Automated Polyhedral Abstraction Proving

Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan

LAAS-CNRS

Petri Nets, March 29 2023

What's Polyhedral Abstraction?

$$(N_1,m_1)\equiv_E (N_2,m_2)$$

General notion

 Equivalence between reachable markings (modulo solutions of *E*)

What's Polyhedral Abstraction? Introduction

Net reduction example, with equation E: a = x + y

Relation between state-spaces

What's Polyhedral Abstraction?

$$E \triangleq \begin{cases} p_5 = p_4 \\ a_1 = p_1 + p_2 \\ a_2 = p_3 + p_4 \\ a_1 = a_2 \end{cases}$$

SwimmingPool

Introduction

$$E \triangleq \begin{cases} Cabins + Dress + Dressed + Undress + WaitBag = 10\\ Dress + Dressed + Entered + InBath + Out + Undress + WaitBag = 20\\ Bags + Dress + InBath + Undress = 15 \end{cases}$$

Petri Nets' Flag (Incorrect Abstraction)

Petri Nets' Flag (Incorrect Abstraction)

Petri Nets' Flag (Correct Abstraction)

Introduction

7/34

Example of Classes

▶ PR-R (state equation corresponds to the exact state-space)

Flat nets (Presburger-definable)

Introduction

$$m_1 \equiv_E m_2 \quad \Leftrightarrow \quad \exists m \in \mathbb{N}^V \ . \ m \models E \land m_1 \land m_2$$

Introduction

$$m_1 \equiv_E m_2 \quad \Leftrightarrow \quad \exists m \in \mathbb{N}^V \ . \ m \models E \land \underline{m_1} \land \underline{m_2}$$

Definition (*E*-abstraction) $(N_1, m_1) \supseteq_E (N_2, m_2)$ iff

(A1) initial markings are compatible with E, meaning $m_1 \equiv_E m_2$

(A2) for all observation sequences $\sigma \in \Sigma^{\star}$ such that $(N_1, m_1) \stackrel{\sigma}{\Rightarrow} (N_1, m_1')$

- ▶ there is at least one marking m'_2 of N_2 such that $m'_1 \equiv_E m'_2$
- ▶ for all markings m'_2 we have that $m'_1 \equiv_E m'_2$ implies $(N_2, m_2) \stackrel{\sigma}{\Rightarrow} (N_2, m'_2)$

Introduction

$$m_1 \equiv_E m_2 \quad \Leftrightarrow \quad \exists m \in \mathbb{N}^V \ . \ m \models E \land \underline{m_1} \land \underline{m_2}$$

Definition (*E*-abstraction) $(N_1, m_1) \supseteq_E (N_2, m_2)$ iff

(A1) initial markings are compatible with E, meaning $m_1 \equiv_E m_2$

(A2) for all observation sequences $\sigma \in \Sigma^*$ such that $(N_1, m_1) \stackrel{\sigma}{\Rightarrow} (N_1, m_1')$

- ▶ there is at least one marking m'_2 of N_2 such that $m'_1 \equiv_E m'_2$
- ▶ for all markings m'_2 we have that $m'_1 \equiv_E m'_2$ implies $(N_2, m_2) \stackrel{\sigma}{\Rightarrow} (N_2, m'_2)$

E-abstraction equivalence

 $(N_1, m_1) \equiv_E (N_2, m_2)$ iff $(N_1, m_1) \sqsupseteq_E (N_2, m_2)$ and $(N_2, m_2) \sqsupseteq_E (N_1, m_1)$

Introduction

Introduction

Not a bisimulation!

Not all pairs of reachable markings m_1' , m_2' satisfy $(N_1, m_1') \equiv_E (N_2, m_2')$

(Un)decidability Introduction

Theorem The problem of checking whether a statement $(N_1, m_1) \equiv_E (N_2, m_2)$ is valid is undecidable.

(Un)decidability

Theorem The problem of checking whether a statement $(N_1, m_1) \equiv_E (N_2, m_2)$ is valid is undecidable.

Proof.

▶ Take
$$(N_1, m_1) \equiv_{\text{True}} (N_2, m_2)$$
, with $P_1 = P_2$

(Un)decidability

Theorem The problem of checking whether a statement $(N_1, m_1) \equiv_E (N_2, m_2)$ is valid is undecidable.

Proof.

- Take $(N_1, m_1) \equiv_{\text{True}} (N_2, m_2)$, with $P_1 = P_2$
- Both nets must have same reachability sets

(Un)decidability

Theorem The problem of checking whether a statement $(N_1, m_1) \equiv_E (N_2, m_2)$ is valid is undecidable.

Proof.

- Take $(N_1, m_1) \equiv_{\text{True}} (N_2, m_2)$, with $P_1 = P_2$
- Both nets must have same reachability sets
- Checking marking equivalence is undecidable [Hack 76]

- ► Model counting [Berthomieu et al. 2018]
- ▶ Generalized Reachability Problem [Petri Nets 2021]

- ► Model counting [Berthomieu et al. 2018]
- ▶ Generalized Reachability Problem [Petri Nets 2021]
- ► Concurrent Places Problem [SPIN 2021]

- ► Model counting [Berthomieu et al. 2018]
- ► Generalized Reachability Problem [Petri Nets 2021]
- ► Concurrent Places Problem [SPIN 2021]

• Is F_1 reachable in (N_1, m_1) ?

Definition (*E*-transform Formula) Formula $F_2(\mathbf{p}_2) \triangleq \exists \mathbf{p}_1. \tilde{E}(\mathbf{p}_1, \mathbf{p}_2) \land F_1(\mathbf{p}_1)$ is the *E*-transform of F_1 • Is F_1 reachable in (N_1, m_1) ?

Definition (*E*-transform Formula) Formula $F_2(\mathbf{p}_2) \triangleq \exists \mathbf{p}_1. \tilde{E}(\mathbf{p}_1, \mathbf{p}_2) \land F_1(\mathbf{p}_1)$ is the *E*-transform of F_1

▶ Is the *E*-transform formula F_2 reachable in (N_2, m_2) ?

Challenges and Proposal

Introduction

Challenges:

- Semi-procedure
- Parametric nets (N_1, C_1) and (N_2, C_2)

Challenges and Proposal

Introduction

Challenges:

- Semi-procedure
- Parametric nets (N_1, C_1) and (N_2, C_2)

Proposal:

- More general notion of abstraction
- Presburger encoding of the τ transitions
- SMT constraints

Challenges and Proposal

Introduction

Challenges:

- Semi-procedure
- Parametric nets (N_1, C_1) and (N_2, C_2)

Proposal:

- More general notion of abstraction
- Presburger encoding of the τ transitions
- SMT constraints

Is a reduction candidate $(N_1, C_1) >_E (N_2, C_2)$ correct?

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Parametric Polyhedral Abstraction

Parametric Polyhedral Abstraction

 $\sigma_2 = a$

Parametric Polyhedral Abstraction

 $\sigma_1 = a$

 $\sigma_2 = a$

Parametric Polyhedral Abstraction

 $\sigma_1 = a$

 $\sigma_2 = a \cdot c$

Parametric Polyhedral Abstraction

 $\sigma_1 = a$

 $\sigma_2 = a \cdot c$

Parametric Polyhedral Abstraction

 $\sigma_1 = a \cdot c$

 $\sigma_2 = a \cdot c$

Parametric Polyhedral Abstraction

Parametric Polyhedral Abstraction

 $\sigma_2 \triangleq d$

Parametric Polyhedral Abstraction

Parametric Polyhedral Abstraction

Parametric Polyhedral Abstraction

$$C_1 \triangleq y_2 = 0$$

Parametric Polyhedral Abstraction

Equivalence rule (concat), $(N_1, C_1) \cong_E (N_2, C_2)$ with $E \triangleq (x = y_1 + y_2)$.

Parametric Polyhedral Abstraction

Equivalence rule (concat), $(N_1, C_1) \cong_E (N_2, C_2)$ with $E \triangleq (x = y_1 + y_2)$.

Remark: τ transitions may be irreversible choices

Parametric Polyhedral Abstraction

We introduce some coherency constraints $\ensuremath{\mathcal{C}}$

- hold on the initial state
- sufficient large subset of reachable markings

Parametric Polyhedral Abstraction

We introduce some coherency constraints $\ensuremath{\mathcal{C}}$

- hold on the initial state
- sufficient large subset of reachable markings

 $m \stackrel{\sigma \rangle}{\Longrightarrow} m'$: do not finish with a τ transition

Parametric Polyhedral Abstraction

We introduce some **coherency constraints** C

- hold on the initial state
- sufficient large subset of reachable markings

 $m \stackrel{\sigma \rangle}{\Longrightarrow} m'$: do not finish with a τ transition

Definition (Coherent Net (N,C)) For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m'$ with $m \in C$ we have:

$$\exists m'' \in C \ . \ m \xrightarrow{\sigma} m'' \land m'' \xrightarrow{\epsilon} m'$$

Parametric Polyhedral Abstraction

We introduce some **coherency constraints** C

- hold on the initial state
- sufficient large subset of reachable markings

 $m \stackrel{\sigma \rangle}{\Longrightarrow} m'$: do not finish with a τ transition

Definition (Coherent Net (N,C)) For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m'$ with $m \in C$ we have:

$$\exists m'' \in C \ . \ m \stackrel{\sigma}{\Longrightarrow} m'' \land m'' \stackrel{\epsilon}{\Rightarrow} m'$$

Can reach a coherent marking by firing the "necessary" τ transitions

Parametric Abstraction

Parametric Polyhedral Abstraction

$$m_1 \langle C_1 E C_2 \rangle m_2 \triangleq m_1 \models C_1 \land m_1 \equiv_E m_2 \land m_2 \models C_2$$

Definition (Parametric *E*-abstraction) $(N_1, C_1) \preceq_E (N_2, C_2)$ iff

- (S1) For all markings m_1 satisfying C_1 there exists a marking m_2 such that $m_1 \langle C_1 E C_2 \rangle m_2$.
- (S2) For all firing sequences $m_1 \stackrel{\epsilon}{\Rightarrow} m'_1$ and all markings m_2 , we have $m_1 \equiv_E m_2$ implies $m'_1 \equiv_E m_2$.
- (S3) For all firing sequences $m_1 \stackrel{\sigma}{\Rightarrow} m'_1$ and all marking pairs m_2 , m'_2 , if $m_1 \langle C_1 E C_2 \rangle m_2$ and $m'_1 \equiv_E m'_2$ then we have $m_2 \stackrel{\sigma}{\Rightarrow} m'_2$.

Parametric Abstraction

Parametric Polyhedral Abstraction

$$m_1 \langle C_1 E C_2 \rangle m_2 \triangleq m_1 \models C_1 \land m_1 \equiv_E m_2 \land m_2 \models C_2$$

Definition (Parametric *E*-abstraction) $(N_1, C_1) \preceq_E (N_2, C_2)$ iff

- (S1) For all markings m_1 satisfying C_1 there exists a marking m_2 such that $m_1 \langle C_1 E C_2 \rangle m_2$.
- (S2) For all firing sequences $m_1 \stackrel{\epsilon}{\Rightarrow} m'_1$ and all markings m_2 , we have $m_1 \equiv_E m_2$ implies $m'_1 \equiv_E m_2$.
- (S3) For all firing sequences $m_1 \stackrel{\sigma}{\Rightarrow} m'_1$ and all marking pairs m_2 , m'_2 , if $m_1 \langle C_1 E C_2 \rangle m_2$ and $m'_1 \equiv_E m'_2$ then we have $m_2 \stackrel{\sigma}{\Rightarrow} m'_2$.

 $(N_1, C_1) \cong_E (N_2, C_2)$ iff $(N_1, C_1) \preceq_E (N_2, C_2)$ and $(N_2, C_2) \preceq_E (N_1, C_1)$.

Parametric Abstraction Instantiation Parametric Polyhedral Abstraction

Theorem (Parametric *E*-abstraction Instantiation) Assume $(N_1, C_1) \preceq_E (N_2, C_2)$ is a parametric *E*-abstraction. Then for every pair of markings $m_1, m_2, m_1 \langle C_1 E C_2 \rangle m_2$ implies $(N_1, m_1) \sqsubseteq_E (N_2, m_2)$.

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Silent State-space

To prove $(N_1, C_1) \cong_E (N_2, C_2)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m'$

Silent State-space

To prove $(N_1, C_1) \cong_E (N_2, C_2)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m'$

A Preburger predicate, say $\tau_{\rm C}^*$ such that

$$R_{\tau}(N,C) = \{m' \mid m' \models \exists \boldsymbol{x} \, . \, C(\boldsymbol{x}) \land \tau^*_{C}(\boldsymbol{x},\boldsymbol{x'})\}$$

Silent State-space

To prove $(N_1, C_1) \cong_E (N_2, C_2)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m'$

A Preburger predicate, say τ_{C}^{*} such that

$$R_{\tau}(N,C) = \{m' \mid m' \models \exists x \ . \ C(x) \land \tau^*_C(x,x')\}$$

Theorem

Given a parametric E-abstraction equivalence $(N_1, C_1) \cong_E (N_2, C_2)$, the silent reachability set $R_{\tau}(N_1, C_1)$ is Presburger-definable.

Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)

For every VASS V, for every Presburger set C_{in} of configurations, the reachability set $\operatorname{ReachV}(C_{in})$ is Presburger if, and only if, V is flattable from C_{in} .

Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)

For every VASS V, for every Presburger set C_{in} of configurations, the reachability set $\operatorname{ReachV}(C_{in})$ is Presburger if, and only if, V is flattable from C_{in} .

If candidate correct: we have methods to compute τ_{C}^{*}

Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)

For every VASS V, for every Presburger set C_{in} of configurations, the reachability set $\operatorname{ReachV}(C_{in})$ is Presburger if, and only if, V is flattable from C_{in} .

If candidate correct: we have methods to compute τ_{C}^{*}

But, checking flatness is undecidable \rightarrow semi-procedure

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Big Picture Core Requirements

Core 0 — (Coherent Net) Core Requirements

(Coherent net) For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m'$ with $m \in C$:

$$\exists m'' \in C : m \stackrel{\sigma}{\Longrightarrow} m'' \wedge m'' \stackrel{\epsilon}{\Rightarrow} m'$$

Core 0 — (Coherent Net) Core Requirements

(Coherent net) For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m'$ with $m \in C$:

$$\exists m'' \in C : m \stackrel{\sigma}{\Longrightarrow} m'' \wedge m'' \stackrel{\epsilon}{\Rightarrow} m'$$

$$\begin{array}{l} \forall \boldsymbol{p}, \boldsymbol{p'}, \boldsymbol{a} . \ C(\boldsymbol{p}) \land \acute{T}_{C}(\boldsymbol{p}, \boldsymbol{p'}, \boldsymbol{a}) \\ \implies \exists \boldsymbol{p''} . \ C(\boldsymbol{p''}) \land \acute{T}_{C}(\boldsymbol{p}, \boldsymbol{p''}, \boldsymbol{a}) \land \tau_{C}^{*}(\boldsymbol{p''}, \boldsymbol{p'}) \end{array}$$

Core 1 — (S1)

Core Requirements

(S1) For all markings m_1 satisfying C_1 :

 $\exists m_2 \ . \ m_1 \langle C_1 E C_2 \rangle m_2$

Core 1 — (S1) Core Requirements

(S1) For all markings m_1 satisfying C_1 :

 $\exists m_2 \ . \ m_1 \langle C_1 E C_2 \rangle m_2$

 $\forall \boldsymbol{x} \ . \ C_1(\boldsymbol{x}) \implies \exists \boldsymbol{y} \ . \ ilde{E}(\boldsymbol{x}, \boldsymbol{y}) \wedge C_2(\boldsymbol{y})$

Core
$$2 - (S2)$$

(S2) For all firing sequences $m_1 \stackrel{\epsilon}{\Rightarrow} m'_1$ and all markings m_2 :

$$m_1 \equiv_E m_2 \implies m_1' \equiv_E m_2$$

Core
$$2 - (S2)$$

(S2) For all firing sequences $m_1 \stackrel{\epsilon}{\Rightarrow} m'_1$ and all markings m_2 :

$$m_1 \equiv_E m_2 \implies m_1' \equiv_E m_2$$

 $\forall \boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_1' : \tilde{E}(\boldsymbol{p}_1, \boldsymbol{p}_2) \land \tau(\boldsymbol{p}_1, \boldsymbol{p}_1') \implies \tilde{E}(\boldsymbol{p}_1', \boldsymbol{p}_2)$

(S3) For all firing sequences $m_1 \stackrel{\sigma}{\Rightarrow} m'_1$ and all marking pairs m_2 , m'_2 :

$$m_1 \langle C_1 E C_2 \rangle m_2 \wedge m'_1 \equiv_E m'_2 \implies m_2 \stackrel{\circ}{\Longrightarrow} m'_2$$

$$(C_1 \stackrel{m_1 a}{\longrightarrow} m'_1 \atop R(N_1, C_1))$$

$$(C_2 \stackrel{\star}{\longrightarrow} a \atop m'_2 \rightarrow m'_2) R(N_2, C_2)$$

(S3) For all firing sequences $m_1 \stackrel{\sigma}{\Rightarrow} m'_1$ and all marking pairs m_2 , m'_2 :

$$\begin{array}{l} \forall \boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{a}, \boldsymbol{p}_1', \boldsymbol{p}_2' . \ \langle C_1 E C_2 \rangle (\boldsymbol{p}_1, \boldsymbol{p}_2) \wedge \hat{\mathcal{T}}_{C_1} (\boldsymbol{p}_1, \boldsymbol{p}_1') \wedge \tilde{E}(\boldsymbol{p}_1', \boldsymbol{p}_2') \\ \implies \hat{\mathcal{T}}_{C_2} (\boldsymbol{p}_2, \boldsymbol{p}_2') \end{array}$$

28 / 34

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Reductron Toolchain

O github.com/nicolasAmat/Reductron

Reductron

O github.com/nicolasAmat/Reductron

- Compute τ_{C}^{*} using the tool FAST
- ► LIA theory in z3 (use SMT-LIB)

Reductron

O github.com/nicolasAmat/Reductron

- Compute τ_{C}^{*} using the tool FAST
- ► LIA theory in z3 (use SMT-LIB)
- Allowed us to prove all our reduction rules!

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Consolidates reliability (for Tina and SMPT model checkers)

- Consolidates reliability (for Tina and SMPT model checkers)
- Better understanding of what's behind polyhedral reduction

- Consolidates reliability (for Tina and SMPT model checkers)
- Better understanding of what's behind polyhedral reduction
- A tool to experiment with new reduction rules

- Consolidates reliability (for Tina and SMPT model checkers)
- Better understanding of what's behind polyhedral reduction
- A tool to experiment with new reduction rules
- Concrete use-case of the "flattable" notion

Discussion About Polyhedral Abstraction

- Many nets are flat, actually all bounded models are flat But it is difficult to find the equation system E
- We show that we can find pieces of flatness inside the reachable markings of nets This is the meaning of our polyhedral abstraction
- ▶ We can exhibit such equivalences using structural reductions

Thank you for your attention!

github.com/nicolasAmat/Reductron

Any questions?