
Automated Polyhedral Abstraction Proving

Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan

LAAS-CNRS

Petri Nets, March 29 2023

What’s Polyhedral Abstraction?
Introduction

(N1,m1) ≡E (N2,m2)

▶ General notion

▶ Equivalence between reachable markings
(modulo solutions of E)

2 / 34

What’s Polyhedral Abstraction?
Introduction

(N1,m1)

3

x

y

(N2,m2) 3

a

7→

Net reduction example, with
equation E : a = x + y Relation between state-spaces

3 / 34

What’s Polyhedral Abstraction?
Introduction

5

p0

p1 p2

p3

p4

4

p6

p5

t0

t1

t5

t6

t4

≡E 5

p0

4

p6

t7

a2

t9

t8

E ≜

p5 = p4
a1 = p1 + p2
a2 = p3 + p4
a1 = a2

4 / 34

SwimmingPool
Introduction

τ

WaitBag

τ

Undress

τ

InBath

τ

Dress

τ

Dressed

15

Bags

τ

τ

10

Cabins

20

OutEntered

E ≜

Cabins + Dress + Dressed + Undress +WaitBag = 10
Dress + Dressed + Entered + InBath + Out + Undress +WaitBag = 20
Bags + Dress + InBath + Undress = 15

5 / 34

Petri Nets’ Flag (Incorrect Abstraction)
Introduction

t0

p3 p4p2 p7

t2

p1

p5

t1

p6

t3
p8

p0

E ≜

p2 = p1
p4 = p3
p7 = p6
p0 + p5 + 2.p6 + p8 = 2
p0 + p3 + p6 + p8 = 2
p1 + p5 + p6 = 1
p1 + p3 = 1

6 / 34

Petri Nets’ Flag (Incorrect Abstraction)
Introduction

t0

p3 p4p2 p7

t2

p1

p5

t1

p6

t3
p8

p0

E ≜

p2 = p1
p4 = p3
p7 = p6
p0(2) + p5 + 2.p6 + p8 = 2
p0(2) + p3 + p6 + p8 = 2
p1(1) + p5 + p6 = 1
p1(1) + p3 = 1

6 / 34

Petri Nets’ Flag (Correct Abstraction)
Introduction

t0

p3 p4p2 p7

t2

p1

p5

t1

p6

t3
p8

p0

t0

t2

p1

p5

t1

p6

t3
p8

p0

E ≜

p2 = p1

p4 = p3 + 1
p7 = p6

p3 = p5 + p6

7 / 34

Example of Classes
Introduction

▶ PR-R (state equation corresponds to the exact state-space)

▶ Flat nets (Presburger-definable)

8 / 34

Formalisation
Introduction

m1 ≡E m2 ⇔ ∃m ∈ NV . m |= E ∧m1 ∧m2

Definition (E -abstraction)
(N1,m1) ⊒E (N2,m2) iff

(A1) initial markings are compatible with E , meaning m1 ≡E m2

(A2) for all observation sequences σ ∈ Σ⋆ such that (N1,m1)
σ
=⇒ (N1,m

′
1)

▶ there is at least one marking m′
2 of N2 such that m′

1 ≡E m′
2

▶ for all markings m′
2 we have that m′

1 ≡E m′
2 implies (N2,m2)

σ
=⇒ (N2,m

′
2)

E -abstraction equivalence
(N1,m1) ≡E (N2,m2) iff (N1,m1) ⊒E (N2,m2) and (N2,m2) ⊒E (N1,m1)

9 / 34

Formalisation
Introduction

m1 ≡E m2 ⇔ ∃m ∈ NV . m |= E ∧m1 ∧m2

Definition (E -abstraction)
(N1,m1) ⊒E (N2,m2) iff

(A1) initial markings are compatible with E , meaning m1 ≡E m2

(A2) for all observation sequences σ ∈ Σ⋆ such that (N1,m1)
σ
=⇒ (N1,m

′
1)

▶ there is at least one marking m′
2 of N2 such that m′

1 ≡E m′
2

▶ for all markings m′
2 we have that m′

1 ≡E m′
2 implies (N2,m2)

σ
=⇒ (N2,m

′
2)

E -abstraction equivalence
(N1,m1) ≡E (N2,m2) iff (N1,m1) ⊒E (N2,m2) and (N2,m2) ⊒E (N1,m1)

9 / 34

Formalisation
Introduction

m1 ≡E m2 ⇔ ∃m ∈ NV . m |= E ∧m1 ∧m2

Definition (E -abstraction)
(N1,m1) ⊒E (N2,m2) iff

(A1) initial markings are compatible with E , meaning m1 ≡E m2

(A2) for all observation sequences σ ∈ Σ⋆ such that (N1,m1)
σ
=⇒ (N1,m

′
1)

▶ there is at least one marking m′
2 of N2 such that m′

1 ≡E m′
2

▶ for all markings m′
2 we have that m′

1 ≡E m′
2 implies (N2,m2)

σ
=⇒ (N2,m

′
2)

E -abstraction equivalence
(N1,m1) ≡E (N2,m2) iff (N1,m1) ⊒E (N2,m2) and (N2,m2) ⊒E (N1,m1)

9 / 34

Formalisation
Introduction

Not a bisimulation!
Not all pairs of reachable markings m′

1, m
′
2 satisfy (N1,m

′
1) ≡E (N2,m

′
2)

10 / 34

Formalisation
Introduction

Not a bisimulation!
Not all pairs of reachable markings m′

1, m
′
2 satisfy (N1,m

′
1) ≡E (N2,m

′
2)

10 / 34

(Un)decidability
Introduction

Theorem
The problem of checking whether a statement
(N1,m1)≡E (N2,m2) is valid is undecidable.

Proof.

▶ Take (N1,m1) ≡True (N2,m2), with P1 = P2

▶ Both nets must have same reachability sets
▶ Checking marking equivalence is undecidable [Hack 76]

11 / 34

(Un)decidability
Introduction

Theorem
The problem of checking whether a statement
(N1,m1)≡E (N2,m2) is valid is undecidable.

Proof.
▶ Take (N1,m1) ≡True (N2,m2), with P1 = P2

▶ Both nets must have same reachability sets
▶ Checking marking equivalence is undecidable [Hack 76]

11 / 34

(Un)decidability
Introduction

Theorem
The problem of checking whether a statement
(N1,m1)≡E (N2,m2) is valid is undecidable.

Proof.
▶ Take (N1,m1) ≡True (N2,m2), with P1 = P2

▶ Both nets must have same reachability sets

▶ Checking marking equivalence is undecidable [Hack 76]

11 / 34

(Un)decidability
Introduction

Theorem
The problem of checking whether a statement
(N1,m1)≡E (N2,m2) is valid is undecidable.

Proof.
▶ Take (N1,m1) ≡True (N2,m2), with P1 = P2

▶ Both nets must have same reachability sets
▶ Checking marking equivalence is undecidable [Hack 76]

11 / 34

Use-cases
Introduction

▶ Model counting [Berthomieu et al. 2018]

▶

▶ Concurrent Places Problem [SPIN 2021]

12 / 34

Use-cases
Introduction

▶ Model counting [Berthomieu et al. 2018]

▶ Generalized Reachability Problem [Petri Nets 2021]

▶ Concurrent Places Problem [SPIN 2021]

12 / 34

Use-cases
Introduction

▶ Model counting [Berthomieu et al. 2018]

▶ Generalized Reachability Problem [Petri Nets 2021]

▶ Concurrent Places Problem [SPIN 2021]

12 / 34

Use-cases
Introduction

▶ Model counting [Berthomieu et al. 2018]

▶ Generalized Reachability Problem [Petri Nets 2021]

▶ Concurrent Places Problem [SPIN 2021]

12 / 34

Use-cases
Introduction

▶ Is F1 reachable in (N1,m1)?

Definition (E -transform Formula)
Formula F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

▶ Is the E -transform formula F2 reachable in (N2,m2)?

13 / 34

Use-cases
Introduction

▶ Is F1 reachable in (N1,m1)?

Definition (E -transform Formula)
Formula F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

▶ Is the E -transform formula F2 reachable in (N2,m2)?

13 / 34

Use-cases
Introduction

▶ Is F1 reachable in (N1,m1)?

Definition (E -transform Formula)
Formula F2(p2) ≜ ∃p1. Ẽ (p1,p2) ∧ F1(p1) is the E -transform of F1

▶ Is the E -transform formula F2 reachable in (N2,m2)?

13 / 34

Challenges and Proposal
Introduction

Challenges:
▶ Semi-procedure
▶ Parametric nets (N1,C1) and (N2,C2)

Proposal:
▶ More general notion of abstraction
▶ Presburger encoding of the τ transitions
▶ SMT constraints

Is a reduction candidate (N1,C1) >E (N2,C2) correct?

14 / 34

Challenges and Proposal
Introduction

Challenges:
▶ Semi-procedure
▶ Parametric nets (N1,C1) and (N2,C2)

Proposal:
▶ More general notion of abstraction
▶ Presburger encoding of the τ transitions
▶ SMT constraints

Is a reduction candidate (N1,C1) >E (N2,C2) correct?

14 / 34

Challenges and Proposal
Introduction

Challenges:
▶ Semi-procedure
▶ Parametric nets (N1,C1) and (N2,C2)

Proposal:
▶ More general notion of abstraction
▶ Presburger encoding of the τ transitions
▶ SMT constraints

Is a reduction candidate (N1,C1) >E (N2,C2) correct?

14 / 34

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

15 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 = a·c σ1 ≜ d σ2 = a·c σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 = a·c σ1 ≜ d

σ2 = a

·c σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 = a

·c σ1 ≜ d

σ2 = a

·c σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 = a

·c σ1 ≜ d

σ2 = a·c

σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 = a

·c σ1 ≜ d

σ2 = a·c

σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

≊x = y1 + y2 x

a b

c

σ1 = a·c

σ1 ≜ d

σ2 = a·c

σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 = a·c σ1 ≜ d σ2 = a·c σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 = a·c σ1 ≜ d σ2 = a·c

σ2 ≜ d

·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 = a·c

σ1 ≜ d

σ2 = a·c

σ2 ≜ d

·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

cd

≊x = y1 + y2 x

a b

cd

σ1 = a·c

σ1 ≜ d

σ2 = a·c

σ2 ≜ d ·b

Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

C1 ≜ y2 = 0

≊x = y1 + y2
x

a b

c

C2 ≜ True

σ1 = a·c σ1 ≜ d σ2 = a·c σ2 ≜ d ·b
Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

C1 ≜ y2 = 0

≊x = y1 + y2
x

a b

c

C2 ≜ True

σ1 = a·c σ1 ≜ d σ2 = a·c σ2 ≜ d ·b

Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

y1

τ

y2

a b

c

C1 ≜ y2 = 0

≊x = y1 + y2
x

a b

c

C2 ≜ True

σ1 = a·c σ1 ≜ d σ2 = a·c σ2 ≜ d ·b

Equivalence rule (concat), (N1,C1) ≊E (N2,C2) with E ≜ (x = y1 + y2).

Remark: τ transitions may be irreversible choices

16 / 34

Coherent Nets
Parametric Polyhedral Abstraction

We introduce some coherency constraints C

▶ hold on the initial state
▶ sufficient large subset of reachable markings

m
σ⟩
=⇒m′: do not finish with a τ transition

Definition (Coherent Net (N,C))
For all firing sequences m

σ
=⇒m′ with m ∈ C we have:

∃m′′ ∈ C . m
σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′

Can reach a coherent marking by firing the “necessary” τ transitions

17 / 34

Coherent Nets
Parametric Polyhedral Abstraction

We introduce some coherency constraints C

▶ hold on the initial state
▶ sufficient large subset of reachable markings

m
σ⟩
=⇒m′: do not finish with a τ transition

Definition (Coherent Net (N,C))
For all firing sequences m

σ
=⇒m′ with m ∈ C we have:

∃m′′ ∈ C . m
σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′

Can reach a coherent marking by firing the “necessary” τ transitions

17 / 34

Coherent Nets
Parametric Polyhedral Abstraction

We introduce some coherency constraints C

▶ hold on the initial state
▶ sufficient large subset of reachable markings

m
σ⟩
=⇒m′: do not finish with a τ transition

Definition (Coherent Net (N,C))
For all firing sequences m

σ
=⇒m′ with m ∈ C we have:

∃m′′ ∈ C . m
σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′

Can reach a coherent marking by firing the “necessary” τ transitions

17 / 34

Coherent Nets
Parametric Polyhedral Abstraction

We introduce some coherency constraints C

▶ hold on the initial state
▶ sufficient large subset of reachable markings

m
σ⟩
=⇒m′: do not finish with a τ transition

Definition (Coherent Net (N,C))
For all firing sequences m

σ
=⇒m′ with m ∈ C we have:

∃m′′ ∈ C . m
σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′

Can reach a coherent marking by firing the “necessary” τ transitions

17 / 34

Parametric Abstraction
Parametric Polyhedral Abstraction

m1 ⟨C1EC2⟩m2 ≜ m1 |= C1 ∧m1 ≡E m2 ∧m2 |= C2

Definition (Parametric E -abstraction)
(N1,C1) ⪯E (N2,C2) iff

(S1) For all markings m1 satisfying C1 there exists a marking m2 such that
m1 ⟨C1EC2⟩m2.

(S2) For all firing sequences m1
ϵ
=⇒m′

1 and all markings m2, we have
m1 ≡E m2 implies m′

1 ≡E m2.

(S3) For all firing sequences m1
σ
=⇒m′

1 and all marking pairs m2, m′
2, if

m1 ⟨C1EC2⟩m2 and m′
1 ≡E m′

2 then we have m2
σ
=⇒m′

2.

(N1,C1) ≊E (N2,C2) iff (N1,C1) ⪯E (N2,C2) and (N2,C2) ⪯E (N1,C1).

18 / 34

Parametric Abstraction
Parametric Polyhedral Abstraction

m1 ⟨C1EC2⟩m2 ≜ m1 |= C1 ∧m1 ≡E m2 ∧m2 |= C2

Definition (Parametric E -abstraction)
(N1,C1) ⪯E (N2,C2) iff

(S1) For all markings m1 satisfying C1 there exists a marking m2 such that
m1 ⟨C1EC2⟩m2.

(S2) For all firing sequences m1
ϵ
=⇒m′

1 and all markings m2, we have
m1 ≡E m2 implies m′

1 ≡E m2.

(S3) For all firing sequences m1
σ
=⇒m′

1 and all marking pairs m2, m′
2, if

m1 ⟨C1EC2⟩m2 and m′
1 ≡E m′

2 then we have m2
σ
=⇒m′

2.

(N1,C1) ≊E (N2,C2) iff (N1,C1) ⪯E (N2,C2) and (N2,C2) ⪯E (N1,C1).

18 / 34

Parametric Abstraction Instantiation
Parametric Polyhedral Abstraction

Theorem (Parametric E -abstraction Instantiation)
Assume (N1,C1) ⪯E (N2,C2) is a parametric E -abstraction. Then
for every pair of markings m1,m2, m1 ⟨C1EC2⟩m2 implies
(N1,m1) ⊑E (N2,m2).

19 / 34

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

20 / 34

Silent State-space

To prove (N1,C1) ≊E (N2,C2) we need to express m
ϵ
=⇒m′

A Preburger predicate, say τ∗C such that

Rτ (N,C) = {m′ | m′ |= ∃x . C (x) ∧ τ∗C (x , x
′)}

Theorem
Given a parametric E -abstraction equivalence (N1,C1) ≊E (N2,C2),
the silent reachability set Rτ (N1,C1) is Presburger-definable.

21 / 34

Silent State-space

To prove (N1,C1) ≊E (N2,C2) we need to express m
ϵ
=⇒m′

A Preburger predicate, say τ∗C such that

Rτ (N,C) = {m′ | m′ |= ∃x . C (x) ∧ τ∗C (x , x
′)}

Theorem
Given a parametric E -abstraction equivalence (N1,C1) ≊E (N2,C2),
the silent reachability set Rτ (N1,C1) is Presburger-definable.

21 / 34

Silent State-space

To prove (N1,C1) ≊E (N2,C2) we need to express m
ϵ
=⇒m′

A Preburger predicate, say τ∗C such that

Rτ (N,C) = {m′ | m′ |= ∃x . C (x) ∧ τ∗C (x , x
′)}

Theorem
Given a parametric E -abstraction equivalence (N1,C1) ≊E (N2,C2),
the silent reachability set Rτ (N1,C1) is Presburger-definable.

21 / 34

Flatness
Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)
For every VASS V , for every Presburger set Cin of configurations,
the reachability set ReachV(Cin) is Presburger if, and only if, V is
flattable from Cin.

If candidate correct: we have methods to compute τ∗C

But, checking flatness is undecidable → semi-procedure

22 / 34

Flatness
Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)
For every VASS V , for every Presburger set Cin of configurations,
the reachability set ReachV(Cin) is Presburger if, and only if, V is
flattable from Cin.

If candidate correct: we have methods to compute τ∗C

But, checking flatness is undecidable → semi-procedure

22 / 34

Flatness
Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)
For every VASS V , for every Presburger set Cin of configurations,
the reachability set ReachV(Cin) is Presburger if, and only if, V is
flattable from Cin.

If candidate correct: we have methods to compute τ∗C

But, checking flatness is undecidable → semi-procedure

22 / 34

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

23 / 34

Big Picture
Core Requirements

Core 0

Coherent nets
Lemma 4

Core 1

S1
Proposition 1

Core 2

S2
Lemma 5

Core 3

S3

Lemma 6

Lemma 2

24 / 34

Core 0 — (Coherent Net)
Core Requirements

(Coherent net) For all firing sequences m
σ
=⇒m′ with m ∈ C :

∃m′′ ∈ C . m
σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′

R(N1, C1)C1

m1
m′

1
a

m′′
1

a⟩
ϵ

1

∀p,p′, a . C (p) ∧ T́C (p,p′, a)

=⇒ ∃p′′ . C (p′′) ∧ T́C (p,p′′, a) ∧ τ∗C (p
′′,p′)

25 / 34

Core 0 — (Coherent Net)
Core Requirements

(Coherent net) For all firing sequences m
σ
=⇒m′ with m ∈ C :

∃m′′ ∈ C . m
σ⟩
=⇒m′′ ∧m′′ ϵ

=⇒m′

R(N1, C1)C1

m1
m′

1
a

m′′
1

a⟩
ϵ

1

∀p,p′, a . C (p) ∧ T́C (p,p′, a)

=⇒ ∃p′′ . C (p′′) ∧ T́C (p,p′′, a) ∧ τ∗C (p
′′,p′)

25 / 34

Core 1 — (S1)
Core Requirements

(S1) For all markings m1 satisfying C1:

∃m2 . m1 ⟨C1EC2⟩m2

R(N1, C1)C1

R(N2, C2)C2

m1

m2

E

∀x . C1(x) =⇒ ∃y . Ẽ (x , y) ∧ C2(y)

26 / 34

Core 1 — (S1)
Core Requirements

(S1) For all markings m1 satisfying C1:

∃m2 . m1 ⟨C1EC2⟩m2

R(N1, C1)C1

R(N2, C2)C2

m1

m2

E

∀x . C1(x) =⇒ ∃y . Ẽ (x , y) ∧ C2(y)

26 / 34

Core 2 — (S2)
Core Requirements

(S2) For all firing sequences m1
ϵ
=⇒m′

1 and all markings m2:

m1 ≡E m2 =⇒ m′
1 ≡E m2

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1ϵ

m2

E E

1

∀p1,p2,p′
1 . Ẽ (p1,p2) ∧ τ(p1,p′

1) =⇒ Ẽ (p′
1,p2)

27 / 34

Core 2 — (S2)
Core Requirements

(S2) For all firing sequences m1
ϵ
=⇒m′

1 and all markings m2:

m1 ≡E m2 =⇒ m′
1 ≡E m2

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1ϵ

m2

E E

1

∀p1,p2,p′
1 . Ẽ (p1,p2) ∧ τ(p1,p′

1) =⇒ Ẽ (p′
1,p2)

27 / 34

Core 3 — (S3)
Core Requirements

(S3) For all firing sequences m1
σ
=⇒m′

1 and all marking pairs m2, m′
2:

m1 ⟨C1EC2⟩m2 ∧m′
1 ≡E m′

2 =⇒ m2
σ
=⇒m′

2

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1a

m2

E

m′
2

a

E

1

∀p1,p2, a,p′
1,p

′
2 . ⟨C1EC2⟩(p1,p2) ∧ T̂C1(p1,p′

1) ∧ Ẽ (p′
1,p

′
2)

=⇒ T̂C2(p2,p′
2)

28 / 34

Core 3 — (S3)
Core Requirements

(S3) For all firing sequences m1
σ
=⇒m′

1 and all marking pairs m2, m′
2:

m1 ⟨C1EC2⟩m2 ∧m′
1 ≡E m′

2 =⇒ m2
σ
=⇒m′

2

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1a

m2

E

m′
2

a

E

1

∀p1,p2, a,p′
1,p

′
2 . ⟨C1EC2⟩(p1,p2) ∧ T̂C1(p1,p′

1) ∧ Ẽ (p′
1,p

′
2)

=⇒ T̂C2(p2,p′
2) 28 / 34

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

29 / 34

Reductron
Toolchain

� github.com/nicolasAmat/Reductron

▶ Compute τ∗C using the tool FAST

▶ LIA theory in z3 (use SMT-LIB)

▶ Allowed us to prove all our reduction rules!

30 / 34

https://github.com/nicolasAmat/Reductron

Reductron
Toolchain

� github.com/nicolasAmat/Reductron

▶ Compute τ∗C using the tool FAST

▶ LIA theory in z3 (use SMT-LIB)

▶ Allowed us to prove all our reduction rules!

30 / 34

https://github.com/nicolasAmat/Reductron

Reductron
Toolchain

� github.com/nicolasAmat/Reductron

▶ Compute τ∗C using the tool FAST

▶ LIA theory in z3 (use SMT-LIB)

▶ Allowed us to prove all our reduction rules!
30 / 34

https://github.com/nicolasAmat/Reductron

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

31 / 34

Discussion About Automated Proving

▶ Consolidates reliability (for Tina and SMPT model checkers)

▶ Better understanding of what’s behind polyhedral reduction

▶ A tool to experiment with new reduction rules

▶ Concrete use-case of the “flattable” notion

32 / 34

Discussion About Automated Proving

▶ Consolidates reliability (for Tina and SMPT model checkers)

▶ Better understanding of what’s behind polyhedral reduction

▶ A tool to experiment with new reduction rules

▶ Concrete use-case of the “flattable” notion

32 / 34

Discussion About Automated Proving

▶ Consolidates reliability (for Tina and SMPT model checkers)

▶ Better understanding of what’s behind polyhedral reduction

▶ A tool to experiment with new reduction rules

▶ Concrete use-case of the “flattable” notion

32 / 34

Discussion About Automated Proving

▶ Consolidates reliability (for Tina and SMPT model checkers)

▶ Better understanding of what’s behind polyhedral reduction

▶ A tool to experiment with new reduction rules

▶ Concrete use-case of the “flattable” notion

32 / 34

Discussion About Polyhedral Abstraction

▶ Many nets are flat, actually all bounded models are flat
But it is difficult to find the equation system E

▶ We show that we can find pieces of flatness inside the
reachable markings of nets
This is the meaning of our polyhedral abstraction

▶ We can exhibit such equivalences using structural reductions

33 / 34

Thank you for your attention!

github.com/nicolasAmat/Reductron

Any questions?

34 / 34

github.com/nicolasAmat/Reductron

	Parametric Polyhedral Abstraction
	Presburger Arithmetic and Flatness
	Core Requirements
	Toolchain
	Discussion

