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Abstract— This paper presents a framework for a visual
search behavior of a 3D object in a 3D environment performed
by a HRP-2 humanoid robot. The object search falls in the
field of sensor planning and is formulated as an optimization
problem. The goal is to maximize the target detection proba-
bility while minimizing the energy/distance and time to achieve
the task. This paper propose some natural constraints based on
specificities of the humanoid robot and on the characteristics of
the recognition system to reduce the dimension of the problem.
The paper presents simulation results of an object search
behavior using the HRP-2 robot.

I. INTRODUCTION

A. The visual search behavior

Object search is a very common task we perform each
time we need an object. Humanoid robots are multipurpose
platforms and will need to use generic tools to extend their
capacities. It must thus be able to look for objects, to
localize and use them. A search behavior would be a great
improvement in humanoid autonomy and a step forward
toward their rise outside laboratories.

Before starting a search behavior, the robot needs a model
of the desired object. This model could be provided by an
external mechanism, but a humanoid has all the required
abilities to build that model by its own. An undergoing
project in our laboratory, called the ”Treasure hunting” aim
at integrating in a unique cycle, the model building of
an unknown object, and the search for that object in an
unknown environment. With such a combined skill, the robot
may incrementally build a knowledge of its surrounding
environment and the object it has to manipulate without any
a-priori models. Latter the robot would be able to find and
recognize that object. The time constraint is crucial, as a
reasonable limit has to be set on the time an end user can
wait the robot to achieve its mission. This paper will focus
on the search behavior and we assume that the object model
is already created.

B. Problem statement and contributions

Object search is a sensor planning problem which is
proven to be NP-complete [1] thus a heuristic strategy
is needed to overcome that task. Because of the limited
field of view, the limited depth, the lighting condition,
the recognition algorithm limitation, and possible occlusion,
many images from different point of view are necessary to
detect and locate a given object. The knowledge of the target
position is represented by a discrete presence probability [2].

A rating function to evaluate the interest of a potential next
view must be created and optimized at each sensing step.
The rating function will analyze the theoretical field of view
for a given configuration according to various criteria defined
further in this paper. Such a function is costly and thus must
be used as less as possible to evaluate a configuration interest.

In [3], we introduce the concept of Visibility Map a
statistical accumulator in the sensor configuration space
which takes into account the characteristics of the recognition
system to constrain the sensor configuration space and avoid
unnecessary call to the rating function. The present paper
proposes an extention of the visibility map and exposes a
process to retrieve interesting configuration out of that map
(section II-D).

C. Related works

Few works on active 3D object search are available,
fortunately the sensor planning research field provides us
with some hints.

Wixon [4] uses the idea of indirect search (in which one
first finds an object that commonly has a spatial relationship
with the target, and then restrict the search in the spatial
area defined by that relationship) he proposes a mathematical
model of search efficiency, which shows that indirect search
can improve the search.

Works done by Ye and Tsotsos [2] tackle the field of
sensor planning for 3D object search. The search agent’s
knowledge of object location is encoded as a discrete prob-
ability density which is updated after each sensing action
performed by the detection function. The detection function
uses a simple recognition algorithm, and all factors which
influence the detection ability such as imaging parameters,
lighting condition, complexity of the background, occlusions
etc. are included in the detection function value by averaging
experimental results done under various conditions. The
vision system uses one pan tilt zoom camera and a laser
range finder to build a model of the environment. The search
is not really 3D as, the object is recognized using a 2D
technique, and the height of the camera is fixed.

Works by Sujan [5] are not focused on object search but
on accurate mapping of unknown environment by the mean
of sensor planning. The author propose a model based on
iterative planning, driven by an evaluation function based on
Shannon’s information theory. The camera parameter space
is explored and each configuration is evaluated according to
the evaluation function. No computational timing tests are



provided, but the algorithm seems to focus on configura-
tions which are close to obstacles or to unknown areas to
improve the algorithm efficiency, this latter constraint will
be formalized with the notion of visibility map introduced
in II-C.

The operational research community [6] has extensively
studied the problem of optimal search, they came up with
interesting theoretical results on search effort allocation
which served as a basis for Tsotsos’s work.

The Next Best View (NBV) research field [7] studied the
sensor planning problem mainly for C.A.D. model building.
These works, although sharing some commom aspects with
the present topic, rely on the fundamental assumption that
the object is always in the sensor field.

II. CONSTRAINT ON THE CAMERA PARAMETERS SPACE

A. Specificities of humanoid approach

Specificities of the HRP-2 humanoid robot must be taken
early into account in the search behavior analysis.

The walking pattern generator provided by [8] constrain
the waist motion on a plane, as a consequence the head is
also restricted on a plane called the visual plane. During the
walk, the robot point of view oscillate around that plane with
an amplitude of 2cm which falls inside the resolution used
by environment model. This constrain will be removed in a
future work as a new pattern generator is available [9] which
accepts large perturbations on the waist height.

Unlike [5], the visual sensor, which is located in the head
of the robot, is subjected to stability constraint. In this work
we don’t consider robot postures in which the head of the
robot goes over obstacles, thus the sensors configuration
space is restricted by the 2D projection of obstacles on the
visual plane. Moreover, we introduce a safety margin around
obstacles in which sensor placement will not be evaluated.

These remarks on humanoids specificities provide natural
constraints on the sensor configuration space. Other con-
straints due to the stereoscopic sensor and the recognition
algorithm will be discussed in II-C.

B. Model of the recognition system

All recognition algorithms have some restrictions regard-
ing the imaging condition (lighting, occlusion, scale. . . ). One
of the main assumption that can be easily controlled by active
vision is the scale limitation: the smallest scale at which
the object can still be recognized constitute a maximum
distance limit for the detection algorithm (Rmax). It is also
suitable to have a sensor configuration in which the whole
object is projected inside the image in order to maximize
the number of imaged features, this imposes a lower limit
for the sensor distance to the object (Rmin). Without any
loss of generality regarding the recognition algorithm, we
can assume that these bounding values (Rmin and Rmax) are
determined theoritically or experimentally during the model
building and are stored with the object model. These limit
values will be used to further constrain the sensor parameters
to improve optimization time.

Fig. 1. Visibility sphere for a given 3D point

Fig. 2. This visibility map is only computed for reconstructed solid points
(gray points under the plane). Each point is creating a visibility sphere
around it. Lighter area on the plane represent configurations in which the
solid points can be well imaged

C. The visibility map

To take into account the limitation of the recognition
algorithm, and to restrict the optimization to area of interest,
we use the concept of visibility sphere which represents
the configuration set of the stereoscopic head in which a
particular 3D point can be well recognized by a given
recognition algorithm. This sphere is created using Rmin and
Rmax defined in II-B. Figure 1 shows a 2D representation of
the visibility sphere when a unique solid point is considered.

The configuration space of the stereoscopic head has
initially 6 DOF but because the robot motion is constrained
on the z axis, and the roll parameter (rotation around the line
of sight) has a small influence on the visible area, only 4 DOF
are considered. The sensor configuration space parameters
are discretisized using the same resolution as the occupancy
grid for x and y (5 cm). Whereas for pan and tilt, a resolution
of half the stereoscopic field of view value, which is 33
degrees horizontally and vertically, is used.

For each solid or unknown point, the visibility sphere
according to Rmin and Rmax values is computed and the
contributions of all solid and unknown points are summed
up in an accumulation map. The visibility map is then
constrained on the z axis by computing its intersection with
the visual plane. The figure 2 shows a 2D projection of the
4D visibility map.

In a previous work, the visibility map was computed



on a 2.5D projection of the environment, this solution
although computationally efficient, did not take into account
an important part of the potentially visible points of the
environment. Moreover, this technique did introduce a skew
in the visibility map creating false interesting configurations.
In the current paper, we now compute the visibility map for
all boundary points (unknown or solid voxels with an empty
neighbor). This new approach increases the computation
time of the visibility map but takes into account all the
visible 3D surface made of unknown or solid points of the
environment. This computational overload can be reduced by
some algorithmic improvement discussed in IV-B.

D. Local maxima extraction

The visibility map can be seen as a 4D, gray values map:
• The value of each configuration in the visibility map is

called the visibility of the configuration. A candidate is
a configuration which has a non zero visibility.

• The set of candidate which have the same x and y
parameter is called a cluster (the cluster visibility is
the sum of all its candidates visibility). Figure 2 shows
in fact the clusters of the visibility map.

In order not to introduce unuseful candidates, the visibility
map is only computed in the reachable area (area of the
visual plan which is connected to the current sensor posi-
tion). Nevertheless, a pretreatment of the visibility map is
necessary to reduce the number of configurations to send to
the rating function.

The basic idea of the treatment is to provide the evaluation
function with configurations which respect certain criteria:

• For each configuration, a certain amount of points of
interest must be visible

• Points of interest must be seen under imaging condition
which allow a reliable recognition

• Configuration must have a low coupling (their view field
must weakly intercept)

• The set of all configurations must partition the visible
space

The coupling inside the same cluster is low because a
change in the pan tilt parameter will bring a lot of new
information in the field of view. On the other hand, a change
in the x,y parameters will most likely produce a small
change in the field of view. A local maxima extraction of
the visibility map based on a window with different size
for the rotation and translation parameters will output the
’locally best’ configurations for which a reasonable amount
of point is visible. A small size is used for the pan and tilt
parameter, reflecting the fact that configurations with close
orientation value are weakly coupled. A larger window size
is used on the translation parameters. In this paper we use
a window of size 3 for rotation and 9 for translation in the
discreet parameter space.

The greedy exploration of sensor’s parameter space is
constrained to the local maxima of the visibility map. An
interesting feature of the visibility map comes from the fact
that solid and unknown points are treated the same way, and

Fig. 3. Flowchart of the next view selection

generate their visibility sphere, thus suitable configurations
for exploring unknown areas are also created.

Next section will present the overall algorithm.

III. ALGORITHM

A. Overview

The flowchart of the next best view selection process is
depicted in figure 3. When a new world model is available,
the corresponding visibility map is computed and the local
maxima extraction is performed providing a candidate list.
The following sections describe the different steps of the
next view selection as well as the formulation of the rating
function, more details can be found in [3].

B. The probability world map

A discrete occupancy grid is generated by the stereoscopic
sensor of the robot (figure 4). Localization is done through
a SLAM process [10] which merges odometric information
provided by the walking pattern generator and visual infor-
mation to provide accurate positioning. The target presence is
represented by a discrete probability distribution function p.
Since this probability will be updated after each recognition
action, it is a function of both position and time. p

(
vi, t

)
represents the probability that the voxel vi is a part of the
target. For a given camera configuration c,

P
(
c
)

=
∑
Ψ

p
(
vi, t

)
, (1)

represents the probability that the object is inside the current
field of view Ψ. The field of view takes into account
occlusions for already mapped obstacles as well as the depth
of field.

C. The rating function

The rating function must evaluate the interest of a given
configuration according to different criteria:



1) the probability of detecting the object: the detection
probability (DP ),

2) the new area of the environment that will be seen: the
new information (NI),

3) the cost in time/energy to reach that configuration: the
motion cost (MC).

The DP , NI and MC are combined in the rating func-
tion:

RF = λDP ·DP + λNI ·NI − λMC ·MC, (2)

where λDP , λNI and λMC are scaling factor to balance
the contribution of each member of the rating function. This
function will be optimized to select the next view.

The weights selection depends on the current strategy of
the search:

• a high λNI will support a wide exploration of the
environment,

• a high λDP will support a deep search of each potential
target.

The following sections will describe the different part of
the rating function.

D. The detection probability

Resolution studies done by [11] provide a characterization
of the stereoscopic sensor of the robot. The resolution factor
ρ
(
vi) which gives the resolution at which each voxel is

perceived is used to modulate the recognition likelihood.
This function is defined on the field of view Ψ and has 3
parameters (θ, δ, l).

From equation 1 we define the detection probability (DP )
for a given camera parameter c as:

DP (c) =
∑
Ψ

p
(
vi, t

)
ρ
(
vi

)
. (3)

E. The new information

The new information (NI) concept already introduced
by [12] and [5] is also used in the overall configuration rating
process but with a different formulation. In these works, the
expected information evaluation for a given sensor configu-
ration did not take into consideration the occlusion problem.
The only occlusion that was considered is the one created
for already known obstacles. In [3] we proposed a novel
formulation of the information measurement which integrates
an occlusion prediction. With such a formulation we could
maximize the expected information while minimizing the
likelihood of occlusion.

In order to have a measurement on the possible occlusion
in unmapped areas, we evaluate both the minimum and
maximum expected information:

• The minimum predicted information (Imin), in which
all unknown voxels are expected to be solid and thus
causes high occlusion which, in return, will decrease
the available information.

• The maximum expected information (Imax), in which
all voxels are expected to be empty and for which all
unknown voxels will reveal information.

NI = αavg ·
Imax + Imin

2 ·N
+ αerr ·

Imin

Imax
, (4)

where N is the total number of voxel in the field of view
when there is no occlusion, αavg and αerr are the coefficient
for the expected average and error (Imin ≤ Imax) and NI =
0 when Imax = 0. With this formulation maximizing NI ,
will on one hand, maximize the average expected information
Imax+Imin

2·N , while on the other hand, minimize the error on
the prediction Imin

Imax
.

F. The motion cost

In addition to maximizing the NI and DP , it is also
interesting to minimize the distance to travel to reach the
configuration. An Euclidean metric in the configuration space
of the sensor with individual weights on each DOF, is used to
define the motion cost (MC). Moreover to take into account
obstacles, we integrate a navigation function based on a 2D
projection of the occupancy grid to evaluate the motion cost
on the x and y parameters of the sensor.

MC = αNF ·NF (x, y)+
√

αp

(
p′ − p

)2 + αt

(
t′ − t

)2
, (5)

In this paper, the pan-tilt (p,t) parameters have a low weight
(αp,αt) whereas x and y have a higher weight (αNF )
reflecting the fact that a change of x and y is achieved by
moving the whole robot which takes more time and energy
than moving only the head.

Next section presents the optimization of this rating func-
tion in order to determine the next sensor configuration.

G. Candidates examination

The local maxima extraction presented in section II-D
provides us with a list of candidates. This candidates list
could directly be sent to the rating function, but for efficiency
reasons the different parts of the rating function are evaluated
separately starting with the less computationally expensive
part, the motion cost. The navigation function (section III-
F) NF (x, y) is computed for all positions. A distance
criteria is first applied to constrain the candidates inside a
neighborhood around the current robot position (a typical
value is 2m, which guaranties that the next view will be
within a 2m distance).

If the candidates are still too numerous, a visibility con-
strain is applied and the best candidates are taken (i.e.
candidates wich recived to maximum amount of votes). The
number of candidates that can be sent to the rating function
depends on the reaction time we want to achieve an on the
state of the robot (i.e. when the robot is moving, the threshold
will be higher than when the robot is standing and waiting
for a decision). Typically we set a limit of 1000 candidates to
rate. The actual implementation of the rating function takes
(initially) 3 ms per candidate (section IV-B gives some timing
results for each step of the process), thus in the worst case,
it takes up to 3 sec to plan the next view. These steps are
depicted in figure 3.

Moreover, the examination process could select the weight
of the rating function linear combination depending on the



Fig. 4. Real view of the experiment environment and the corresponding
3D occupancy grid generated by the robot

current strategy. When the examination process comes out
with a candidate, the existence of a path to the target is
then checked using an A∗ 2D planner. This simple path
planner, takes into account the bounding box of the robot
while walking. The planning is done only for the robot body,
and the residual head motion is then executed to reach the
target sensor configuration.

H. The recognition function & the update process

A simulation of the recognition system has been im-
plemented. Although the simulation is simple, it has the
main characteristics of a real recognition system. A random
function creates false target that adds some noise in the prob-
ability map. Few assumptions are made on the underlaying
recognition system and the output of the recognition is a list
of object pose with their associated likelihood.

Each object pose is then converted into the corresponding
voxel set and their probabilities are merged with the target
presence probability map through the update process. The
update process will then normalize the distribution probabil-
ity in order to have:

∑
Environment

p
(
vi, t

)
= 1.

IV. EXPERIMENTS

A. Object search and exploration behavior

Preliminary experiments were done to validate the algo-
rithm. Two simulations where performed: one in which the
target object is not present and another one in which the
object is present but not hidden.

In the first experiment, the robot mainly driven by the
NI explore the full environment (figure 5). The complete
exploration is done in 100 hundred views and lasts 5 minutes
(the displacement time is not taken into account). The motion
cost weight is very low, thus the system was focusing on
retrieving the maximum information at each step whatever
displacement it needs (λNI = 1000, λMC = 0.1, αNF = 1,
αp = αt = 0). The table below gives the total distance trav-
eled by the robot for 50 different views, and the remaining

Fig. 6. A screen capture of the simulator at the end of the search behavior

unknown voxels in the environment for different values of
λMC (λNI = 1000).

λMC 0.01 0.1 0.2 0.5 2 3
Total distance (m) 91.3 71.4 56.3 45.7 21 16

Unknown (%) 13.8 13.7 13.7 16 21 19

In the second experiment the robot finds the target after 45
views (figure 6). Depending on the settings (the λNI /λDP

ratio) the robot will lock the target after the first view or will
do some remaining exploration before focusing its attention
on the target. An online video1 shows the complete search
sequence.

Next section gives some implementation details and
benchmark results on the different parts of the algorithm.

B. Implementation notes

The whole design and implementation were done while
targeting a fast and reactive behavior of the robot, thus
time constraints are crucial and have guided the project. The
table below shows some benchmark results done with a 5cm
resolution of a 12x6x4 meter environment, using a 3GHz
bi-Xeon workstation with Hyper-ThreadingTM.

Many improvement of the initial code were performed.
Concerning the visibility map, the visibility sphere of a point
is precomputed according to the Rmin, Rmax values and
stored in a look-up-table (LUT). Then, the map update is
done incrementally, which means that only points which have
a change in their state will be considered. Because it is done
incrementally, the update process gets faster.

14500 points with no LUT 6s
24600 points with the LUT 3.1s

average for 50 updates with LUT 380msec

The constrain achieved by the visibility map drastically
reduces the configurations to consider. The discretized con-
figuration space of the robot sensor in this experiment
contains 240x120x200=5.76 million configurations, the vis-
ibility map and local maxima extraction only outputs 1000
configurations.

1http://staff.aist.go.jp/francois.saidi/video/HRP2SearchBehavior.avi



Fig. 5. A screenshots sequence of the exploration behavior performed in simulation

The rating function computation is a highly parallelisable
process which benefits of multi-core/cpu machines. Thus, the
number of physical/logical cpu is detected at runtime and
the corresponding number of threads is used to compute the
score of the candidates. Once more, the visibility map update
gets faster as the unknown in the environment decreases.
Moreover as the environment is being mapped, the number
of unknown voxels decreases quickly and the computation
of the rating function gets faster. The average computation
time over 50 views of the rating function using 4 threads is
around 1 msec per candidate.

V. CONCLUSION

This paper exposed the framework for a search behavior
developed for the humanoid robot HRP-2. The problem,
which falls in the sensor planning field, is formulated as
an optimization problem. The concept of visibility map
introduced in [3] to constrain the sensor parameter space
according to the detection characteristics of the recognition
algorithm is used to reduce the dimension of the sensor
parameter space. The rating function uses a formulation of
the expected information takes into account a prediction on
occlusion in the unexplored space to provide a more accurate
information prediction. Simulation results of an exploration
and search behavior has been presented to validate the model.
Work is on progress, and experiments on the real robot to
validate parts of the algorithm are already undertaken and
the z axis limitation of the sensor is on the way of beeing
removed.

ACKNOWLEDGMENT

This research was partially supported by a Post-doctoral
Fellowship of Japan Society for Promotion of Science(JSPS)
and JSPS Grand-in-Aid for Scientific Research.

REFERENCES

[1] Y. Ye and J. K. Tsotsos, “Sensor planning in 3d object search: its
formulation and complexity,” in Fourth International Symposium on
Artificial Intelligence and Mathematics, Florida, U.S.A., January 3-5
1996.

[2] ——, “Sensor planning for 3d object search,” Computer Vision and
Image Understanding, vol. 73, no. 2, pp. 145–168, Feb. 1999.

[3] F. Saidi, O. Stasse, and K. Yokoi, “A visual attention framework for
a visual search by a humanoid robot,” in IEEE-RAS International
Conference on Humanoid Robots, Genova, Italy, December 4-6 2006,
346-351.

[4] L. E. Wixson, “Gaze selection for visual search,” Ph.D. dissertation,
Department of Computer Science, Univ. of Rochester, 1994.

[5] V. A. Sujan and S. Dubowsky, “Efficient information-based visual
robotic mapping in unstructured environments,” The International
Journal of Robotics Research, vol. 24, no. 4, pp. 275–293, Apr. 2005.

[6] B. O. Koopman, Search and Screening. Pergamon Press, 1980.
[7] C. J. Connolly, “The determination of next best views,” IEEE Int.

Conf. on Robotics and Automation, pp. 432–435, 1985.
[8] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The

3d linear inverted pendulum mode : A simple modeling of a biped
walking pattern generation,” in International Conference on Intelligent
Robots and Systems, Maui, Hawaii, Usa, November 2001, pp. 239–
246.

[9] B. Verrelst, K. Yokoi, O. Stasse, H. Arisumi, and B. Vanderborght,
“Mobility of humanoid robots: Stepping over large obstacles dynami-
cally,” in International Conference on Mechatronics and Automation,
Luoyang, China, June 25-28 2006, pp. 1072–1079.

[10] O. Stasse, A. Davison, R. Sellaouti, and K. Yokoi, “Real-time 3d
slam for humanoid robot considering pattern generator information,”
in International Conference on Intelligent Robots and Systems, IROS,
Beijing, China, October 9-15 2006, to appear.

[11] B. Telle, O. Stasse, T. Ueshiba, K. Yokoi, and F. Tomita, “Three
characterisations of 3d reconstruction uncertainty with bounded error,”
in Proceedings of the 2004 IEEE International Conference on Robotics
and Automation, 2004, pp. 3905–3910.

[12] A. Makarenko, S. Williams, F. Bourgault, and H. Durrant-Whyte,
“An experiment in integrated exploration,” in IEEE/RSJ International
Conference on Intelligent Robots and System, vol. 1, 2002, pp. 534 –
539.


