A Polyhedral Framework for Reachability Problems in Petri Nets

Un cadre polyédrique pour les problèmes d'accessibilité dans les réseaux de Petri

Nicolas Amat

François Vernadat, Didier Le Botlan, Silvano Dal Zilio

December 4, 2023

CNRS

General context

- Verification of concurrent systems
- Model checking [Emerson and Clarke, 80] [Queille and Sifakis, 82]

Does an abstract model satisfy a formal specification?

The SmallOperatingSystem example

The SmallOperatingSystem example

FreeMemSegment

TaskOnDisk

8192

DiskControllerUnit
4096
TaskReady
$\int_{8192}^{\text {CPUUnit }}$

The SmallOperatingSystem example

The SmallOperatingSystem example

The SmallOperatingSystem example

The SmallOperatingSystem example

Is "ExecutingTask > TaskOnDisk" reachable from the initial marking?

The SmallOperatingSystem example

State space $\approx 10^{17}$

Techniques

- State-space construction
- Decision Diagrams
- Partial Order Reductions, symmetries, etc.
- Not adapted for reachability problems and cannot handle unbounded nets

Techniques

- State-space construction
- Decision Diagrams
- Partial Order Reductions, symmetries, etc.
- Not adapted for reachability problems and cannot handle unbounded nets
- Portfolio of methods
- SMT-based model checking (thanks to the progress of the solvers)
- Counter-examples: BMC
- Invariants: k-induction, CEGAR, PDR

Techniques

- State-space construction
- Decision Diagrams
- Partial Order Reductions, symmetries, etc.
- Not adapted for reachability problems and cannot handle unbounded nets
- Portfolio of methods
- SMT-based model checking (thanks to the progress of the solvers)
- Counter-examples: BMC
- Invariants: k-induction, CEGAR, PDR
- Optimizations
- Structural reductions, slicing, etc.

Techniques

- State-space construction
- Decision Diagrams
- Partial Order Reductions, symmetries, etc.
- Not adapted for reachability problems and cannot handle unbounded nets
- Portfolio of methods
- SMT-based model checking (thanks to the progress of the solvers)
- Counter-examples: BMC
- Invariants: k-induction, CEGAR, PDR
- Optimizations
- Structural reductions, slicing, etc.

Our approach is complementary!

A polyhedral framework for reachability problems in Petri nets

Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and linear programming techniques, to reason on it:

Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and linear programming techniques, to reason on it:

- Potentially reachable markings, aka the State Equation

$$
m=l . \sigma+m_{0}
$$

Petri nets

A strength of Petri net theory is the ability to reuse results from linear algebra, and linear programming techniques, to reason on it:

- Potentially reachable markings, aka the State Equation

$$
m=I . \sigma+m_{0}
$$

- Place invariants

$$
\sigma^{T} . I=\mathbf{0}
$$

Petri nets

Some transition t enabled at m when $m \vDash \operatorname{ENBL}_{t}(\boldsymbol{p})$:

$$
\operatorname{ENBL}_{t}(\boldsymbol{p}) \triangleq \bigwedge_{i \in 1 . . n}\left(p_{i} \geqslant \operatorname{Pre}\left(t, p_{i}\right)\right)
$$

We have $m \rightarrow m^{\prime}$ if and only if $m, m^{\prime} \models \mathrm{T}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$:

$$
\mathrm{T}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq \bigvee_{t \in T} \mathrm{ENBL}_{t}(\boldsymbol{p}) \wedge \Delta_{t}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)
$$

where the token displacement is defined as:

$$
\Delta_{t}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq \bigwedge_{i \in 1 \ldots n}\left(p_{i}^{\prime}=p_{i}+\operatorname{Post}(t)\left(p_{i}\right)-\operatorname{Pre}(t)\left(p_{i}\right)\right)
$$

Petri nets

Some transition t enabled at m when $m \vDash \operatorname{ENBL}_{t}(\boldsymbol{p})$:

$$
\operatorname{ENBL}_{t}(\boldsymbol{p}) \triangleq \bigwedge_{i \in 1 . . n}\left(p_{i} \geqslant \operatorname{Pre}\left(t, p_{i}\right)\right)
$$

We have $m \rightarrow m^{\prime}$ if and only if $m, m^{\prime} \models \mathrm{T}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$:

$$
\mathrm{T}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq \bigvee_{t \in T} \mathrm{ENBL}_{t}(\boldsymbol{p}) \wedge \Delta_{t}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)
$$

where the token displacement is defined as:

$$
\Delta_{t}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq \bigwedge_{i \in 1 \ldots n}\left(p_{i}^{\prime}=p_{i}+\operatorname{Post}(t)\left(p_{i}\right)-\operatorname{Pre}(t)\left(p_{i}\right)\right)
$$

In general the relation $m \rightarrow^{*} m^{\prime}$ cannot be encoded in the Presburger arithmetic

Petri nets

Some transition t enabled at m when $m \models \operatorname{ENBL}_{t}(\boldsymbol{p})$:

$$
\operatorname{ENBL}_{t}(\boldsymbol{p}) \triangleq \bigwedge_{i \in 1 . . n}\left(p_{i} \geqslant \operatorname{Pre}\left(t, p_{i}\right)\right)
$$

We have $m \rightarrow m^{\prime}$ if and only if $m, m^{\prime} \mid \mathrm{T}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$:

$$
\mathrm{T}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq \bigvee_{t \in T} \mathrm{ENBL}_{t}(\boldsymbol{p}) \wedge \Delta_{t}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)
$$

where the token displacement is defined as:

$$
\Delta_{t}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \triangleq \bigwedge_{i \in 1 \ldots n}\left(p_{i}^{\prime}=p_{i}+\operatorname{Post}(t)\left(p_{i}\right)-\operatorname{Pre}(t)\left(p_{i}\right)\right)
$$

In general the relation $m \rightarrow^{*} m^{\prime}$ cannot be encoded in the Presburger arithmetic

A polyhedral framework for reachability problems in Petri nets

Reachability properties verification

- F reachable if and only if $\exists m \in R\left(N, m_{0}\right)$ such that $m \vDash F$

Reachability properties verification

- F reachable if and only if $\exists m \in R\left(N, m_{0}\right)$ such that $m \models F$
- F invariant if and only if $\forall m \in R\left(N, m_{0}\right)$ we have $m \models F$

Reachability properties verification

- F reachable if and only if $\exists m \in R\left(N, m_{0}\right)$ such that $m \models F$
- F invariant if and only if $\forall m \in R\left(N, m_{0}\right)$ we have $m \models F$

$$
\mathrm{EF} F \equiv \neg(\mathrm{AG} \neg F)
$$

	\top	\perp
EF F	Witness	Non-reachable
AG F	Invariant	Counter-example

Some properties of interest

- Coverability: $\operatorname{COVER}(p, k) \equiv m(p) \geq k$
- Reachability: $\operatorname{REACH}(p, k) \equiv m(p)=k$
- Quasi-liveness: $\operatorname{QLIVE}(t) \equiv \Lambda_{p \in \cdot t} \operatorname{COVER}(p, \operatorname{pre}(t, p))$
- Deadlock: DEAD $\equiv \bigwedge_{t \in T} \neg \operatorname{QLIVE}(t)$

Reachability problems

- Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.

Reachability problems

- Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.
- Difficult (Ackermann-complete) [Czerwiński et al., 2022] [Leroux, 2022]

Reachability problems

- Decidable [Mayr, 1981] [Kosaraju, 1982] [Lambert, 1992]
... but still no complete and efficient method.
- Difficult (Ackermann-complete) [Czerwiński et al., 2022] [Leroux, 2022]
- Many tools
- ITS-Tools
- LoLA
- TAPAAL
- KReach
- FastForward

A polyhedral framework for reachability problems in Petri nets

Net reductions [Berthelot, 76]

A reduction is a net transformation which reduces its size such that (for a given set of properties) the reduced net is equivalent to the initial one.

$$
\left(N, m_{0}\right) \equiv\left(N^{\prime}, m_{0}^{\prime}\right)
$$

A reduction is characterized by:

- (Graph) transformation
- Application of conditions
- The preserved properties: boundedness; deadlock; quasi-liveness; reachability; ...

Polyhedral reductions

A polyhedral reduction is a net transformation which reduces its size such that we can reconstruct the state space of the initial net from the reduced one.

$$
\left(N, m_{0}\right) \equiv_{\mathrm{E}}\left(N^{\prime}, m_{0}^{\prime}\right)
$$

A polyhedral reduction is characterized by:

- A Presburger predicate, E, of linear constraints between places.
- (Graph) transformation
- Application of conditions
- The preserved properties: boundedness; deadlock; quasi-liveness; reachability; ...

SmallOperatingSystem

AirplaneLD-PT-0050

AirplaneLD-PT-0050

E contains about 400 variables and literals

AirplaneLD-PT-0050

AirplaneLD-PT-4000: 30000 variables and literals

SwimmingPool

$$
E \triangleq\left\{\begin{array}{l}
\text { Cabins }+ \text { Dress }+ \text { Dressed }+ \text { Undress }+ \text { WaitBag }=10 \\
\text { Dress }+ \text { Dressed }+ \text { Entered }+ \text { InBath }+ \text { Out }+ \text { Undress }+ \text { WaitBag }=20 \\
\text { Bags }+ \text { Dress }+\operatorname{InBath}+\text { Undress }=15
\end{array}\right.
$$

Benchmark (Model Checking Contest)

The Model Checking Contest is important in my work:

- A great source of model instances! ≈ 1400 nets
- Also a source of reachability formulas ≈ 50000 queries

Benchmark (Model Checking Contest)

The Model Checking Contest is important in my work:

- A great source of model instances! ≈ 1400 nets
- Also a source of reachability formulas ≈ 50000 queries
- Software development: from prototypes to tools that can be reused by others

Outline

1. Two new definitions
2. Two contributions
3. Epilogue

Outline

Outline

Outline

Big picture

Polyhedral Reduction

Net reduction example, with $E: a=x+y$

Markings equivalence up-to E

Polyhedral Reduction

- Two markings m_{1} and m_{2} are compatible:

$$
m_{1}(p)=m_{2}(p) \text { for all } p \text { in } P_{1} \cap P_{2}
$$

Markings equivalence up-to E

Polyhedral Reduction

- Two markings m_{1} and m_{2} are compatible:

$$
m_{1}(p)=m_{2}(p) \text { for all } p \text { in } P_{1} \cap P_{2}
$$

- A marking m can be associated to system of equations \underline{m} defined as:

$$
p_{1}=m\left(p_{1}\right) \wedge \cdots \wedge p_{k}=m\left(p_{k}\right) \text { where } P=\left\{p_{1}, \ldots, p_{k}\right\}
$$

Markings equivalence up-to E

Polyhedral Reduction

- Two markings m_{1} and m_{2} are compatible:

$$
m_{1}(p)=m_{2}(p) \text { for all } p \text { in } P_{1} \cap P_{2}
$$

- A marking m can be associated to system of equations \underline{m} defined as:

$$
p_{1}=m\left(p_{1}\right) \wedge \cdots \wedge p_{k}=m\left(p_{k}\right) \text { where } P=\left\{p_{1}, \ldots, p_{k}\right\}
$$

- We denote $m_{1} \equiv_{E} m_{2}$ when:

$$
E \wedge \underline{m_{1}} \wedge \underline{m_{2}} \text { is satisfiable }
$$

Polyhedral equivalence

Polyhedral Reduction

Definition (Relaxed E-equivalence)
$\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ if and only if
(A1) initial markings are realated up-to $E: m_{1} \equiv_{E} m_{2}$;
(A2a) for all markings m in $R\left(N_{1}, m_{1}\right)$ or $R\left(N_{2}, m_{2}\right): E \wedge \underline{m}$ is satisfiable;
(A2b) assume $m_{1}^{\prime}, m_{2}^{\prime}$ are markings of N_{1}, N_{2} related up-to E, such that $m_{1}^{\prime} \equiv E m_{2}^{\prime}$, then m_{1}^{\prime} is reachable iff m_{2}^{\prime} is reachable.

Polyhedral equivalence

Polyhedral Reduction

Definition (Relaxed E-equivalence)
$\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ if and only if
(A1) initial markings are realated up-to $E: m_{1} \equiv_{E} m_{2}$;
(A2a) for all markings m in $R\left(N_{1}, m_{1}\right)$ or $R\left(N_{2}, m_{2}\right): E \wedge \underline{m}$ is satisfiable;
(A2b) assume $m_{1}^{\prime}, m_{2}^{\prime}$ are markings of N_{1}, N_{2} related up-to E, such that $m_{1}^{\prime} \equiv E m_{2}^{\prime}$, then m_{1}^{\prime} is reachable iff m_{2}^{\prime} is reachable.

We have two variant definitions:

- Composition (relies on observation sequences)
- Automated proving

Key results: reachability checking

Polyhedral Reduction

Lemma (Reachability checking)
For all pairs of markings $m_{1}^{\prime}, m_{2}^{\prime}$ of N_{1}, N_{2} such that $m_{1}^{\prime} \equiv E m_{2}^{\prime}$:

$$
\text { if } m_{2}^{\prime} \in R\left(N_{2}, m_{2}\right) \text { then } m_{1}^{\prime} \in R\left(N_{1}, m_{1}\right) \text {. }
$$

Key results: invariance checking

Polyhedral Reduction

Lemma (Invariance checking)
For all m_{1}^{\prime} in $R\left(N_{1}, m_{1}\right)$ there is m_{2}^{\prime} in $R\left(N_{2}, m_{2}\right)$ such that $m_{1}^{\prime} \equiv_{E} m_{2}^{\prime}$.

Deriving polyhedral reductions - Step 1

Polyhedral Reduction

Deriving polyhedral reductions - Step 1

Polyhedral Reduction

Rule [RED]: place p_{1} is redundant to p_{4}

Deriving polyhedral reductions - Step 1

Polyhedral Reduction

Rule [RED]: place p_{1} is redundant to p_{4}

Deriving polyhedral reductions - Step 1

Polyhedral Reduction

Deriving polyhedral reductions - Step 2

Polyhedral Reduction

Deriving polyhedral reductions - Step 2

Polyhedral Reduction

Place invariant: $p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7}$

Deriving polyhedral reductions - Step 2

Polyhedral Reduction

Place invariant: $p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7}$

Deriving polyhedral reductions - Step 2

Polyhedral Reduction

$$
E_{2} \triangleq p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7}
$$

Deriving polyhedral reductions - Step 3

Polyhedral Reduction

Deriving polyhedral reductions - Step 3

Polyhedral Reduction

Rule [AGG]: agglomerate places p_{7} and p_{8} into a new place

Deriving polyhedral reductions - Step 3

Polyhedral Reduction

Deriving polyhedral reductions - Step 4

Polyhedral Reduction

Deriving polyhedral reductions - Step 4

Polyhedral Reduction

Rule [CONCAT]: concatenate a_{1} and p_{5} into a new place

Deriving polyhedral reductions - Step 4

Polyhedral Reduction

Deriving polyhedral reductions - Step 4

Polyhedral Reduction

Composition laws

Polyhedral Reduction

Reduction rules: [RED], [AGG], [CONCAT], ...

Laws:

- Composability (congruence for ||-composition)
- Transitivity
- Relabeling

Prevalence of reductions over the 1426 MCC instances

Polyhedral Reduction

- 80% of instances are reduced by $>1 \%$
- Half of them are significantly reduced (reduction ratio $>30 \%$)
- 14% of fully reducible instances

Prevalence of reductions over the 1426 MCC instances

Polyhedral Reduction

How to combine with the reachability problem?

Combination with reachability

Polyhedral Reduction

- Is F_{1} reachable in $\left(N_{1}, m_{1}\right)$?

$$
F_{1} \triangleq\left\{\begin{aligned}
3 p_{7}+2 p_{8} & \geqslant p_{6} \\
p_{8} & \geqslant p_{1}
\end{aligned}\right.
$$

Combination with reachability

Polyhedral Reduction

- Is F_{1} reachable in $\left(N_{1}, m_{1}\right)$?

$$
F_{1} \triangleq\left\{\begin{aligned}
3 p_{7}+2 p_{8} & \geqslant p_{6} \\
p_{8} & \geqslant p_{1}
\end{aligned}\right.
$$

Definition (E-Transform Formula)
Formula $F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{p}_{1} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{p}_{1}\right)$ is the E-transform of F_{1}.

Combination with reachability

Polyhedral Reduction

- Is F_{1} reachable in $\left(N_{1}, m_{1}\right)$?

$$
F_{1} \triangleq\left\{\begin{aligned}
3 p_{7}+2 p_{8} & \geqslant p_{6} \\
p_{8} & \geqslant p_{1}
\end{aligned}\right.
$$

Definition (E-Transform Formula)
Formula $F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{q}_{1} . \tilde{E}\left(\boldsymbol{q}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{q}_{1}\right)$ is the E-transform of F_{1}.

$$
F_{2} \triangleq \exists q_{0}, . ., q_{8} \cdot \exists a_{1} \cdot\left\{\begin{array} { l }
{ q _ { 1 } = q _ { 4 } + 4 0 9 6 } \\
{ q _ { 6 } = q _ { 0 } + q _ { 2 } + q _ { 3 } + q _ { 5 } + q _ { 7 } } \\
{ a _ { 1 } = q _ { 7 } + q _ { 8 } } \\
{ a _ { 2 } = a _ { 1 } + q _ { 6 } }
\end{array} \wedge \left\{\begin{array} { l }
{ p _ { 0 } = q _ { 0 } } \\
{ p _ { 2 } = q _ { 2 } } \\
{ p _ { 3 } = q _ { 3 } } \\
{ p _ { 4 } = q _ { 4 } }
\end{array} \wedge \left\{\begin{array}{r}
3 q_{7}+2 q_{8} \geqslant q_{6} \\
q_{8} \geqslant q_{1}
\end{array}\right.\right.\right.
$$

Combination with reachability

Polyhedral Reduction

- Is F_{1} reachable in $\left(N_{1}, m_{1}\right)$?

$$
F_{1} \triangleq\left\{\begin{aligned}
3 p_{7}+2 p_{8} & \geqslant p_{6} \\
p_{8} & \geqslant p_{1}
\end{aligned}\right.
$$

Definition (E-Transform Formula)
Formula $F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{q}_{1} . \tilde{E}\left(\boldsymbol{q}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{q}_{1}\right)$ is the E-transform of F_{1}.

$$
F_{2} \triangleq \exists q_{0}, . ., q_{8} \cdot \exists a_{1} \cdot\left\{\begin{array} { l }
{ q _ { 1 } = q _ { 4 } + 4 0 9 6 } \\
{ q _ { 6 } = q _ { 0 } + q _ { 2 } + q _ { 3 } + q _ { 5 } + q _ { 7 } } \\
{ a _ { 1 } = q _ { 7 } + q _ { 8 } } \\
{ a _ { 2 } = a _ { 1 } + q _ { 6 } }
\end{array} \wedge \left\{\begin{array} { l }
{ p _ { 0 } = q _ { 0 } } \\
{ p _ { 2 } = q _ { 2 } } \\
{ p _ { 3 } = q _ { 3 } } \\
{ p _ { 4 } = q _ { 4 } }
\end{array} \wedge \left\{\begin{array}{r}
3 q_{7}+2 q_{8} \geqslant q_{6} \\
q_{8} \geqslant q_{1}
\end{array}\right.\right.\right.
$$

- Is the E-transform formula F_{2} reachable in $\left(N_{2}, m_{2}\right)$?

Fundamental results on E-transform formulas

Polyhedral Reduction

Theorem (Reachability Conservation)
F_{1} is reachable in N_{1} if and only if its E-transform formula F_{2} is reachable in N_{2}.

Fundamental results on E-transform formulas

Polyhedral Reduction

Theorem (Reachability Conservation)
F_{1} is reachable in N_{1} if and only if its E-transform formula F_{2} is reachable in N_{2}.

Corollary (Invariant Conservation)
$\neg F_{1}$ invariant on N_{1} if and only if $\neg F_{2}$ invariant on N_{2}.

Fundamental results on E-transform formulas

Polyhedral Reduction

Theorem (Reachability Conservation)
F_{1} is reachable in N_{1} if and only if its E-transform formula F_{2} is reachable in N_{2}.

Corollary (Invariant Conservation)
$\neg F_{1}$ invariant on N_{1} if and only if $\neg F_{2}$ invariant on N_{2}.

Does it fit well with SMT-based methods?

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq \underline{m_{0}}\left(\boldsymbol{p}^{(0)}\right)$

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq \underline{m_{0}}\left(\boldsymbol{p}^{(0)}\right)$ $\phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right)$ sat?

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq \underline{m_{0}}\left(\boldsymbol{p}^{(0)}\right)$ $\phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right)$ sat unsat

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq \underline{m_{0}}\left(\boldsymbol{p}^{(0)}\right) \quad \phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right)$ sat unsat
2. $\phi_{1} \triangleq \phi_{0} \wedge \mathrm{~T}\left(\boldsymbol{p}^{\mathbf{(0)}}, \boldsymbol{p}^{(\mathbf{1})}\right)$

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

$$
\begin{array}{ll}
\text { 1. } \phi_{0} \triangleq m_{0}\left(\boldsymbol{p}^{(0)}\right) & \phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right) \text { sat unsat } \\
\text { 2. } \phi_{1} \triangleq \phi_{0} \wedge T\left(\boldsymbol{p}^{(0)}, \boldsymbol{p}^{(1)}\right) & \phi_{1} \wedge F\left(\boldsymbol{p}^{(1)}\right) \text { sat? }
\end{array}
$$

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq \underline{m_{0}}\left(\boldsymbol{p}^{(0)}\right)$
2. $\phi_{1} \triangleq \phi_{0} \wedge \mathrm{~T}\left(\boldsymbol{p}^{(\mathbf{0})}, \boldsymbol{p}^{(\mathbf{1)})}\right.$
$\phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right)$ sat unsat $\phi_{0} \wedge F\left(\boldsymbol{p}^{(1)}\right)$ sat unsat

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq \underline{m_{0}}\left(\boldsymbol{p}^{(0)}\right) \quad \phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right)$ sat unsat
2. $\phi_{1} \triangleq \phi_{0} \wedge T\left(\boldsymbol{p}^{(\mathbf{0})}, \boldsymbol{p}^{(\mathbf{1})}\right)$ $\phi_{0} \wedge F\left(\boldsymbol{p}^{(1)}\right)$ sat unsat
3. $\phi_{i} \triangleq \phi_{i-1} \wedge \mathrm{~T}\left(\boldsymbol{p}^{(\boldsymbol{i}-1)}, \boldsymbol{p}^{(\boldsymbol{i})}\right)$

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq \underline{m_{0}}\left(\boldsymbol{p}^{(0)}\right)$
2. $\phi_{1} \triangleq \phi_{0} \wedge T\left(\boldsymbol{p}^{(\mathbf{0})}, \boldsymbol{p}^{(\mathbf{1})}\right)$
3. $\phi_{i} \triangleq \phi_{i-1} \wedge T\left(\boldsymbol{p}^{(\boldsymbol{i}-1)}, \boldsymbol{p}^{(i)}\right) \quad \phi_{i} \wedge F\left(\boldsymbol{p}^{(\boldsymbol{i})}\right)$ sat

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq m_{0}\left(\boldsymbol{p}^{(0)}\right)$
2. $\phi_{1} \triangleq \phi_{0} \wedge \mathrm{~T}\left(\boldsymbol{p}^{(0)}, \boldsymbol{p}^{(\mathbf{1})}\right)$
3. $\phi_{i} \triangleq \phi_{i-1} \wedge \mathrm{~T}\left(\boldsymbol{p}^{(i-1)}, \boldsymbol{p}^{(i)}\right) \quad \phi_{i} \wedge F\left(\boldsymbol{p}^{(i)}\right)$ sat
$\phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right)$ sat unsat $\phi_{0} \wedge F\left(\boldsymbol{p}^{(1)}\right)$ sat unsat

If $\phi_{i}\left(N_{1}\right) \wedge F_{1}$ sat in N_{1} then there is $j \leqslant i$ such that $\phi_{j}\left(N_{2}\right) \wedge F_{2}$ sat in N_{2}

Bounded Model Checking (BMC) [Biere, 99]

Polyhedral Reduction

1. $\phi_{0} \triangleq m_{0}\left(\boldsymbol{p}^{(0)}\right)$
2. $\phi_{1} \triangleq \phi_{0} \wedge \mathrm{~T}\left(\boldsymbol{p}^{(0)}, \boldsymbol{p}^{(\mathbf{1})}\right)$
$\phi_{0} \wedge F\left(\boldsymbol{p}^{(0)}\right)$ sat unsat
фo $\wedge F\left(\boldsymbol{p}^{(1)}\right)$ sat unsat
3. $\phi_{i} \triangleq \phi_{i-1} \wedge \mathrm{~T}\left(\boldsymbol{p}^{(i-1)}, \boldsymbol{p}^{(i)}\right) \quad \phi_{i} \wedge F\left(\boldsymbol{p}^{(i)}\right)$ sat

If $\phi_{i}\left(N_{1}\right) \wedge F_{1}$ sat in N_{1} then there is $j \ll i$ such that $\phi_{j}\left(N_{2}\right) \wedge F_{2}$ sat in N_{2}

Performance evaluation: $50 \% \leqslant$ reduction ratio $<100 \%$

Polyhedral Reduction

$\times 2.6$ computed queries

Performance evaluation: $1 \% \leqslant$ reduction ratio $<25 \%$

Polyhedral Reduction

$\times 1.22$ computed queries

Outline

SmallOperatingSystem

Token Flow Graphs

Motivation

Token Flow Graphs

- Reason on graphs instead of solving Presburger formulas
- Capture the particular structure of constraints from polyhedral reductions

$$
E \triangleq \exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

Motivation

Token Flow Graphs

- Reason on graphs instead of solving Presburger formulas
- Capture the particular structure of constraints from polyhedral reductions
- Directed Acyclic Graph (DAG) with two kinds of arcs

$$
E \triangleq \exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

Construction

Token Flow Graphs

$$
\exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

Construction

Token Flow Graphs

$$
\exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

$\left(N_{2}, m_{2}\right)$

Construction

Token Flow Graphs

$$
\exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

$\left(N_{2}, m_{2}\right)$

Construction

Token Flow Graphs

$$
\exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

$\left(N_{2}, m_{2}\right)$

Construction

Token Flow Graphs

$$
\exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

$\left(N_{2}, m_{2}\right)$

Construction

Token Flow Graphs

$$
\exists a_{1} \cdot\left\{\begin{array}{l}
p_{1}=p_{4}+4096 \\
p_{6}=p_{0}+p_{2}+p_{3}+p_{5}+p_{7} \\
a_{1}=p_{7}+p_{8} \\
a_{2}=a_{1}+p_{5}
\end{array}\right.
$$

$\left(N_{2}, m_{2}\right)$

Configuration of a TFG

Token Flow Graphs

- Configuration c : partial function from set of nodes V to \mathbb{N}
- Well-defined: $\underline{c} \wedge E$ is satisfiable
- Total: defined for all nodes

Configuration reachability

Token Flow Graphs

$$
m^{\prime} \triangleq\left\{\begin{array}{l}
p_{0}=8184 \\
p_{1}=8192 \\
p_{2}=0 \\
p_{3}=0 \\
p_{4}=4096 \\
p_{5}=5 \\
p_{6}=8190 \\
p_{7}=1 \\
p_{8}=2
\end{array}\right.
$$

Is m^{\prime} reachable from the initial marking?

Configuration reachability

Token Flow Graphs

$$
m^{\prime} \triangleq\left\{\begin{array}{l}
p_{0}=8184 \\
p_{1}=8192 \\
p_{2}=0 \\
p_{3}=0 \\
p_{4}=4096 \\
p_{5}=5 \\
p_{6}=8190 \\
p_{7}=1 \\
p_{8}=2
\end{array}\right.
$$

Configuration reachability

Theorem (Reachable marking extension and unicity)
If m^{\prime} is a marking in $R\left(N_{1}, m_{1}\right)$ then there exists a unique, total and well-defined configuration c of $\llbracket E \rrbracket$ such that ${ }_{c_{N_{1}}}=m$.

Configuration reachability

Theorem (Reachable marking extension and unicity)
If m^{\prime} is a marking in $R\left(N_{1}, m_{1}\right)$ then there exists a unique, total and well-defined configuration c of $\llbracket E \rrbracket$ such that ${ }_{c_{N_{1}}}=m$.

Configuration reachability

Theorem (Reachable marking extension and unicity)
If m^{\prime} is a marking in $R\left(N_{1}, m_{1}\right)$ then there exists a unique, total and well-defined configuration c of $\llbracket E \rrbracket$ such that ${ }_{c_{N_{1}}}=m$.

Configuration reachability

Theorem (Reachable marking extension and unicity)
If m^{\prime} is a marking in $R\left(N_{1}, m_{1}\right)$ then there exists a unique, total and well-defined configuration c of $\llbracket E \rrbracket$ such that ${ }_{c_{N_{1}}}=m$.

Configuration reachability

Theorem (Reachable marking extension and unicity)
If m^{\prime} is a marking in $R\left(N_{1}, m_{1}\right)$ then there exists a unique, total and well-defined configuration c of $\llbracket E \rrbracket$ such that ${ }_{c_{N_{1}}}=m$.

Configuration reachability

Theorem (Reachability equivalence)
Given a total, well-defined configuration c:

$$
c_{\mid N_{2}} \in R\left(N_{2}, m_{2}\right) \text { if and only if }{c_{\mid N_{1}} \in R\left(N_{1}, m_{1}\right)}
$$

Non-TFGizable polyhedral reduction
Token Flow Graphs

Non-TFGizable polyhedral reduction

Token Flow Graphs

Non-TFGizable polyhedral reduction

Token Flow Graphs

Non-TFGizable polyhedral reduction

Token Flow Graphs

Non-TFGizable polyhedral reduction

Token Flow Graphs

Non-TFGizable polyhedral reduction

Token Flow Graphs

Live Marked Graph: state equation is exact!

Non-TFGizable polyhedral reduction

Token Flow Graphs

$$
E_{6} \triangleq\left\{\begin{array}{cc}
a_{3}+p_{0}+p_{2} & =8192 \\
p_{2}+a_{4} & =4096
\end{array}\right.
$$

Prevalence of reductions over the MCC instances

Token Flow Graphs

Outline

Previous context

Project and Conquer
Definition (E-Transform Formula)
$F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{p}_{1} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{p}_{1}\right)$ is the E-transform of F_{1}

Previous context

Project and Conquer

Definition (E-Transform Formula)
$F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{p}_{1} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{p}_{1}\right)$ is the E-transform of F_{1}

Theorem (Reachability Conservation)
F_{1} reachable in N_{1} if and only if F_{2} reachable in N_{2}

Previous context

Project and Conquer
Definition (E-Transform Formula)
$F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{p}_{1} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{p}_{1}\right)$ is the E-transform of F_{1}

Theorem (Reachability Conservation)
F_{1} reachable in N_{1} if and only if F_{2} reachable in N_{2}

- Not suitable with random exploration (need to evaluate a quantified formula for each visited state)
- Not usable with standard model-checkers (only support quantifier-free formulas on the set of places)

Previous context

Project and Conquer
Definition (E-Transform Formula)
$F_{2}\left(\boldsymbol{p}_{2}\right) \triangleq \exists \boldsymbol{p}_{1} . \tilde{E}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \wedge F_{1}\left(\boldsymbol{p}_{1}\right)$ is the E-transform of F_{1}

Theorem (Reachability Conservation)
F_{1} reachable in N_{1} if and only if F_{2} reachable in N_{2}

- Not suitable with random exploration (need to evaluate a quantified formula for each visited state)
- Not usable with standard model-checkers (only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in F_{2} (EXPSPACE in general)

Running example

Project and Conquer

$$
F_{1} \triangleq\left(3 p_{7}+2 p_{8} \geqslant p_{6}\right) \wedge\left(p_{8} \geqslant p_{1}\right)
$$

Running example

Project and Conquer

$$
\begin{gathered}
3 p_{7}+2 p_{8}-p_{6} \geqslant 0 \\
p_{8}-p_{1} \geqslant 0 \\
\Downarrow
\end{gathered}
$$

Running example

Project and Conquer

$$
\begin{array}{r}
2 p_{7}+2 p_{8}-p_{0}-p_{2}-p_{3}-p_{5} \geqslant 0 \\
p_{8}-p_{1} \geqslant 0
\end{array}
$$

$$
\begin{aligned}
& \Uparrow \\
& \\
& -p_{3}- \\
& p_{8}
\end{aligned}-\left(\begin{array}{c}
p_{5} \\
\left.p_{4}+4096\right)
\end{array} \geqslant 0\right.
$$

Running example

Project and Conquer

$$
\begin{aligned}
& \begin{array}{ll}
2 p_{7} & +2 p_{8}-p_{0}-p_{3}-p_{5} \\
1 p_{8} & \geqslant 0 \\
\geqslant 0
\end{array} \\
& 1
\end{aligned}
$$

Running example

Project and Conquer

Running example

Project and Conquer

$$
\begin{aligned}
& 2 p_{7}+2 p_{8}-p_{0}-p_{2}-p_{3}-p_{5} \geqslant 0 \\
& 0 p_{7}+1 p_{8}-p_{4}- \geqslant 096 \\
& \geqslant
\end{aligned}
$$

Running example

Project and Conquer

polarized: p_{8} variable with the highest coefficient in both literals

Running example

Project and Conquer

Running example

Project and Conquer

Running example

Project and Conquer

polarized: a_{1} variable with the highest coefficient in both literals

Running example

Project and Conquer

If not polarized?

Project and Conquer

- under-approximation: If $m_{2} \models F_{2}$ then $\exists m_{1}$ s.t. $m_{1} \equiv_{E} m_{2}$ and $m_{1} \models F_{1}$
- over-approximation: If $m_{1} \models F_{1}$ then $\exists m_{2}$ s.t. $m_{1} \equiv_{E} m_{2}$ and $m_{2} \models F_{2}$

If not polarized?

Project and Conquer

- under-approximation: If $m_{2} \models F_{2}$ then $\exists m_{1}$ s.t. $m_{1} \equiv_{E} m_{2}$ and $m_{1} \models F_{1}$
- over-approximation: If $m_{1} \models F_{1}$ then $\exists m_{2}$ s.t. $m_{1} \equiv_{E} m_{2}$ and $m_{2} \models F_{2}$

In practice, 80% of the formulas are polarized!

Workflow

Project and Conquer

Workflow

Project and Conquer

Performance of fast elimination

Project and Conquer

Octant: 99.5\% isl: 61\%
Redlog: 33\%

Workflow

Project and Conquer

Gains with k-induction: $50 \% \leqslant$ reduction ratio $\leqslant 100 \%$
Project and Conquer

Gains with k-induction: $1 \% \leqslant$ reduction ratio $\leqslant 50 \%$
Project and Conquer

Workflow

Project and Conquer

Gains with TAPAAL: challenging queries

Project and Conquer

Outline

Undecidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement $\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ is undecidable.

Undecidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement $\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)$ is undecidable.

Proof.

- When $E \triangleq$ True: equivalent to the marking equivalence problem
- Undecidable from [Hack 76]

Challenges and proposal

Proving Polyhedral Equivalence

Challenges:

- More general notion of equivalence with a complete procedure
- Presburger sets of initial markings C_{1}, C_{2}

Proposal:

- Parametric polyhedral equivalence, $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$
- SMT constraints that ensure the equivalence

Parametric nets

Proving Polyhedral Equivalence

Parametric nets

Proving Polyhedral Equivalence

$$
\sigma_{1} \triangleq
$$

$$
\sigma_{2} \triangleq a
$$

Parametric nets

Proving Polyhedral Equivalence

$$
\sigma_{1} \triangleq a
$$

$$
\sigma_{2} \triangleq a
$$

Parametric nets

Proving Polyhedral Equivalence

$$
\sigma_{1} \triangleq a
$$

Parametric nets

Proving Polyhedral Equivalence

$$
\sigma_{1} \triangleq a
$$

Parametric nets

Proving Polyhedral Equivalence

$$
\sigma_{1} \triangleq a \cdot c
$$

Parametric nets

Proving Polyhedral Equivalence

Parametric nets

Proving Polyhedral Equivalence

Parametric nets

Proving Polyhedral Equivalence

$$
\sigma_{1} \triangleq d
$$

$\sigma_{2} \triangleq d$

Parametric nets

Proving Polyhedral Equivalence

$$
\sigma_{1} \triangleq d
$$

$\sigma_{2} \triangleq d \cdot b$

Parametric nets

Proving Polyhedral Equivalence

τ transitions may be irreversible choices

Parametric nets

Proving Polyhedral Equivalence

Equivalence rule [CONCAT], $\left(N_{1}, C_{1}\right) \widetilde{\simeq}_{E}\left(N_{2}, C_{2}\right)$

Silent state-spaces

Proving Polyhedral Equivalence
To prove $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m^{\prime}$ with $m \models C_{1}$ or $m \models C_{2}$

Definition (Coherent net (N, C))
If $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ with $m \in C$ then $\exists m^{\prime \prime} \in C . m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime \prime} \wedge m^{\prime \prime} \stackrel{\epsilon}{\Rightarrow} m^{\prime}$.

Silent state-spaces

Proving Polyhedral Equivalence
To prove $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m^{\prime}$ with $m \models C_{1}$ or $m \models C_{2}$

Definition (Coherent net (N, C))
If $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ with $m \in C$ then $\exists m^{\prime \prime} \in C . m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime \prime} \wedge m^{\prime \prime} \stackrel{\epsilon}{\Rightarrow} m^{\prime}$.
A Presburger predicate, say τ_{C}^{*} such that

$$
R_{\tau}(N, C)=\left\{m^{\prime} \mid m^{\prime} \models \exists \boldsymbol{x} \cdot C(\boldsymbol{x}) \wedge \tau_{C}^{*}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right\}
$$

Silent state-spaces

Proving Polyhedral Equivalence
To prove $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ we need to express $m \stackrel{\epsilon}{\Rightarrow} m^{\prime}$ with $m \models C_{1}$ or $m \models C_{2}$

Definition (Coherent net (N, C))
If $m \stackrel{\sigma}{\Rightarrow} m^{\prime}$ with $m \in C$ then $\exists m^{\prime \prime} \in C . m \stackrel{\sigma\rangle}{\Rightarrow} m^{\prime \prime} \wedge m^{\prime \prime} \stackrel{\epsilon}{\Rightarrow} m^{\prime}$.
A Presburger predicate, say τ_{C}^{*} such that

$$
R_{\tau}(N, C)=\left\{m^{\prime} \mid m^{\prime} \models \exists \boldsymbol{x} \cdot C(\boldsymbol{x}) \wedge \tau_{C}^{*}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right\}
$$

Theorem

Given a parametric E-abstraction equivalence $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$, the silent reachability sets $R_{\tau}\left(N_{1}, C_{1}\right)$ and $R_{\tau}\left(N_{2}, C_{2}\right)$ are Presburger-definable.

Flatness

Proving Polyhedral Equivalence

Theorem (Leroux, 2013)
For every VASS V, for every Presburger set $C_{i n}$ of configurations, the reachability set ReachV $\left(C_{i n}\right)$ is Presburger if, and only if, V is flattable from $C_{i n}$.

Flatness

Proving Polyhedral Equivalence

Theorem (Leroux, 2013)
For every VASS V, for every Presburger set $C_{i n}$ of configurations, the reachability set ReachV $\left(C_{i n}\right)$ is Presburger if, and only if, V is flattable from $C_{i n}$.

If candidate correct: we have methods to compute τ_{C}^{*} (thanks FAST)

Decidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement $\left(N_{1}, C_{1}\right) \widetilde{\simeq}_{E}\left(N_{2}, C_{2}\right)$ is decidable.

Decidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ is decidable.

Proof.

- $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ holds iff $\vDash($ Core 0$) \ldots \vDash($ Core 3$)$

Decidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ is decidable.

Proof.

- $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ holds iff $\vDash($ Core 0$) \ldots \vDash($ Core 3$)$
- Presburger arithmetic is decidable

Decidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement $\left(N_{1}, C_{1}\right) \widetilde{\cong}_{E}\left(N_{2}, C_{2}\right)$ is decidable.
Proof.

- $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ holds iff $\mid=($ Core 0$) \ldots=($ Core 3$)$
- Presburger arithmetic is decidable
- τ_{C}^{*} can be computed using FAST if nets are flat

Decidability

Proving Polyhedral Equivalence

Theorem
The problem of checking a statement $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ is decidable.
Proof.

- $\left(N_{1}, C_{1}\right) \widetilde{\approx}_{E}\left(N_{2}, C_{2}\right)$ holds iff $\mid=($ Core 0$) \ldots=($ Core 3$)$
- Presburger arithmetic is decidable
- τ_{C}^{*} can be computed using FAST if nets are flat
- Flat \leftrightarrow Presburger-definable (decidable [Hauschildt 90][Lambert 94])

Parametric equivalence instantiation

Proving Polyhedral Equivalence

Theorem (Parametric E-abstraction Instantiation)
Assume $\left(N_{1}, C_{1}\right) \approx_{E}\left(N_{2}, C_{2}\right)$ is a parametric E-abstraction. Then,

$$
m_{1} \equiv_{E} m_{2} \wedge m_{1} \models C_{1} \wedge m_{2} \models C_{2} \Longrightarrow\left(N_{1}, m_{1}\right) \equiv_{E}\left(N_{2}, m_{2}\right)
$$

Performance evaluation

Proving Polyhedral Equivalence

- Proved our rules in less than 1 s ([RED], [AGG], [CONCAT], etc.)
- Tested unsound rules \rightarrow return which constraint failed

Performance evaluation: SwimmingPool

Proving Polyhedral Equivalence

$E \triangleq\left\{\begin{array}{l}\text { Cabins + Dress + Dressed + Undress + WaitBag }=10 \\ \text { Dress + Dressed + Entered + InBath }+ \text { Out + Undress + WaitBag }=20 \\ \text { Bags + Dress + InBath }+ \text { Undress }=15\end{array}\right.$

Outline

Outline

Open science

- Making papers accessible
- HAL, arXiv

Creative Commons

Open science

- Making papers accessible
- HAL, arXiv
- Experimenting on accessible benchmarks
- Model Checking Contest

Creative Commons

Open science

- Making papers accessible
- HAL, arXiv
- Experimenting on accessible benchmarks
- Model Checking Contest
- Producing available tools and artifacts
- Open source tools available on GitHub
- Conference artifacts: TACAS, FM, VMCAI
- Artifact accompanying my manuscript

Creative Commons

Open science

- Making papers accessible
- HAL, arXiv
- Experimenting on accessible benchmarks
- Model Checking Contest
- Producing available tools and artifacts
- Open source tools available on GitHub
- Conference artifacts: TACAS, FM, VMCAI
- Artifact accompanying my manuscript

Creative Commons

- Participating in competitions
- Model Checking Contest (2021-2023)

Model Checking Contest (2021-2023)

2021: BMC \& PDR (coverability)
2022: Added standard methods
2023: Projection ($+5.5 \%$)

Contributions

Contributions

- We use a set of simple reductions, which are surprisingly efficient to reduce the net size when used together.

Contributions

- Reductions generate linear equations which characterize the state space (partially or totally).

Contributions

- We defined methods, and data structures, to transfer problems between the initial and the reduced net. For the concurrency relation computation, complexity is linear in the size of the output.

Contributions

- We developed new SMT-based methods that works as well on bounded as unbounded nets, and that provides certificate of invariance.

Contributions

- Unexpected: quantifier elimination and automated proving.

Contributions

- A toolbox composed of four open-source tools

Perspectives

- Reachability problem
- Easy at a first glance, but has picked the interest of researchers for decades
- Plenty of room to develop new semi-procedures and improve existing ones
- SMT-solvers are too general
- Specific solvers taking into account the underlying model
- Continue to explore relation with Presburger arithmetic

Questions?

