16-Channel micro magnetic flux sensor array for IGBT current distribution measurement

H. Tomonaga a,⁎, M. Tsukuda a,b, S. Okoda c, R. Noda d, K. Tashiro e, I. Omura a,⁎

a Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Japan
b Asian Growth Research Institute, Kitakyushu, Japan
c COPER Electronics CO., LTD. 43 Funako, Atsugi, Japan
d C.D.N. Corporation, 1-18-22 Ohtsubo-Igashi, Miyazaki, Japan
e HOH KOH SYA Co., Ltd., 2-7-30 kamitouzu, kokurakita-ku, Kitakyushyu, Japan

ARTICLE INFO

Article history:
Received 25 May 2015
Received in revised form 20 June 2015
Accepted 22 June 2015
Available online xxxx

Keywords:
IGBT
Current distribution
Current crowding
Film sensor
Reliability analysis
Magnetic flux
Digital calibration
Flat sensitivity

ABSTRACT

Current crowding of IGBT and power diode in a chip or among chips is a barrier to the realization of highly-reliable power module and power electronics system. Current crowding occurs because of the parasitic inductance, difference of chip characteristics or temperature imbalance among chips. Although current crowding among IGBT or power diode chips has been analysed on numerical simulations, no sensor with sufficiently high special resolution and fast measurement time has yet been demonstrated. Therefore, the author developed and demonstrated 16-channel flat sensitivity sensor array for IGBT current distribution measurement. The sensor array consists of tiny-scale film sensors with analog amps and shield case against noise. The array and digital calibration method will be applied for reliability analysis, designing and screening of IGBT modules.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Current crowding of IGBT and power diode in a chip or among chips is a barrier to the realization of highly-reliable power electronics system. Current crowding occurs because of the parasitic inductance [1], difference of chip characteristics or temperature imbalance among chips [2,3]. Although current crowding among IGBT or power diode chips has been analysed on numerical simulations [4,5], no sensor with sufficiently high special resolution and fast measurement time has yet been demonstrated. For example, commercialized current transformer and Rogowski coil is too large to realise the high special resolution around bonding wires [6–8]. Therefore film sensor is suitable [9]. However, it’s difficult to maintain fast measurement time and flat sensitivity because array sensor needs amps for each sensor and single sensor takes long scanning time. Furthermore, conventional methods using a film sensor or film sensors require insertion between bonding wires [10,11], which cannot apply high voltage measurement because the measurement needs insulating gel removal.
The 16-channel sensor array and digital calibration method proposed in this paper makes it possible to imagine the current distribution in IGBT chips by acquiring the local magnetic flux over bonding wires without the insertion (see Fig. 1). Therefore, fast measurement time and flat sensitivity is realised without making any change to the chip wiring. The 16-channel sensor array is able to apply reliability analysis, designing and screening of IGBT modules [12].

2. Current distribution imaging

2.1. Current distribution imaging method

To cancel the effect of noise from other current pass, differential signal of low position to high position from target bonding wires is employed for current distribution imaging. It’s because the magnetic flux from distant current is considered almost the same regardless of height. On the other hand, the magnetic flux from nearby bonding wires is different corresponding to the height (see Fig. 2).

2.2. Demonstration of current distribution imaging

The current distribution imaging is demonstrated by the differential signal for IGBT chip with 2, 4 and 8 bonding wires with the 16-channel micro magnetic flux sensor array. The switching condition is inductive load and double pulses. DC voltage and turn-off current are 100 V and 100 A respectively. The signal distribution of 2 and 4 bonding wires successfully reflects current path (see Fig. 3). For the 8 bonding wires, the signals are continuous because the space between each wiring is very close. This result also simulates current crowding from 8 wires to 4 wires.

3. 16-Channel micro magnetic flux sensor array

3.1. Sensor array configuration

The 16-channel sensor array consists of film sensors, analog amps, shield case and coaxial cables (see Fig. 4). About the sensors, the side of the spiral coil on polyimide film is 1 mm × 1 mm and each 5 turns on both sides (see Fig. 5). The sensitivity is about 100 mV/A after amplifier. And the 16 sensors are laminated in position error of plus or minus 20 μm. 16-Channel sensor array is installed near IGBT chips and bonding wires. However, the sensor array detects noise from untargeted bonding wires. Therefore noise reduction is required with analog amps and

![Sensor array image](image)

Fig. 2. Noise cancel method by differential signal form high/low sensor array position.

![Diagram](image)

Fig. 3. Demonstration of current distribution imaging with 2, 4 and 8 bonding wires.

Please cite this article as: H. Tomonaga, et al., 16-Channel micro magnetic flux sensor array for IGBT current distribution measurement, Microelectronics Reliability (2015), http://dx.doi.org/10.1016/j.microrel.2015.06.045
shield case. The analog amps increase signal to noise ratio and shield case reduces the effect of direct noise to the amp boards. There are several points of reliability improvement in the sensor array module. First point is a connection between rigid board and flexible printed board. Second is a connection between rigid board and coaxial cable. Next is self-heating in the module. Last is protection from chip destruction.

3.2. Sensor sensitivity digital calibration with correction values by LabVIEW programme

It is difficult to realise flat sensitivity sensor array because of non-uniformity of resistor and capacitor for analog amps and error of sensor array levelness. However, it’s not better to solve the problem by hardware architecture, because it takes long and costs much to maintain flat sensitivity. Therefore, we propose digital calibration with correction values by software (LabVIEW programme).

The calibration is carried out according to the following procedures. First, one wire flowing pulse current is scanned under the 16-channel sensor array and maximum signal existing just under each sensor is selected to calibrate the non-uniformity of the sensitivity. Next, the correction values for agreement with the all signal waveforms are extracted with following equation.

\[
S(t) = \Delta A \cdot \left(V(t) + \frac{1}{\Delta CR} \int V(t) dt \right)
\]

where \(S(t) \), \(V(t) \), \(t \), \(\Delta A \) and \(\Delta CR \) are the magnetic flux signal, output voltage (original signal), time, correction value of amplification and correction value of droop respectively. Finally, the original signal waveform is calibrated with the correction values by LabVIEW programme. The digital calibration is demonstrated. The sensitivity error in space is successfully reduced by the digital calibration and the sensitivity is to be flat (see Fig. 6). In addition, signal waveforms shown in Fig. 7 perfectly agree.

3.3. Noise shield

Noise shield effect is confirmed by signal waveform from amps with/without the shield case. The input terminals of the amps are shorted
circuit in experiment. Thus, the signal waveforms directly show noise effect nearby wiring. It’s confirmed that the noise effect is greatly reduced to 10% with the shield case (see Fig. 8).

4. Conclusion

16-Channel flat sensitivity sensor is developed and demonstrated for current distribution measurement. The 16-channel sensor array consists of tiny-scale film sensors with analog amps and shield case against noise. The 16-channel sensor array and the digital calibration method will be applied for reliability analysis, designing and screening of IGBT modules. In the next step, we will analyse relationship between current distribution and device reliability.

Acknowledgements

This study has been supported by the Strategic Key Technology Advancement Support Project (Acceptance NO.: 24194003018) of the Minister of Economy, Trade and Industry.

The authors would like to thank Nagayuki Shinohara at HOH KOH SYA Co., Ltd. for the design and fabrication of 16-channel sensor array. And the authors would like to thank Kazunori Nagatomo and Kazuaki Matsuo at C.D.N. CORPORATION for the design and evaluation of analog amps.

References

Fig. 7. Signal waveform before/after digital calibration.
Fig. 8. Noise reduction by shield case.