Automated Polyhedral Abstraction Proving

Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan

LAAS-CNRS
Petri Nets, March 292023

CNRS

What's Polyhedral Abstraction?

Introduction

$$
\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)
$$

- General notion
- Equivalence between reachable markings (modulo solutions of E)

What's Polyhedral Abstraction?

Introduction

Net reduction example, with equation $E: a=x+y$

Relation between state-spaces

What's Polyhedral Abstraction?

Introduction

SwimmingPool

Introduction

$E \triangleq\left\{\begin{array}{l}\text { Cabins }+ \text { Dress }+ \text { Dressed }+ \text { Undress }+ \text { WaitBag }=10 \\ \text { Dress }+ \text { Dressed }+ \text { Entered }+ \text { InBath }+ \text { Out }+ \text { Undress }+ \text { WaitBag }=20 \\ \text { Bags }+ \text { Dress }+ \text { InBath }+ \text { Undress }=15\end{array}\right.$

Petri Nets' Flag (Incorrect Abstraction)

Introduction

Petri Nets' Flag (Incorrect Abstraction)

Introduction

Petri Nets' Flag (Correct Abstraction)

Introduction

Example of Classes

Introduction

- PR-R (state equation corresponds to the exact state-space)
- Flat nets (Presburger-definable)

Formalisation

Introduction

$$
m_{1} \equiv_{E} m_{2} \quad \Leftrightarrow \quad \exists m \in \mathbb{N}^{V} . m \models E \wedge \underline{m_{1}} \wedge \underline{m_{2}}
$$

Formalisation

Introduction

$$
m_{1} \equiv_{E} m_{2} \quad \Leftrightarrow \quad \exists m \in \mathbb{N}^{V} . m \models E \wedge \underline{m_{1}} \wedge \underline{m_{2}}
$$

Definition (E-abstraction)
$\left(N_{1}, m_{1}\right) \sqsupseteq_{E}\left(N_{2}, m_{2}\right)$ iff
(A1) initial markings are compatible with E, meaning $m_{1} \equiv_{E} m_{2}$
(A2) for all observation sequences $\sigma \in \Sigma^{\star}$ such that $\left(N_{1}, m_{1}\right) \stackrel{\sigma}{\Rightarrow}\left(N_{1}, m_{1}^{\prime}\right)$

- there is at least one marking m_{2}^{\prime} of N_{2} such that $m_{1}^{\prime} \equiv_{E} m_{2}^{\prime}$
- for all markings m_{2}^{\prime} we have that $m_{1}^{\prime} \equiv_{E} m_{2}^{\prime}$ implies $\left(N_{2}, m_{2}\right) \xlongequal{g}\left(N_{2}, m_{2}^{\prime}\right)$

Formalisation

Introduction

$$
m_{1} \equiv_{E} m_{2} \quad \Leftrightarrow \quad \exists m \in \mathbb{N}^{V} . m \models E \wedge \underline{m_{1}} \wedge \underline{m_{2}}
$$

Definition (E-abstraction)
$\left(N_{1}, m_{1}\right) \beth_{E}\left(N_{2}, m_{2}\right)$ iff
(A1) initial markings are compatible with E, meaning $m_{1} \equiv_{E} m_{2}$
(A2) for all observation sequences $\sigma \in \Sigma^{\star}$ such that $\left(N_{1}, m_{1}\right) \stackrel{\sigma}{\Rightarrow}\left(N_{1}, m_{1}^{\prime}\right)$

- there is at least one marking m_{2}^{\prime} of N_{2} such that $m_{1}^{\prime} \equiv_{E} m_{2}^{\prime}$
- for all markings m_{2}^{\prime} we have that $m_{1}^{\prime} \equiv_{E} m_{2}^{\prime}$ implies $\left(N_{2}, m_{2}\right) \xlongequal{g}\left(N_{2}, m_{2}^{\prime}\right)$
E-abstraction equivalence
$\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ iff $\left(N_{1}, m_{1}\right) \sqsupseteq_{E}\left(N_{2}, m_{2}\right)$ and $\left(N_{2}, m_{2}\right) \sqsupseteq_{E}\left(N_{1}, m_{1}\right)$

Formalisation

Introduction

Formalisation

Introduction

Not a bisimulation!
Not all pairs of reachable markings $m_{1}^{\prime}, m_{2}^{\prime}$ satisfy $\left(N_{1}, m_{1}^{\prime}\right) \equiv_{E}\left(N_{2}, m_{2}^{\prime}\right)$

(Un)decidability

Introduction

Theorem
The problem of checking whether a statement $\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ is valid is undecidable.

(Un)decidability

Introduction

Theorem
The problem of checking whether a statement $\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ is valid is undecidable.

Proof.

- Take $\left(N_{1}, m_{1}\right) \equiv_{\text {True }}\left(N_{2}, m_{2}\right)$, with $P_{1}=P_{2}$

(Un)decidability

Introduction

Theorem
The problem of checking whether a statement $\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ is valid is undecidable.

Proof.

- Take $\left(N_{1}, m_{1}\right) \equiv_{\text {True }}\left(N_{2}, m_{2}\right)$, with $P_{1}=P_{2}$
- Both nets must have same reachability sets

(Un)decidability

Theorem
The problem of checking whether a statement
$\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ is valid is undecidable.
Proof.

- Take $\left(N_{1}, m_{1}\right) \equiv_{\text {True }}\left(N_{2}, m_{2}\right)$, with $P_{1}=P_{2}$
- Both nets must have same reachability sets
- Checking marking equivalence is undecidable [Hack 76]

Use-cases

Introduction

- Model counting [Berthomieu et al. 2018]

Use-cases

Introduction

- Model counting [Berthomieu et al. 2018]
- Generalized Reachability Problem [Petri Nets 2021]

Use-cases

Introduction

- Model counting [Berthomieu et al. 2018]
- Generalized Reachability Problem [Petri Nets 2021]
- Concurrent Places Problem [SPIN 2021]

Use-cases

Introduction

- Model counting [Berthomieu et al. 2018]
- Generalized Reachability Problem [Petri Nets 2021]
- Concurrent Places Problem [SPIN 2021]

Use-cases

Introduction

- Is F_{1} reachable in $\left(N_{1}, m_{1}\right)$?

Use-cases

Introduction

- Is F_{1} reachable in $\left(N_{1}, m_{1}\right)$?

Definition (E-transform Formula)
Formula $F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{p}_{1} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{p}_{1}\right)$ is the E-transform of F_{1}

Use-cases

Introduction

- Is F_{1} reachable in $\left(N_{1}, m_{1}\right)$?

Definition (E-transform Formula)
Formula $F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{p}_{1} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{p}_{1}\right)$ is the E-transform of F_{1}

- Is the E-transform formula F_{2} reachable in $\left(N_{2}, m_{2}\right)$?

Challenges and Proposal

Introduction

Challenges:

- Semi-procedure
- Parametric nets $\left(N_{1}, C_{1}\right)$ and $\left(N_{2}, C_{2}\right)$

Challenges and Proposal

Introduction

Challenges:

- Semi-procedure
- Parametric nets $\left(N_{1}, C_{1}\right)$ and $\left(N_{2}, C_{2}\right)$

Proposal:

- More general notion of abstraction
- Presburger encoding of the τ transitions
- SMT constraints

Challenges and Proposal

Introduction

Challenges:

- Semi-procedure
- Parametric nets $\left(N_{1}, C_{1}\right)$ and $\left(N_{2}, C_{2}\right)$

Proposal:

- More general notion of abstraction
- Presburger encoding of the τ transitions
- SMT constraints

Is a reduction candidate $\left(N_{1}, C_{1}\right)>_{E}\left(N_{2}, C_{2}\right)$ correct?

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Coherent Nets

Parametric Polyhedral Abstraction

Coherent Nets

Parametric Polyhedral Abstraction

$$
\sigma_{2}=a
$$

Coherent Nets

Parametric Polyhedral Abstraction

$$
\sigma_{1}=a
$$

$$
\sigma_{2}=a
$$

Coherent Nets

Parametric Polyhedral Abstraction

$$
\sigma_{1}=a
$$

$$
\sigma_{2}=a \cdot c
$$

Coherent Nets

Parametric Polyhedral Abstraction

$$
\sigma_{1}=a
$$

$$
\sigma_{2}=a \cdot c
$$

Coherent Nets

Parametric Polyhedral Abstraction

$$
\sigma_{1}=a \cdot c
$$

$$
\sigma_{2}=a \cdot c
$$

Coherent Nets

Parametric Polyhedral Abstraction

Coherent Nets

Parametric Polyhedral Abstraction

$$
\sigma_{2} \triangleq d
$$

Coherent Nets

Parametric Polyhedral Abstraction

$\sigma_{1} \triangleq d$

Coherent Nets

Parametric Polyhedral Abstraction

$$
\sigma_{1} \triangleq d
$$

$$
\sigma_{2} \triangleq d \cdot b
$$

Coherent Nets

Parametric Polyhedral Abstraction

$$
C_{1} \triangleq y_{2}=0
$$

$C_{2} \triangleq$ True

Coherent Nets

Parametric Polyhedral Abstraction

$C_{2} \triangleq$ True

Equivalence rule (concat), $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ with $E \triangleq\left(x=y_{1}+y_{2}\right)$.

Coherent Nets

Parametric Polyhedral Abstraction

Equivalence rule (concat), $\left(N_{1}, C_{1}\right) \widetilde{\approx}_{E}\left(N_{2}, C_{2}\right)$ with $E \triangleq\left(x=y_{1}+y_{2}\right)$.
Remark: τ transitions may be irreversible choices

Coherent Nets

Parametric Polyhedral Abstraction

We introduce some coherency constraints C

- hold on the initial state
- sufficient large subset of reachable markings

Coherent Nets

Parametric Polyhedral Abstraction

We introduce some coherency constraints C

- hold on the initial state
- sufficient large subset of reachable markings
$m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime}$: do not finish with a τ transition

Coherent Nets

Parametric Polyhedral Abstraction

We introduce some coherency constraints C

- hold on the initial state
- sufficient large subset of reachable markings
$m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime}$: do not finish with a τ transition

Definition (Coherent Net (N,C))
For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ with $m \in C$ we have:

$$
\exists m^{\prime \prime} \in C . m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime \prime} \wedge m^{\prime \prime} \stackrel{\epsilon}{\Rightarrow} m^{\prime}
$$

Coherent Nets

Parametric Polyhedral Abstraction

We introduce some coherency constraints C

- hold on the initial state
- sufficient large subset of reachable markings
$m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime}$: do not finish with a τ transition

Definition (Coherent $\operatorname{Net}(\mathrm{N}, \mathrm{C})$)
For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ with $m \in C$ we have:

$$
\exists m^{\prime \prime} \in C . m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime \prime} \wedge m^{\prime \prime} \stackrel{\epsilon}{\Rightarrow} m^{\prime}
$$

Can reach a coherent marking by firing the "necessary" τ transitions

Parametric Abstraction

Parametric Polyhedral Abstraction

$$
m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2} \triangleq m_{1} \vDash C_{1} \wedge m_{1} \equiv m_{2} \wedge m_{2} \vDash C_{2}
$$

Definition (Parametric E-abstraction)
$\left(N_{1}, C_{1}\right) \preceq_{E}\left(N_{2}, C_{2}\right)$ iff
(S1) For all markings m_{1} satisfying C_{1} there exists a marking m_{2} such that $m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2}$.
(S2) For all firing sequences $m_{1} \xlongequal{\epsilon} m_{1}^{\prime}$ and all markings m_{2}, we have $m_{1} \equiv_{E} m_{2}$ implies $m_{1}^{\prime} \equiv_{E} m_{2}$.
(S3) For all firing sequences $m_{1} \stackrel{g}{\Rightarrow} m_{1}^{\prime}$ and all marking pairs m_{2}, m_{2}^{\prime}, if $m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2}$ and $m_{1}^{\prime} \equiv_{E} m_{2}^{\prime}$ then we have $m_{2} \stackrel{\sigma}{\Rightarrow} m_{2}^{\prime}$.

Parametric Abstraction

Parametric Polyhedral Abstraction

$$
m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2} \triangleq m_{1} \vDash C_{1} \wedge m_{1} \equiv{ }_{E} m_{2} \wedge m_{2} \vDash C_{2}
$$

Definition (Parametric E-abstraction)
$\left(N_{1}, C_{1}\right) \preceq_{E}\left(N_{2}, C_{2}\right)$ iff
(S1) For all markings m_{1} satisfying C_{1} there exists a marking m_{2} such that $m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2}$.
(S2) For all firing sequences $m_{1} \xlongequal{\epsilon} m_{1}^{\prime}$ and all markings m_{2}, we have $m_{1} \equiv_{E} m_{2}$ implies $m_{1}^{\prime} \equiv_{E} m_{2}$.
(S3) For all firing sequences $m_{1} \stackrel{g}{\Rightarrow} m_{1}^{\prime}$ and all marking pairs m_{2}, m_{2}^{\prime}, if $m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2}$ and $m_{1}^{\prime} \equiv_{E} m_{2}^{\prime}$ then we have $m_{2} \stackrel{\sigma}{\Rightarrow} m_{2}^{\prime}$.
$\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ iff $\left(N_{1}, C_{1}\right) \preceq_{E}\left(N_{2}, C_{2}\right)$ and $\left(N_{2}, C_{2}\right) \preceq_{E}\left(N_{1}, C_{1}\right)$.

Parametric Abstraction Instantiation

Parametric Polyhedral Abstraction

Theorem (Parametric E-abstraction Instantiation)
Assume $\left(N_{1}, C_{1}\right) \preceq_{E}\left(N_{2}, C_{2}\right)$ is a parametric E-abstraction. Then for every pair of markings $m_{1}, m_{2}, m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2}$ implies $\left(N_{1}, m_{1}\right) \sqsubseteq_{E}\left(N_{2}, m_{2}\right)$.

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Silent State-space

To prove $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m^{\prime}$

Silent State-space

To prove $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m^{\prime}$
A Preburger predicate, say τ_{C}^{*} such that

$$
R_{\tau}(N, C)=\left\{m^{\prime} \mid m^{\prime} \models \exists \boldsymbol{x} \cdot C(\boldsymbol{x}) \wedge \tau_{C}^{*}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right\}
$$

Silent State-space

To prove $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m^{\prime}$
A Preburger predicate, say τ_{C}^{*} such that

$$
R_{\tau}(N, C)=\left\{m^{\prime} \mid m^{\prime} \models \exists \boldsymbol{x} \cdot C(\boldsymbol{x}) \wedge \tau_{C}^{*}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right\}
$$

Theorem
Given a parametric E-abstraction equivalence $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$, the silent reachability set $R_{\tau}\left(N_{1}, C_{1}\right)$ is Presburger-definable.

Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)
For every VASS V, for every Presburger set $C_{i n}$ of configurations, the reachability set ReachV $\left(C_{i n}\right)$ is Presburger if, and only if, V is flattable from $C_{i n}$.

Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)
For every VASS V, for every Presburger set $C_{i n}$ of configurations, the reachability set ReachV $\left(C_{i n}\right)$ is Presburger if, and only if, V is flattable from $C_{i n}$.

If candidate correct: we have methods to compute τ_{C}^{*}

Flatness

Presburger Arithmetic and Flatness

Theorem (Leroux, 2013)
For every VASS V, for every Presburger set $C_{i n}$ of configurations, the reachability set ReachV $\left(C_{i n}\right)$ is Presburger if, and only if, V is flattable from $C_{i n}$.

If candidate correct: we have methods to compute τ_{C}^{*}
But, checking flatness is undecidable \rightarrow semi-procedure

Outline

Parametric Polyhedral Abstraction
 Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Big Picture

Core Requirements

Core 0 - (Coherent Net)

Core Requirements

(Coherent net) For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ with $m \in C$:

$$
\exists m^{\prime \prime} \in C . m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime \prime} \wedge m^{\prime \prime} \stackrel{\epsilon}{\Rightarrow} m^{\prime}
$$

Core 0 - (Coherent Net)

Core Requirements

(Coherent net) For all firing sequences $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ with $m \in C$:

$$
\exists m^{\prime \prime} \in C . m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime \prime} \wedge m^{\prime \prime} \stackrel{\epsilon}{\Rightarrow} m^{\prime}
$$

$\forall \boldsymbol{p}, \boldsymbol{p}^{\prime}, a \cdot C(\boldsymbol{p}) \wedge \dot{T}_{C}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}, a\right)$

$$
\Longrightarrow \exists \boldsymbol{p}^{\prime \prime} \cdot C\left(\boldsymbol{p}^{\prime \prime}\right) \wedge \dot{T}_{C}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime \prime}, a\right) \wedge \tau_{C}^{*}\left(\boldsymbol{p}^{\prime \prime}, \boldsymbol{p}^{\prime}\right)
$$

Core 1 - (S1)

Core Requirements

(S1) For all markings m_{1} satisfying C_{1} :

$$
\exists m_{2} \cdot m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2}
$$

Core 1 - (S1)

Core Requirements

(S1) For all markings m_{1} satisfying C_{1} :

$$
\exists m_{2} \cdot m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2}
$$

Core 2 - (S2)

Core Requirements

(S2) For all firing sequences $m_{1} \stackrel{\epsilon}{\Rightarrow} m_{1}^{\prime}$ and all markings m_{2} :

$$
m_{1} \equiv E m_{2} \Longrightarrow m_{1}^{\prime} \equiv_{E} m_{2}
$$

Core 2 - (S2)

Core Requirements

(S2) For all firing sequences $m_{1} \stackrel{\epsilon}{\Rightarrow} m_{1}^{\prime}$ and all markings m_{2} :

$$
m_{1} \equiv_{E} m_{2} \Longrightarrow m_{1}^{\prime} \equiv_{E} m_{2}
$$

$\forall \boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{1}^{\prime} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge \tau\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{1}^{\prime}\right) \Longrightarrow \tilde{E}\left(\boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}\right)$

Core 3 - (S3)

Core Requirements

(S3) For all firing sequences $m_{1} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}$ and all marking pairs m_{2}, m_{2}^{\prime} :

$$
m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2} \wedge m_{1}^{\prime} \equiv E m_{2}^{\prime} \Longrightarrow m_{2} \stackrel{\sigma}{\Rightarrow} m_{2}^{\prime}
$$

Core 3 - (SB)

Core Requirements

(S3) For all firing sequences $m_{1} \stackrel{\sigma}{\Rightarrow} m_{1}^{\prime}$ and all marking pairs m_{2}, m_{2}^{\prime} :

$$
m_{1}\left\langle C_{1} E C_{2}\right\rangle m_{2} \wedge m_{1}^{\prime} \equiv E m_{2}^{\prime} \Longrightarrow m_{2} \stackrel{\sigma}{\Rightarrow} m_{2}^{\prime}
$$

$\forall \boldsymbol{p}_{1}, \boldsymbol{p}_{2}, a, \boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}^{\prime} .\left\langle C_{1} E C_{2}\right\rangle\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge \hat{T}_{C_{1}}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{1}^{\prime}\right) \wedge \tilde{E}\left(\boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}^{\prime}\right)$

$$
\Longrightarrow \hat{T}_{C_{2}}\left(\boldsymbol{p}_{2}, \boldsymbol{p}_{2}^{\prime}\right)
$$

Outline

Parametric Polyhedral Abstraction

Presburger Arithmetic and Flatness

Core Requirements

Toolchain

Discussion

Reductron

Toolchain

REDUCTRON

THE POLYHEDRAL ABSTRACTION PROVER
© github.com/nicolasAmat/Reductron

Reductron

Toolchain

REDUCTRON

THE POLYHEDRAL ABSTRACTION PROVER
() github.com/nicolasAmat/Reductron

- Compute τ_{C}^{*} using the tool FAST
- LIA theory in z3 (use SMT-LIB)

Reductron

Toolchain

REDUCTRON

THE POLYHEDRAL ABSTRACTION PROVER
() github.com/nicolasAmat/Reductron

- Compute τ_{C}^{*} using the tool FAST
- LIA theory in z3 (use SMT-LIB)
- Allowed us to prove all our reduction rules!

Outline

> Parametric Polyhedral Abstraction

> Presburger Arithmetic and Flatness

> Core Requirements

> Toolchain

Discussion

Discussion About Automated Proving

- Consolidates reliability (for Tina and SMPT model checkers)

Discussion About Automated Proving

- Consolidates reliability (for Tina and SMPT model checkers)
- Better understanding of what's behind polyhedral reduction

Discussion About Automated Proving

- Consolidates reliability (for Tina and SMPT model checkers)
- Better understanding of what's behind polyhedral reduction
- A tool to experiment with new reduction rules

Discussion About Automated Proving

- Consolidates reliability (for Tina and SMPT model checkers)
- Better understanding of what's behind polyhedral reduction
- A tool to experiment with new reduction rules
- Concrete use-case of the "flattable" notion

Discussion About Polyhedral Abstraction

- Many nets are flat, actually all bounded models are flat But it is difficult to find the equation system E
- We show that we can find pieces of flatness inside the reachable markings of nets
This is the meaning of our polyhedral abstraction
- We can exhibit such equivalences using structural reductions

Thank you for your attention!
github.com/nicolasAmat/Reductron
Any questions?

