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Abstract— A significant amelioration of our previous work is
presented which aims at building autonomously visual models of
unknown objects, using a humanoid robot. The use of embedded
sensors inside the head of the robot in order to construct this
model necessitates an original solution compared to previous
approaches in the litterature.

Previously we introduced a Next-Best-View solution using
two steps: (i) an optimization algorithm without derivatives,
NEWUOA, is used to find a camera pose which maximize the
amount of unknown data visible, and (ii) a whole robot posture
is generated by using a different optimization method where the
computed camera pose is set as a constraint on the robot head.
This paper presents modifications of the original algorithm in
order to improve the robustness while broadening the cases
that can be handeld.

I. INTRODUCTION

A. Context of the work
The main question addressed in this paper is how to

generate successive postures of a humanoid robot in order
to build a 3D model of an unknown object while taking
into account different constraints on the robot body as well
as the visual characteristics of the object perceived by the
robot. The perception of the object is done using the stereo
cameras embedded in the humanoid head by constructing a
disparity map and also by detecting landmarks represented
by SIFT features [1]. The disparity map is used to perform
space carving on an occupancy grid which corresponds to
the 3D model to construct. We take as an hypothesis that the
environment is known so that its distinction from the object
to model is simplified.

The work presented in this paper details our current solu-
tion to generate humanoid whole-body postures given an oc-
cupancy grid, a list of SIFT landmarks and the constraints on
the humanoid body: self-collisions, collisions with obstacles
in the environment, stability and joint limitations. To achieve
this, we rely on two complementary optimization methods:
a derivative-free optimization method and a gradient-based
method. This work continues the one presented in [2] by im-
proving the robustness of the criterion used in the derivative-
free optimization method and by widening the range where
the algorithm can be applied.

B. Overview of related work
The planning of sensor positions in order to create a 3D

model of an unknown object is known as the Next-Best-
View (NBV) problem and has been addressed for several
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Fig. 1. Two-steps approach for the generation of posture.

years, the first notorious work in the field being [3]. Amongst
following works, we can cite [4], [5], [6] or [7]. Hypotheses
and limits of such works are detailed with more details in
these two surveys: [8] and [9]. Most works in the NBV
field make the assumptions that the depth range image is
dense and accurate by using laser scanners or structured
lighting, and that the camera position and orientation is
correctly set and measured relatively to the object position
and orientation. The object to analyze is also considered to be
inside a sphere or on a turntable, i.e the sensor positioning
space complexity to evaluate is reduced since its distance
from the object center is fixed and its orientation is set
toward the object center. The main aim is to get an accurate
3D reconstruction of an object, using voxels or polygons,
while reducing the number of viewpoints required. Such
methods can be efficiently used in controlled environments
with relatively small objects, and using a sensor with accurate
positionning. Though the problem of sensor positionning has



been adressed in some works such as [10], they aim at the
exploration of configuration space with a simplified robot.
The aim is different in our work as the sensor is embedded in
a humanoid which can move in a known, but not necessarily
obstacle-free, environment. Furthermore our goal is to have
a method useful for the modeling of objects with no specific
particularities: objects can be small or big, and have complex
shapes.

C. Contribution

Though our modeling process also requires a NBV solu-
tion, it appears that working hypotheses are quite specific for
a humanoid robot and thus our work differs in few important
issues:

1) the sensor pose is constrained due to it being embed-
ded in a humanoid robot. Moreover the presence of
obstacles in the environment must be dealt with.

2) the sensor’s result positions need not being further
constrained to some precomputed discrete positions
on a sphere surface, and its viewing direction is not
forced toward a sphere center. Thus the algorithm can
be easily used to model objects of different sizes,

3) to correct possible positionning errors, a constraint
that keeps some landmarks visible to the camera is
implemented,

4) an accurate 3D model of the object is not required.
Our goal is to get a set of visual features around the
object to allow its effective detection and recognition.

In [11], the object modeling was performed by generating
postures with the robot head pose set as a constraint given by
a human supervisor. In [12], a first attempt to complete this
work by using visual cues to guide the modeling process au-
tomatically was proposed by using a formulation which can
be directly integrated into our posture generator. However
this formulation results in convergence problems when gen-
erating a pose, thus the two-steps approach, outlined in Fig.
1, was designed and presented in [2]. Section II summarizes
this approach and presents the latest improvements added.
Analysis of these modifications are presented in section III
and finally section IV concludes this paper.

II. TWO STEPS NBV APPROACH

The solution presented in [2] decomposes the problem
in two: first, find a camera position and orientation that
maximizes the amount of new visual information while
solving specific constraints related to the robot head, then
generate a whole-body posture for the robot using the desired
camera pose as a constraint on the robot head pose. If a
whole-body posture cannot be generated, the first step is run
again with some modifications in its input data.

For the first step, we use NEWUOA [13], a method
that can find the minimum of a function by refining a
quadratic approximation of it through a deterministic iterative
sampling, and which can thus be used for non-differentiable
functions. NEWUOA has the advantages of being fast and
robust to noise while allowing us to keep the 6 degrees of
freedom of the robot camera.

The second step uses the posture generator (PG) proposed
as part of the work in [14] and [11]. This PG relies on FSQP
to give a posture that minimizes an objective function while
solving given constraints expressed as derivable functions.

A. Evaluation of visual data

To define the best view, we need an estimation of new
information that can be discovered depending on the view
posture. Following the works of [5] and [3], our approach
uses an occupancy grid and the space carving algorithm
for this purpose. The object model can be composed of
perceived (known) voxels and occluded (unknown) voxels,
and is updated each time a disparity map is constructed by
stereo vision. The NBV algorithm is based on the evaluation
of the unknown surface visible from a specific robot pose.
This evaluation can be done in a relatively fast way by
rendering known and unknown voxels as 3D cubes, using
OpenGL.

In [2], by coloring known voxels in blue and unknown
voxels in green, the amount of unknown visible is defined
as the number of green pixels on the screen. This gives a
useful estimation when the voxels have a relatively small
size compared to their distance to the robot and the camera
field-of-vision angle. As a constraint which sets a minimum
distance between the robot head and the object is needed
in order to create the disparity map using stereo vision,
we can define a maximum threshold for the size of the
object to be detected depending on the characteristics of the
cameras embedded in the robot head. But a problem arises
when the size of voxels gets big relatively to the minimum
distance allowed: the maximum surface of a voxel that can be
projected increases, resulting in computed views where the
amount of unknown voxels visible gets significantly reduced.
In such cases, the number of poses necessary to build the
model increases as the robot gets close to few voxels instead
of trying to perceive the maximum number of unknown
voxels possible.

A simple way to deal with this problem is to increase the
resolution of the occupancy grid depending on the object size
but this increases drastically both the memory space required
and the computation time. Instead we are now using a fast
estimation of the number of unknown voxels visible, relying
on OpenGL, by associating a unique color to each unknown
voxel. The number of unknown voxels visible in one frame
is thus equal to the number of different pixel colors.

B. Constraints on the camera pose

Though NEWUOA is supposed to be used for uncon-
strained optimization, some constraints on the camera pose
need to be solved in order to be able to generate a posture
with the PG from the resulting desired camera pose. The
constraints on the camera position C and orientation Θc

included in the evaluation function of the first step given to



NEWUOA are:

Czmin < Cz < Czmax (1)
∀i, dmin < d(C,Voxi) (2)
Θcxmin < Θcx < Θcxmax (3)
Θcymin < Θcy < Θcymax (4)
Nl > Nlmin (5)
∀i,C 6= Fi ∨Θc 6= Fri (6)

The range for the camera height is limited by (1) to what
is accessible by the humanoid size and joints limits. A
minimum distance dmin is imposed by (2) between the
robot camera and all the non-empty voxels of the object.
This corresponds to a requirement in order to generate
the disparity map with the two cameras embedded in the
robot head. No maximum distance constraint is used. The
rotations on X and Y axes are restricted by (3) and (4) to
ranges manually set according to the robot particularities.
The constraint (5) keeps a minimum number of landmarks,
i.e. features that were detected in previous views, visible
from the resulting viewpoint. By matching them with features
detected within the new viewpoint, it is possible to correct
the odometry errors due to the movement of the humanoid
and thus the position and orientation of the features detected
all around the object, relatively to each other, can also be
corrected. Finally, we added a new constraint (6) which
ensures that the resulting pose will not be near previously
found poses, with position Fi and orientation Fri, which
could not be reached by the PG in the second step. Though
we didn’t run into such cases when doing our experiments
in [2], this is necessary to ensure the algorithm can find a
pose even when constraints not expressed in the first step can
block the convergence in the second step, e.g. the presence
of obstacles in the environment.

C. New constraints formulation in the evaluation function

Two modifications have been made concerning the for-
mulation of constraints in the evaluation function given to
NEWUOA: a reformulation of the constraint on landmark
visibility (5) and the addition of a new constraint to avoid
camera poses which resulted in problems of convergence for
the PG.

In [2], the landmark constraint relies on the visibility of
corresponding voxels. Our new formulation relies both on
the visible surface of landmarks and their normal vector as
the SIFT landmarks cannot always be detected whenever
they are visible. The surface visibility for each landmark
i is computed relatively to its amount of pixels visible from
the current viewpoint pvi using a sigmoid function:

lsi =
1

1 + exp (pmini − pvi)
(7)

The parameter pmini is the minimum amount of pixels
required to consider the landmark i visible, and its value
depends on the original landmark size.

The visibility of each landmark relatively to their normal
vector Nli and the current camera view direction vector

Cview is expressed using another sigmoid:

lni =
1

1 + exp (β ((Cview.Nli) + φ))
(8)

where φ is related to the angle range allowed, and β deter-
mine the slope of the sigmoid function. The final visibility
coefficient for each landmark is computed by multiplying lsi

with lni. We set an arbitrary defined minimum number of
visible landmark Nlmmin which is compared to the obtained
coefficients for all landmarks N using:

lv =

(
N∑

i=0

lsi.lni

)
−Nlmmin (9)

The constraint for the evaluation function is defined in one
of two ways depending on the sign of lv. Configurations
maximizing lv are slightly encouraged when it is positive:

Kl = −η lv (10)

The η parameter can be small so that the minimization of
other constraints and the maximization of unknown visible
both have a greater priority than the increase of number of
visible landmarks beyond the defined threshold. In the other
case, where lv ≤ 0, the configurations are greatly penalized:

Kl =
(

lv

Nlmmin

)2

(11)

The new constraint to avoid unreacheable postures is
formulated as:

Kf =
∑

p

exp (−δ.Dfp) (12)

where Di represents the sum of absolute differences between
the values of the actual camera pose and the unreachable pose
fp. δ corresponds to the sensitivity of the constraint.

The evaluation function to minimize which is used as input
to the NEWUOA algorithm becomes:

f e =λzKCz
+ λxKΘcx

+ λyKΘcy

+ λdKd + λlKl + λfKf − λnNup

(13)

The λ parameters are fixed manually to modify the balance
between the constraints. Nup is the number of unknown
voxels visible from the camera pose. KCz

, KΘcx
, KΘcy

and
Kd parameters corresponds respectively to the height limit,
X and Y rotation limit, and the minimum distance constraints
which are formulated in [2].

D. Evaluation function behavior

Due to the constraints used and the specificities of objects
to model, many different cases can result in local minima
in our evaluation function that are quite disjoint as can be
seen in the example shown in Fig. 2. This figure illustrates
the behavior of some constraints in the evaluation function
for different camera position around the object carved once.
The best orientation found by a NEWUOA search is chosen
for each position. The object simulated is 3 meters high, the
camera is placed at a height of 1.3 meters and its X and



Fig. 2. Example of the evaluation function components obtained with a
fixed camera height and depending on the camera 2D position on the plane
XY around an object (left-top) which has been perceived once. The red cross
indicates the position of the camera used for the carving. Left-bottom: view
of the occupancy grid which is used to predict the amount of unknown
visible, center-top: fe, center-bottom: Nup, right-top: Kd and right-bottom:
Kl.

Y positions are in the interval [-15,15] meters. There is a
distance of 0.1 meter between each position tested.

The number of unknown voxels visible (center-bottom) as
well as the constraint on the landmarks (right-bottom) are
composed of many abrupt variations due to the occlusions
between known and unknown voxels occurring with rela-
tively complex shapes. We can note in the final evaluation
(center-top) that the landmark constraint decourages the
algorithm to select a camera pose where the visibility of
unknown is the best: near the opposite side of the perceived
object face.

A particularity of our algorithm is highlighted by the
constraint on the minimum distance (right-top) where the
camera is allowed to be placed inside the object. As the
object is composed of many holes, when space carving is
applied, there appears some parts inside the occupancy grid
which are empty. This means that the algorithm has the
possibility to set a robot pose inside the object if it is big
enough, for example a house, and thus, though it is not its
main goal, the algorithm can still be used for exploration
tasks too.

E. NEWUOA configuration

NEWUOA seeks the minimum of fe by approximating it
with a quadratic model, inside a trust region. Thus an initial
configuration is provided to the software which limits the
initial sampling to a subspace according to a range given
by the user. Nevertheless NEWUOA’s complete search is
not limited to the trust region and can test vectors outside
depending on the quadratic approximation obtained. In fact,
result poses are most of the time clearly outside of the bounds
of the region.

After extensive tests, two techniques were introduced in
our previous paper to cope with local minima seen in Fig. 2
and improve the search of an optimum solution: first, we run

NEWUOA in an iterative way, i.e run it once with a manually
chosen starting pose then run it again by setting the starting
pose with the previously found one, etc. The computation
stops when two successive iterations give the same result or
a maximum number of iteration is reached. Second, we set
manually different starting poses around a reference position,
launch the iterative process from each chosen position and
select the best one.

A new significant improvement introduced here is the
decoupling of the camera position and orientation searches.
In [2], both the position and orientation are given as input to
NEWUOA but, in fact, the quadratic approximations of the
evaluation function depending on the orientation parameters
themselves depend on the current position. Thus NEWUOA
is now used in cascade: one occurrence searches for the
best position and each time a position is tested, a new
occurence is launched which searches for the best orientation
corresponding to this position.

F. Second step: Posture Generator

Once an optimal camera pose has been found, the result
is used as a constraint on the humanoid robot head in order
to generate a whole-body posture that takes into account all
other constraints such as stability, collisions, etc.

The starting robot pose is set using a pre-computed posture
at the position and orientation of the desired camera pose. In
cases where the PG cannot converge, the goal camera pose
is put inside the list of forbidden poses which is used in the
constraint 6 and NEWUOA is launched again to find another
pose.

III. SIMULATIONS

A. NEWUOA tests for camera pose evaluation

First we compare the improvement of using NEWUOA
in cascade in order to look for the position and orientation
separately. Examples of results are illustrated in Fig. 3 where
the starting pose of the camera is translated on the Y axis
near a carved object with a height of 0.5 meters (top), and 3
meters (bottom). The results of our previous approach (left)
are compared with those of the new one (right). The main
difference is the ability of the cascade method to reach a
better pose in one iteration. Thus the number of iterations
needed in order to reach an optimum is significantly reduced.
However the computation time is still much higher than
for the previous method as several NEWUOA searches are
performed per iteration.

Though there appears to have greater variability in the
results for our latest method when considering big objects,
in overall, the resulting poses still have better evaluations
than those obtained with our first approach.

B. Constraint on forbidden poses

The Fig. 4 illustrates the influence of our new constraint
to avoid unreachable poses on our evaluation function. The
graphics are obtained in the same conditions than for Fig.
2 though the object evaluated differs. The pose to avoid
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Fig. 3. Evaluation (Y axis) of the poses obtained before, at the beginning and at the end of the iterative NEWUOA search depending on the starting
position (X axis). Left column: evaluation results when NEWUOA is searching for the best position and orientation simultaneously. Right column: results
with NEWUOA used in cascade. Top line: results obtained with a small object. Bottom line: results obtained with a big object.

Fig. 4. Influence of the pose avoidance constraint on the evaluation
function. Top line: evaluation results depending on fixed X and Y positions.
Bottom line: Estimation of unknown data visible. Left column: initial
evaluation. Right column: evaluation done after the manual input of a pose
to avoid. The XY position of the forbidden pose is located in the middle of
the white square on the dark area in the top-left image, and in the middle
of the grey square in the bottom-left image.

was chosen as one of the pose obtained initially at a pre-
determined XY position. The parameter δ from equation 12
is set to a large value so that the constraint appears clearly
in the evaluation. Using a δ value small enough results in an
evaluation similar to the initial one as a change of orientation
relatively to the reference pose is enough to set the constraint
inactive.

C. Modeling process simulation

The experimental setting is simulated by having a virtual
3D object perceived by a virtual camera. The modeling
process loops through the following steps:

1) The disparity map is constructed using the object 3D
informations and is used to perform a space carving
operation on the occupancy grid. Some known voxels
are randomly selected to be considered as landmarks.

2) The NEWUOA routine is then called in order to find
an optimal camera pose by minimizing our evaluation
function. In our previous work, the starting reference
point was set by rotating the actual robot position
around the object then a simple fixed sampling of the
3d space was computed from this point to be used
as starting poses for the iterative search. Our new
implementation does not require this initial rotation
due to the improvements of the search and thus the
sampling is done using the current robot position.



Fig. 5. Selection of 3 postures among the 8 generated during the modeling
of a house and the resulting model. Updated occupancy grids are displayed
with known voxels in blue and unknown voxels in green.

3) When an optimal camera pose is found, it is sent to
the PG in order to generate a whole-body posture. If
the PG does not converge, we add this camera pose in
the list of poses to avoid, using the new constraint (6),
and run the first step again.

An example of postures generated during the successful
modeling process of a six meters high house is illustrated
in Fig. 5. The modeling was completed after 8 poses. The
typical posture of the robot is due to the starting posture
used by the PG. As the object is quite big and the robot
cameras have a field of view of 25 degrees, the postures
generated are relatively far away from the object. At the end
of the process, we can note that some voxels inside the house
could not be perceived: the last poses generated were too far
away from a pertinent pose to fully complete the model thus
the robot is stuck inside a local minima. A possible solution
is to increase the number and ranges of sampled starting
poses for the NEWUOA routine at the cost of increasing the
computation time.

During our tests, we could observe a significant reduction,
which can go up to 40 percent, of the number of poses
necessary to model big objects by using our new estimation
of unknown data.

IV. CONCLUSION

Latest improvements to our Next-Best-View algorithm
for a humanoid robot have been presented in this paper.
The robustness of our approach is enhanced by three main
modifications: (i) a cascade NEWUOA search of the best
camera pose which splits the search of the best positions
and orientations, (ii) a better formulation of the landmark
visibility constraint which also takes into account the land-
marks’ normal vector, and (iii) the addition of a constraint to
drive the NBV away from poses which could not be reached
by the PG.

Our tests on the modeling of big objects lead us to add
another improvement by estimating the amount of unknown
using the number of unknown voxels instead of the number
of pixels corresponding to unknown data.

Following this work, we are now working on complemen-
tary tasks, such as motion planning and other vision topics,
in order to confirm the results obtained in simulation and
further analyze the pertinence of our formulation by doing
real experiments with an HRP2 robot.
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