous samples, they
allow a good identification. However when considering
3D reconstruction, only a few number of variables is
involved, and the true geometrical model of the camera
becomes proeminent. A statistical study on the influence
of modelization by Gaussian noise with different resolution
can be find in [8], but it also possible to solve the 3D
reconstruction problem based on geometrics consideration.
Indeed, a new approach of the 3D reconstruction problem
using Interval Analysis has been proposed in [9] and [10].
The novelty in this paper is to apply this approach to
the first step of 3D object reconstruction, together with
a very robust stereoscopic segments based correspondence
method [11], and considering the new camera model.

The targeted application is 3D objet modelling for the
HRP-2 [12] humanoid robot. The created model could be
used for two main tasks: visual-search and visual-servoing
manipulation. Such model-creation capability is particulary
usefull when the robot has to handle new objects for which
no models has been provided. This is particulary true for
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humanoid robots no-dedicated for one particular task, and
evolving in open environments. A first step towards the
manipulation of unknown objects is to deal with the error
estimation of the knowledge we can have on this object.

The first section introduces the method used to build
the boundary representation. The second section describes
the interval analysis tools which are used in the context of
3D uncertainty computation. The third section presents the
results applied to some objects relevant to the application
context.

II. T HE VVV SYSTEM

A. System configuration

The HRP-2 humanoid robot is equipped with a vision
sytem called VVV [12]. This versatile system using a
trinocular stereo camera setup is able to reconstruct 3D
information of a scene, to recognise an object [13], to track
a recognised object [14], and to build a model using a range
finder system.
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Fig. 3. Two matched segments (Sl, Sr) and epipolar constraint allows to
compute matched points through the intersection of epipolar line (Ll, Lr)
and segments (Sl, Sr).

B. Boundary representation of an Image

In the VVV system, an image is described using bound-
ary representation. This boundary representation is build
after performing an edge detection using a Sobel and a
Laplacian operators. The result is divided in segments
linked using four types of characteristics points :branch,
corner, inflection and transition. The first two kinds deal
with straight segments, whereas inflection and transition
points deal with curved segments. Inflection points describe
changes in the curvature sign, and the transition describe
a change from zero to non-zero value for the curvature.

The segments linked one to the others define boundaries,
which in turn define regions. Thus the corresponding data
structure, called B-Rep, is made of four layers:region (R),
boundary (B), segment(S) and point(P). The points at
the beginning of each segments are the ones to which the
interval analysis is applied. An example of the B-rep data
structure is given in figure 1.

C. Using boundary representation for matching

The boundarie representation of an image pair allows the
computation of robust matching between a left-right pair
of images. As it is described in [11] segments’ boundaries
from the left image are compared with segments’ bound-
aries from the right image using the epipolar condition and
the segments characteristics: shape, intensity, direction and
connectivity. Then, 2 bidimensionnal matched B-rep are
equivalent to 2 set of matched segments in the images.
On figure (3) we can see two matched segments (Sl,Sr).
Now, the epipolar constraint is used to find matched points.
Epipolar line (Ll,Lr) are the intersection of image plane
and epipolar plane (πe). Intersections of segments with
epipolar lines furnishe matched points in the image pair.
These points will be used in 3D reconstruction. Moreover,
in our context, a third camera is used to check the correct-
ness of some matchings. The final ouput of this process
is a partial 3-dimensional boundaries representation of the
objects in the scene. These are visible in figures 6(a)(b)(c).

Fig. 4. 1) real pixel 2) probabilistic model of pixel 3) interval
representation of pixel by an interval.

III. C HOICE OF MODELS

A. Camera model

The most popular camera model in computer vision is
the pinhole model. It allows to use the projective geometry
properties; thus the projection observed by a camera is a
linear application given by equation (1). Dimensions of
the matrixPi are (3 × 4). This model has 12 degrees of
freedom. The complete projection of a scene point through
the camera model is given by:

q = PQh = K (R|t)Qh (1)

whereK is the matrix of intrinsic parameters,(R|t) is the
matrix of extrinsic parameters.R represents the orientation
of the camera in the scene frame, andt its position.Qh is
a 4 dimensional homogeneous vector of a 3 dimensional
point in the scene. The matrixP represent the linear
application associated to the projection, its dimension is
(3 × 4), andq is the homogeneous vector associated to the
image point ofQh by P .

Identification of matrixP can be realized by a direct
inversion of the system (equation 3). Then we need to know
at least the 3D coordinates of 6 points in the scene [15].
Zhang [1] uses homographics properties induced by the
use of a planar test pattern in order to identify separately
intrinsic and extrinsic parameters. This identification is
achieved by the resolution of several linear systems and
Ueshiba has shown in [16] that the results are very similar
to those we could obtain after a non linear geometric or
statistic optimization.

In the following paragraph, this model of camera is
improved in order to take care of uncertainty in pixel
position.

B. Pixel model

Algebraic representation of camera model (equation 1)
allows us to associate a point in the scene and a point in the
image. Nevertheless, data which are furnished by camera
are pixels (figure 4-1). The classical mathematical tool used
in order to represent this planar aspect is an inaccuracy on
real point position. In others words, the exact position of
the point has the properties of a Gaussian random variable
distributed around the center of the pixel. The deviation of
this random variable is characterized by an ellipse which
ensures the variable a high probability to be inside the
ellipse. Classical choice isσ = 0.7, the ellipse is chosen
to ensure a 95% probability to be inside (figure 4-2).



This is a probabilistic model used for geometric compu-
tation. One problem is that some hypothesis are imperative
to permit the use of such a model. Independence of vari-
ables and centered aspect of the distribution are justifiable
but false [18]. They allow the use of resolution tools based
on quadratic criterions when data are punctual. Concerning
sensor calibration (such as cameras), the central limit
theorem justifies the probabilistic approach when enought
data are available. Then, the punctual results are known
with accuracy. But, concerning the triangulation step, this
theorem is not justified since only few measurements are
used. Triangulation in stereovision is only based one two
measures: one points in each image.

According to these approximations, a geometrical ap-
proach can be realized using interval analysis. Indeed, we
use the alternative proposed in [17] to represent each pixel
by an interval (figure 4-3). So, the uncertainty associated to
the position of an image point is introduced as the interval
[ǫ]. This uncertainty has to be considered in the intrinsic
parameters. The projection is now written:

[q] = E

(

PQh

P t
3Qh

)

+ [ǫ] (2)

WhereE is the round operator which furnishes the nearest
integer of a value. The denominatorP t

3Qh is the normal-
ization of data description in the image, whereP3 is the
third column of the camera modelP . This allows us to fix
the scale factor and to define the value of the error vector:
[ǫ] =

(

[ǫ1] [ǫ2] 0
)t

. According to the model, there is
no error on the scale factor, but only an uncertainty on the
position of the geometric point in the image plane.

If we consider the set of points described by the vector
[q], they described a planar surface. Thus, an underlying
hypothesis traduces an affine model for the camera. Indeed,
since the whole set of points included in[q] is normalized
by a unique scale factor (P t

3Qh), this means that the set
of points [q] is the projection of a set of coplanar points
{Qh}. This hypothesis characterizes an affine functioning
of the camera. Nevertheless, in our case, intervals do not
describe a set of points[q] but only one point (q) with an
unknown but bounded position:q ∈ [q]. Thus, the only
hypothesis which is made with this description is based
on the uncertainty of data according to the model: the
uncertainty is bounded.

In a first and empiric approximation, we choose a value
for the uncertainty ([ǫ] = ([−0.5, 0.5][−0.5, 0.5]0)t) which
covers the surface of a pixel. This estimation is sufficient,
a method to choose correctly this uncertainty is presented
in [17].

In the next section, we present the equation to solve
in order to obtain the 3D coordinate of a point from its
matched image points. Then we will present the way to
solve these equation when points are replaced by pixels.
In other words, points are extended with interval analysis
information in order to compute the uncertainty of the 3D
reconstruction.

Fig. 5. Original images for 3D reconstruction. 2 kinds of objets are
considered: Geometrical form and free form.

C. 3D reconstruction

The projection which is realized by the camera can be
describe algebraically in projective space as a not full rank
linear transformation [19][15]. The rank propertie causes
the perspective effect. The formation of an image with such
a camera is written :

q = PQh (3)

Concerning a stereoscopic system, a couple of camera
compensates the not full rank relation in this algebraic
representation. Indeed, the relation between a 3D point
and its couple of projections provides the following over-
determined system:

(

ql
qr

)

=

(

Pl

Pr

)

Qh (4)

We observe 6 equations and 4 unknown data. It represents
the intersection of the two reprojected lines defined by the
center of each camera and each image point. The resolution
of this linear system furnishes the coordinate of the 3D
reconstructed point. It is equivalent to an overdetermined
system in the form:

AQnh = B (5)

Matrix A and vectorB will be given. They are build
with the elements ofPl, Pr, ql and qr. Qnh is the non
homogeneous vector of the 3D point in the scene. Due to
the projective representation of space, it is given up to a
scale factor [10][19][15].

D. Uncertainty of data

The method proposed in [10] allows to compute the
uncertainty of image point position. It proposes to describe
pixel position with intervals([ql], [qr]). Then it gives the
system (equation 5) from interval arithmetics rules: let us
cut the matrixP associate to a camera model such as:

P = (M | V ) (6)

WhereM is a (3 × 3) matrix andV is a (3 × 1) vector.
The operator[∗]

×
is the anti-symmetrical matrix associate

to the cross product function. The system (equation 5) is
given with the interval matrix[A] and the interval vector
[B]:

[A] =

(

[[ql]]×Ml

[[qr]]×Mr

)

; [B] =

(

[[ql]]× Vl

[[qr]]× Vr

)

(7)



Fig. 6. Different viewpoints of the 3D reconstruction with Boundaries
representation and interval bounding boxes. (top-(a), middle-(b), bottom-
(c))

The exact set of 3D points{Qs} which is solution of the
uncertain linear system[A]Qnh = [B] is :

{Qs} =
{

Qnh ∈ R
3|∃A ∈ [A], ∃B ∈ [B], AQnh +B = 0

}

(8)
In the next section we present tools of interval analysis
which permit to find a minimal external bouding box
[X ] = [{Qs}] of {Qs}.

IV. I NTERVAL ANALYSIS

A. Uncertain linear system and CSP

We show that the seek of the bounding box[X ] =
[{Qs}] with interval analysis is similar to a constraint
satisfaction problem (CSP)[20]. Indeed, it is known that
lines 3 and 6 of matrixA ∈ [A] are linearely dependant
[15]. Then, system define by[A] and [B] is reduced to
dimension(4 × 3). By extracting one more line in this
system, we obtain 4 square systems. Since we propose to
produce a solution as an external bounding box for each

system, the intersection of solutions provide by each of
them is still an external bounding box. For this reason, the
next devellopements are proposed with square matrix[A].

Let us call [aij ], [bi], [xj ] the respective elements of
matrix [A] and vectors[X ] and [B]. The bounding box
of the set (equation 8) is produced from the CSP:

i = 1...3, j = 1...3 :

H =







X = {aij , bi , xj }

D =
{

[aij ] , [bi] , IR
3
}

C =
{

fi : bi =
∑k=3

k=1
aikxk

}






(9)

Where the set of variableX is defined on sets of definition
domainsD and linked by the set of constraintsC.

Consider the set of variablesX linked by relations in
the form fi(xj) = 0, i = 1...m, j = 1...n. Each variable
is known to belong to a domainDj . In the next section,
we present fixed point contractors. In interval analysis this
operator aims to reduce the width of the intervals[xj ]
according to the set of relations defined by functions{fi}
[10][21]. More generally speaking, this problem is known
as the problem of consistance in Constraint Satisfaction
Problem (CSP).

B. Fixed point contractor

Fixed points contractors are iterative process based on
the fixed point theorem [22]. Let us write the evolution of
the domainD with the serial:

Dk+1 = R (Dk) (10)

The operatorR is the contractor. Let us suppose this serial
converge to an optimal or incompressible boxDk, then the
serial define in (10) reaches to a fixed point and we observe
an idempotent phenomena:

Dk+1 = R (Dk) = Dk (11)

Such convergence can be finite or asymptotical accord-
ing to the system considered. This more precise formalism
of the contraction process is defined in [23] and based upon
the lattice theory [24]. Thus, an operator for which it exists
a solutionS for the CSPH = (X ,D, C), is a contractor if
it verifies the following properties:

contraction : [x] ∈ D ⇒ R ([x]) ∈ D
monotony : [x] ∈ D, [x′] ∈ D

[x] ⊂ [x′] ⇒ R ([x]) ⊂ R ([x′])
idempotency : [x] = S ⇒ R ([x]) = [x]

(12)
The contraction property is simply obtain with pur sets

operators. The following serie is contracting:

Dk+1 = Dk ∩R (Dk) (13)

Monotony is a property of functions defined from the
constraints according to the domain of definition. These
functions are calledinclusion functions. In the case of
linear functions with only one occurence of each variable,
inclusion functions provided by constraints are monotonic
[10]. From those remarks, fixed point contractors are
operators build upon idempotency. The Gauss-Siedel [25]
and Krawczyk [26] contractors are among them.



a) The Krawczyk-Newton operator:With this oper-
ator, solving an equation writtenf (X) = 0 using an
idempotent property, involves to build a function(X) such
as

f (X) = 0 ⇔ ψ (X) = X (14)

The pointX such asf (X) = 0 is the fixed point of the
serie defined byXk+1 = ψ (Xk). If this serie converges,
then it is towards this point.

For a given functionf , at first it is possible to build the
correspondingψ function by written:

ψ (X) = X −Kf (X) (15)

With this definition, the property described by equation 14
is fulfilled. Thus the serie can be written:

Xk+1 = ψ (Xk) = Xk − f (Xk) (16)

To get the convergence, a linear operator is used. Here the
Jacobian of the functionf , i.e.K = J−1, gives the Newton
resolution method, and a new possibleψ function is:

ψ (Xk) = Xk − J−1f (Xk) (17)

The function in which we are interested in is written:

f (X) = AX −B thusJ−1 = A−1 (18)

The following inclusion function is used:

[f ] ([X ]) = [A] [X ] − [B] (19)

From this, and according to contraction property 13 the
final inclusion functionψ is deduced. It provides the serie:

[X ]
0

= ] −∞; +∞ [

[X ]k+1
= [ψ] ([X ]k)

= [X ]k ∩ (
(

I −A−1 [A]
)

[X ]k +A−1 [B])

In the case of linear system, this opertor converges quickly
to the fixed point (1 or 10 iterations).

b) The Gauss Siedel contractor:This contractor is
based upon the method used to solve linear system having
the same name. Its extension to interval analysis is pre-
sented in [21]. For a system of dimensionn : AX−B = 0,
the matrix Λ is ponctual one(n× n) , with ρ (.) the
operator returning spectral ray of a matrix. This contractor
is given by:
{

Λ|∀A ∈ [A] : ρ (ΛA− I) < 1 ; [M ] = [A] − Λ−1

[ψ]k ([X ]) = [X ]k−1
∩ Λ

(

[b] − [M ] [X ]k−1

)

}

(20)
Practically, it can be shown that the solution of the system
([A] , [B]) is equivalent to thepreconditionnedsystem
(

A−1 [A] , A−1 [B]
)

[10]. Then usingΛ = diag
(

A−1
)

al-
lows to build simply this contractor. [27] presents different
preconditionning methods to improve the results of this
contractor.

TABLE I

TIME MEASUREMENTS USING2 KINDS OF CONTRACTORS

Contractor Nb Of Iterations Time (ms)

Gauss Siedel 10 5.23

5 2.9

2 1.05

Krawczyk 10 7.64

5 4.05

2 1.89

TABLE II

PRECISION MEASUREMENTS USING THEGAUSS SIEDEL AND

KRAWCZYK CONTRACTORS

Nb Of Iterations Gauss Siedel Krawczyk

10 1.003612 1.000000

9 1.004032 1.000000

8 1.008824 1.000000

7 1.065419 1.000004

6 1.760988 1.000203

5 10.747894 1.012403

4 135.660754 1.656179

3 2110.601213 50.573413

2 41863.675373 4268.144590

1 1204492.417910 802289.970149

V. EXPERIMENTAL RESULTS

The previously presented method has been applied to the
scene represented in figure 5. Two kinds of objects have
been tested on this scene: a geometrical form object and a
free-form one. The geometrical object is a T-shape, while
the free-form object is a torch-light. The T-shape object
and the torch light are of particular interest as they can
be handled by the HRP-2 robot. Applying the presented
method gives the 3 images displayed in figure 6.a, 6.b,
and figure 6.c. The boxes represent the intervals in which
lie the features points.

Figures 6.a and 6.b show that the torch-light is the
object for which features (point and segments) are the
most precisely detected, i.e. for which the boxes are the
smallest. The T-shape object is less well detected, but all
the visible edges are salient. Due to the geometric model
of the camera, deeper objects, or objects far away from the
optical axis intersection are less precisely located, as can
be seen in figure 6.c. This is particulary clear for the edges
of the desk.

The uncertain linear system resolution has been tested
using 2 differents contractors: Gauss Siedel and Krawczyk.
The time costs are summarized in table I. The computer
used for the experiments is a 1.5 Ghz Pentium 4 Intel PC.
A precision evaluation for both algorithms is given in table
II. In order to compare the algorithms on the same data, the
two contractores are computed on the same points and with
different number of iterations. The precision is computed in



the following manner: each interval of a point is compared
with the one given by the Krawcyzk contractor for 10
iterations. The latter one is consider as the reference and
the most precise value for a given feature point. A ratio is
obtained for each dimension. The average of those three
ratios gives to the point a precision related to its location.
Finally to get a scalar value for one algorithm and a given
number of iterations, a second average is perform on all the
feature points. Thus given table I and table II the Krawczyk
contractor is more accurate than Gauss-Siedel, but it takes
more time to compute.

An other contractor proposed in [28] has been imple-
mented. However the test involving the most efficient step
of this contractor is violated every time, and then makes
necessary the use of an other algorithm more consuming
that Krawcyzk [29] and less precise.

VI. CONCLUSION

This paper presented an application of Interval Analysis
in the context of 3D reconstruction. This technic provides
guaranteed information on the 3D point location according
to the camera model. It has been applied to the VVV
system to build a partial object representation based on
3D boundaries.

Such approach is interesting for robotic application
where unknown object has to be handle, and for which
the construction of a model need to be perform. For
instance, using an incremental approach, the bounding
boxes provided by the interval analysis delimits the area
where to search feature points. If some points have to be
more precisly localized, the robot may change its viewpoint
to have most of the model accuracy around the wanted
location.

Our futur work is to extend this approach using the
concepts presented in [30] to control the HRP-2 humanoid
robot for building 3D object representation.
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[7] P. Rives, “Visual servoing based on epipolar geometry,”in In-
ternational Conference on Intelligent Robots and Systems (IROS),
Takamatsu, Japan, 2000.

[8] E. Grossmann and J. S. Victor, “The precision of 3d reconstruction
from uncalibrated views,” inBritish Machine Vision Conference,
1998.

[9] B. Telle, M. J. Aldon, and N. Ramdani, “Guaranted 3d visual sensing
based on interval analysis,” inProceedings IROS, 2003.
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