
A Toolchain to Compute Concurrent Places
of Petri Nets

Nicolas Amat1[0000−0002−5969−7346], Pierre Bouvier2, and Hubert Garavel2

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP LIG, Grenoble, France

Abstract. The concurrent places of a Petri net are all pairs of places
that may simultaneously have a token in some reachable marking. Con-
current places generalize the usual notion of dead places and are par-
ticularly useful for decomposing a Petri net into synchronized automata
executing in parallel. We present a state-of-the-art toolchain to compute
the concurrent places of a Petri net. This is achieved by a rich com-
bination of various techniques, including: state-space exploration using
BDDs, structural rules for concurrent places, quadratic over- and under-
approximation of reachable markings, and polyhedral abstraction of the
state space based on structural reductions and linear arithmetic con-
straints on markings. We assess the performance of our toolchain on a
large collection of 850 nets originating from the 2022 edition of the Model
Checking Contest.

Keywords: Petri nets · Nested-unit Petri nets · Model checking · Reachability
problems · Concurrency theory · Abstraction techniques · Structural reductions
· State-space exploration

1 Introduction

There is a rich corpus of scientific literature on the analysis of concurrent sys-
tems, which is a difficult topic, as most algorithms have a high complexity that
increases with the size of the systems under study. Besides the usual properties
expressing safety and liveness features of concurrent systems, the present article
focuses on a less known property that fundamentally characterizes where par-
allelism is present in such systems. To present this property, a few preliminary
definitions are necessary.

1.1 Petri Nets

Petri nets [32,31] are one of the oldest techniques for modelling concurrent sys-
tems. In this article, the full generality of Petri nets is not required and we can
merely consider nets that are ordinary (i.e., all arcs have multiplicity one) and
one-safe (i.e., all reachable markings contain at most one token per place).

2 N. Amat et al.

Formally, we define here a Petri net as a 4-tuple (P, T, F,M0), where P is
a finite, non-empty set (the elements of P are called places); T is a finite set
such that P ∩ T = ∅ (the elements of T are called transitions); F is a subset of
P×T∪T×P (the elements of F are called arcs); M0 is a subset of P (M0 is called
the initial marking). Figure 1 gives an example of a Petri net having 13 places
(two of which being initial places), 11 transitions, and 26 arcs.

Fig. 1: An ordinary, one-safe Petri Net.

Given a transition t ∈ T , the pre-set of t (noted •t) and the post-set of t
(noted t•) are the two sets of places defined as follows: •t = {p ∈ P | (p, t) ∈ F}
and t• = {p ∈ P | (t, p) ∈ F}.

A marking is a subset of P . A transition t can fire from some marking M1 to
some other marking M2 (noted M1

t−→M2) iff •t ⊆ M1 and M2 = (M1 \ •t)∪ t•.
A marking M is reachable from the initial marking M0 iff M = M0 or there
exist n ≥ 1 transitions t1, t2, ..., tn and (n− 1) markings M1,M2, ...,Mn−1 such
that M0

t1−→M1
t2−→M2 ... Mn−1

tn−→M . To simplify the presentation, we denote
by (N,M0) a marked net, which is a pair composed of a net N ≜ (P, T, F) and
an initial marking M0.

1.2 Nested-Unit Petri Nets

Nested-Unit Petri Nets (NUPNs, for short) [12,13] are a widespread extension of
Petri nets for expressing locality and hierarchy properties of concurrent systems.
The concept of NUPN is not recent (see, e.g., [18]), but it has been adopted by
many recent Petri-net analysis tools, which significantly increase their perfor-
mance by exploiting NUPN information about locality and hierarchy.

Formally, a NUPN is defined as a 8-tuple (P, T, F,M0, U, u0,⊑, unit), where:
(P, T, F,M0) is a Petri net (as defined in Sect. 1.1); U is a finite, non-empty set
such that U ∩ T = U ∩ P = ∅ (the elements of U are called units); u0 is an
element of U (u0 is called the root unit); ⊑ is a binary relation over U such that
(U,⊒) is a tree with a single root u0, where (∀u1, u2 ∈ U) u1 ⊒ u2 is defined
as u2 ⊑ u1 (⊑ is thus a reflexive, antisymmetric, and transitive relation that

A Toolchain to Compute Concurrent Places of Petri Nets 3

expresses that a unit is transitively included in another unit, the root unit u0

being the maximal element for ⊑, i.e., the unit that transitively contains all other
units); unit is a function P → U such that (∀u ∈ U \{u0}) (∃p ∈ P) unit (p) = u
(intuitively, unit (p) = u expresses that unit u directly contains place p). The
height of a NUPN is the height of its unit tree, not counting the root unit if it
contains no place directly (i.e., for each p ∈ P , unit (p) ̸= u0). The width of a
NUPN is the number of leaf units in its unit tree.

The token game for NUPNs is exactly the same as for Petri nets, meaning
that the rules for firing transitions and the set of reachable markings are not
modified by the introduction of units.

A key property of NUPNs is the notion of unit safeness [13, Sect. 3], which
generalizes the one-safeness property of Petri nets. Formally, two units u1 and
u2 are disjoint iff (u1 ̸⊑ u2) ∧ (u2 ̸⊑ u1), meaning that both units are neither
equal nor contained one in the other. A NUPN is unit-safe iff each of its reachable
markings (including M0) only contains pairs of places located into disjoint units,
meaning that each unit, or two transitively nested units, may not contain two
tokens at the same time. This property enables logarithmic reductions in the
number of bits or Boolean variables needed to represent reachable markings [13,
Sect. 6].

In practice, the unit-related information, namely (U, u0,⊑, unit), is directly
obtained when the NUPN is produced from a higher-level model [13, Sect. 4].
For instance, if the NUPN is generated from a process-calculus language such as
LOTOS [21] or LNT [16], the unit tree can be deduced from the parallel com-
position operators present in the source specifications; if the NUPN is generated
from a network of automata, the unit tree represents the various automata that
execute concurrently; etc.

Fig. 2: Petri Net of Fig. 1 decomposed either into a trivial NUPN (left), a flat
NUPN (middle) or a hierarchical NUPN (right).

Any unit-safe NUPN can be converted to an ordinary, one-safe Petri net by
erasing unit-related information. Reciprocally, any ordinary, one-safe Petri net

4 N. Amat et al.

can be easily converted to a unit-safe NUPN by putting each of its places into a
separate unit and having a root unit u0 encapsulating all the other units; such
a NUPN (whose width is equal to its number of places) is called trivial (see
Fig. 2 (left)). Unfortunately, this easy transformation brings no gain for state-
space exploration. However, an ordinary, one-safe Petri net may have various
corresponding unit-safe NUPNs, which may be either flat if their height is one
(see Fig. 2 (middle)) or hierarchical if their height is greater than one (see Fig. 2
(right)). Converting an ordinary, one-safe Petri net into a non-trivial unit-safe
NUPN is an involved task (see [11] for insights on the decomposition into flat
NUPNs), but may bring significant benefits for further analyses conducted with
tools that take advantage of NUPN information.

1.3 Concurrent Places

We now introduce the notion of concurrent places, which is central to the present
article. Given a net (Petri net or NUPN), two places p and p′ are concurrent
iff there exists a reachable marking M such that both p and p′ have a token in
M . This relation is symmetric and quasi-reflexive; it is reflexive iff the net has
no dead place (i.e., no place that has no token in any reachable marking) [10,
Sect. 2.4].

This relation characterizes those parts of the net that can be simultane-
ously active. It is mentioned in many publications under various names, such
as: coexistency defined by markings [23, Sect. 9], concurrency graph [24] [35], or
concurrency relation [29] [33] [28] [27] [17], etc. These definitions slightly differ
by minor details, such as the kind of Petri nets considered, or the handling of
reflexivity, i.e., whether and when a place is concurrent or not with itself.

In general, this relation is relevant only for one-safe, ordinary Petri nets, since
the presence of multiple tokens in the same places often implies that most pairs
of places are concurrent [10, Sect. 2.4]. This retrospectively justifies our choice
to consider ordinary, one-safe nets, rather than full-fledged P/T nets.

Given a net, the problem of computing all its pairs of concurrent places is
PSPACE-complete [10, Sect. 2.5]. This problem is practically useful [14] for, at
least, two reasons:

– Most approaches for decomposing a net into a set of concurrent automata
or into a NUPN [11] require knowledge about concurrent places.

– The notion of concurrent places nicely generalizes the notion of dead places,
since a place is dead iff it is not concurrent with itself. Determining dead
places is a relevant problem, equivalent, for Petri nets, to dead-code re-
moval in software engineering. Indeed, many global properties of a net can
be changed to true or to false just by adding or removing dead places; also,
the memory cost of verification is likely to be increased by the presence of
dead places. For instance, the Grafcet specification [20] used in industrial
automation prohibits Sequential Function Charts containing “unreachable”
branches (i.e., Petri nets with dead places or dead transitions).

A Toolchain to Compute Concurrent Places of Petri Nets 5

1.4 Outline

This article presents a toolchain that efficiently computes the concurrent places
of a given net (Petri net or NUPN). Although such computation could be done
by reusing some existing Petri-net model checker, this approach would not be
efficient, as the number of temporal-logic formulas to be evaluated would be
quadratic in the number of places: a more “global” algorithm should be pre-
ferred. To this aim, our toolchain integrates various tools implementing a com-
bination of complementary analysis techniques, such as: state-space exploration
using Binary Decision Diagrams (BDDs), structural rules for concurrent places,
quadratic over- and under-approximation of reachable markings, and polyhedral
abstraction of the state space based on structural reductions and linear arith-
metic constraints on markings.

The remainder of the present article is organized as follows. Section 2 gives
an overview of our toolchain from the user’s point of view, by describing the
software components as well as the supported formats for input and output
data. Sections 3 and 4 present in detail the two main software components of the
toolchain, Cæsar.bdd and Kong, respectively. Section 5 provides experimental
results obtained by applying the toolchain to a large collection of 850 nets used in
the 2022 edition of the Model Checking Contest; the validation of the toolchain
outputs is also discussed. Finally, Section 6 gives concluding remarks.

2 Overview of the Toolchain

This section presents our toolchain for computing the concurrent places of a
given net. We adopt the point of view of an end user, by first introducing the
main software components of the toolchain (Sect. 2.1), and then defining the
format of its input data (Sect. 2.2) and output data (Sect. 2.3).

2.1 Software Components of the Toolchain

Our toolchain consists of five different tools:

1. Cæsar.bdd (developed in Grenoble, France) is one of the many components
of the Cadp toolbox [15] and can be obtained as part of this toolbox1.
Cæsar.bdd is written in C and its principles are detailed below in Sect. 3.
For our experiments, we used version 3.7 of Cæsar.bdd, available with
Cadp version 2022-j “Kista” of October 2022. Cæsar.bdd internally uses
the most recent version 3.1.0 of Fabio Somenzi’s Cudd library for BDDs.

2. ConcNupn (developed in Grenoble, France) is a 830-line Python 3.7 pro-
gram for checking one-safeness and unit-safeness, and cross-checking the re-
sults provided by Cæsar.bdd. The command-line options of ConcNupn
are compatible with those of Cæsar.bdd. Information about the use of
ConcNupn is given in Sect. 5.4.

1 https://cadp.inria.fr

https://cadp.inria.fr

6 N. Amat et al.

3. Kong (developed in Toulouse, France) is a verification tool for Petri nets.
Written in Python, it is available on GitHub2 under the GPLv3 license. The
principles and software architecture of Kong are presented in Sect. 4. For
our experiments, we used version 3.0 of this tool.

4. Pnml2Nupn (developed in Paris, France) is a translator that converts Petri
nets to NUPNs. This tool can be downloaded from the Web3. We used
version 4.0 of Pnml2Nupn (February 2022).

5. Reduce (developed in Toulouse, France) is a tool for computing polyhe-
dral reductions. This tool is invoked by Kong, and is also used by the
Tina.tedd [9] and Smpt [4] model-checkers, which participate in the Model
Checking Contest [7,25,26]. We use version 3.7 of Reduce (January 2022),
which has been recently added to the Tina model-checking toolbox4.

For the end user, Cæsar.bdd and Kong are the two main entry points of our
toolchain. Both tools can be invoked separately on a net to compute the pairs of
concurrent places. Yet, Kong uses Cæsar.bdd and Reduce as auxiliary tools,
meaning that, if Kong is used, it will automatically invoke Cæsar.bdd under
the hood, thus delivering results always equal or better than those provided by
Cæsar.bdd. The user can also invoke Cæsar.bdd directly but, in such case,
will not benefit from the enhancements brought by the reduction techniques
implemented in Kong.

2.2 Input Formats for Petri Nets

Our toolchain takes as input nets (Petri nets or NUPNs) that are expected to
be ordinary and one-safe (or even unit-safe, in the case of NUPNs). Concretely,
these models can be provided in two different formats:

– The PNML (Petri Net Markup Language) format [22], which is a standard,
XML-based representation adopted by most Petri-net tools; PNML can also
describe NUPNs, as it is equipped with a “tool-specific” extension5 for en-
coding all unit-related information present in NUPNs.

– The NUPN format6, which is a concise, human-readable representa-
tion of NUPNs; this format supports a “!unit_safe” pragma certify-
ing that the NUPN is unit-safe7, a “!multiple_arcs” pragma indicat-
ing that the NUPN was obtained from a non-ordinary P/T net, and a
“!multiple_initial_tokens” pragma indicating that the NUPN was ob-
tained from a non-safe P/T net, the initial marking of which contains places
with several tokens.

2 https://github.com/nicolasAmat/Kong
3 https://pnml.lip6.fr/pnml2nupn
4 https://projects.laas.fr/tina
5 https://mcc.lip6.fr/2022/nupn.php
6 https://cadp.inria.fr/man/nupn.html
7 When unit-safeness is known by construction, or if it has been proven later.

https://github.com/nicolasAmat/Kong
https://pnml.lip6.fr/pnml2nupn
https://projects.laas.fr/tina
https://mcc.lip6.fr/2022/nupn.php
https://cadp.inria.fr/man/nupn.html

A Toolchain to Compute Concurrent Places of Petri Nets 7

Depending on their format, the input files given to the toolchain should end with
a suffix “.pnml” or “.nupn”. It is worth noticing that Cæsar.bdd and Kong
are able to exploit the unit-related information present in their input files.

Conversion between both formats is easy: NUPN files can be translated to
PNML files by invoking Cæsar.bdd with its “-pnml” option, while PNML files
can be translated to NUPN files by invoking either Pnml2Nupn or the Ndrio
tool8 from the Tina toolbox.

The Kong tool supports both input formats, whereas Cæsar.bdd only ac-
cepts the NUPN format. PNML files given to Cæsar.bdd should therefore be
pre-processed by Pnml2Nupn. In practice, we observed that the depth-first-
search order in which Pnml2Nupn encodes the unit tree gives good results,
while attempts at using other orders statistically degrade the performance of
BDD calculations performed by Cæsar.bdd.

2.3 Output Format for Concurrent Places

Given a net with n places, our toolchain displays information about concurrent
places using a dedicated file format that was carefully designed:

– We opt for a unique format, excluding the coexistence of two distinct formats,
namely a compressed binary format to minimize disk space, and a textual
format intended for humans. Indeed, the problem addressed by our toolchain
does not justify the definition of two separate formats, the development of
conversion tools between these formats, and the tedious manipulations to
perform such conversions.

– The format should be concise and readable by humans; it is therefore a
textual format, not based on XML. Given that the concurrent-place relation
is symmetric, it can be represented as a lower triangular matrix (named
concurrency matrix) containing n(n+1)/2 characters. The (i, j)-th element
of this matrix is equal to “1” if the corresponding places are concurrent, or
to “0” if they are not. Each diagonal element of this matrix is “0” if the
corresponding place is dead, or “1” otherwise.
As a side note, Cæsar.bdd may use “synonymous” characters for “0”, in
order to explain why two places are not concurrent. For instance, if the net
is known to be unit-safe, any pair of places directly contained in the same
unit cannot be concurrent, which is noted “=” rather than “0”; similarly, any
pair of places contained in two nested units cannot be concurrent, which is
noted “<” or “>” — see here9 for details.

– Since the determination of concurrent places is PSPACE-complete, it may
fail on large nets, by lack of memory or upon timeout, leaving a concurrency
matrix that is not entirely computed. Instead of aborting the computation
with no output at all, it is practically better to deliver a result that is a
concurrency matrix with unknown values, which can later be replaced by

8 https://projects.laas.fr/tina/manuals/ndrio.html
9 https://cadp.inria.fr/man/caesar.bdd.html

https://projects.laas.fr/tina/manuals/ndrio.html
https://cadp.inria.fr/man/caesar.bdd.html

8 N. Amat et al.

either “0” or “1”, based upon pessimistic assumptions (see, e.g., [11]). Such a
matrix is called partial or incomplete and the file format uses the notation
“·” (a dot) for those elements corresponding to pairs of places where the
concurrency relation is undecided. A concurrency matrix is complete iff it
contains no “·” element.

– Being quadratic in the number of places, the size of the concurrency matrix
may get large. For instance, the nets used as benchmarks in Sect. 5 have an
average number of places equal to 2665, leading to 3.4-Mbyte matrices, and
the largest of these nets has 78,643 places, leading to a 2.9-Gbyte matrix.
To ensure that large matrices can be stored in computer files of manageable
sizes, our file format introduces a simple, yet effective run-length compression
[14] on the lines of the concurrency matrix. Measured on 12,600+ examples,
this compression reduces file sizes by a factor of 214 (mean value) up to 4270
(maximal value). The compression and decompression algorithms, together
with an example of compressed matrix, are given in Appendix A.

3 Presentation of Caesar.bdd

3.1 Overview of Caesar.bdd

Cæsar.bdd has been part of the Cadp toolbox since 2004. Originally, it was
introduced as an auxiliary tool for detecting dead transitions in the interpreted
Petri nets generated by the Lotos compiler [18] present in Cadp; to this aim,
symbolic methods (based on BDDs) were found to be more effective than explicit-
state methods, and thus implemented in Cæsar.bdd.

The tool was also capable of computing concurrent units in NUPNs (i.e.,
pairs of units that may simultaneously have a token in some reachable marking),
a notion that is required to perform data-flow analyses on interpreted Petri
nets [17].

As from 2013, Cæsar.bdd has progressively been extended with new func-
tionalities, such as the conversion of the NUPN file format to PNML (see
Sect. 2.2) and the computation of 20 structural and behavioural properties of
Petri nets (liveness, reversibility, etc.); the latter feature is routinely used by the
organization team of the Model Checking Contest to check the properties of the
models used during the competition.

The tool was further modified to enrich the NUPN file format with pragmas,
place labels, transition labels, unit labels, and more stringent syntax and static-
semantics constraints. Many new options were added to Cæsar.bdd to query
NUPN models: number of places, number of transitions, arc density, unit-tree
height, etc.

Cæsar.bdd was then extended with new algorithms for computing dead
places, dead transitions, and concurrent places [10], which are useful notions
when decomposing Petri nets into flat NUPNs (i.e., automata networks) [11] or
hierarchical NUPNs.

Recently, the tool was enriched with new options that help detecting isomor-
phic Petri nets and NUPNs, a major issue when building and managing large

A Toolchain to Compute Concurrent Places of Petri Nets 9

benchmarks with tens or hundreds of thousands of nets, which are generated
automatically and potentially contain many “duplicates”.

3.2 Command-Line Invocation of Caesar.bdd

Cæsar.bdd is a command-line tool with many (currently, 54) options10.
Computing the concurrent places is done by invoking Cæsar.bdd with its
“-concurrent-places” option. The name of the input NUPN file is given on
the command line and, if the file is correct, the concurrency matrix is displayed
on the standard output. Environment variables (in the POSIX style) can be set
to control the state-space exploration performed by Cæsar.bdd; they will be
presented in the next section.

3.3 Principles of Caesar.bdd

To compute the concurrent places, Cæsar.bdd uses dedicated data structures
(which also serve for its other options) and implements four methods, which are
detailed in [10, Sect. 5] and used in combination:

1. Marking graph exploration performs a forward traversal of the state space,
starting from the initial marking. The visited markings are stored sym-
bolically using BDDs, as implemented in the Cudd library. The user
can bound the exploration either by setting the environment variable
CAESAR_BDD_TIMEOUT to a maximal number of seconds, or by setting the en-
vironment variable CAESAR_BDD_ITERATIONS to a maximal depth. Once the
exploration terminates, the BDD containing all visited markings is queried
repeatedly to decide whether a given pair of places belongs or not to at least
one visited marking. If the exploration was fully done, the concurrency ma-
trix is complete; otherwise, only a subset of concurrent pairs of places can
be inferred from the visited markings.

2. Structural rules are a collection of 7 theorems that enable one to conclude
that certain pairs of places are concurrent (or not concurrent) by examining
only their local context. In particular, if the net is a unit-safe NUPN, this
information is exploited to conclude that two places belonging to the same
unit or to two nested units are not concurrent. Structural rules are applied
repeatedly until saturation.

3. Quadratic under-approximation explores an abstraction of the marking
graph by approximating a reachable marking M by the set of all pairs11
of places having a token in M . This is an under-approximation because the
algorithm may miss exploring certain pairs of places that are actually reach-
able and concurrent. The exploration progresses forwards, starting from the
initial marking (or, better, from all pairs of places already known to be
concurrent), and produces a subset of concurrent pairs of places.

10 https://cadp.inria.fr/man/caesar.bdd.html
11 In this method, singletons are also considered as pairs {p, p}.

https://cadp.inria.fr/man/caesar.bdd.html

10 N. Amat et al.

4. Quadratic over-approximation also does a forward exploration of the marking
graph, again abstracted away using a set of pairs of places, but performs
(improving the prior approach of [28]) an over-approximation instead of an
under-approximation. Indeed, the algorithm explores all markings that it
assumes to be potentially reachable because all the pairs of places in each
of these markings are potentially concurrent. If the exploration completes,
it produces a subset of non-concurrent pairs of places.

Cæsar.bdd applies these four complementary methods in sequence, in the spec-
ified order 1-2-3-4. The execution may terminate earlier, as soon as the concur-
rency matrix does not contain unknown values any more.

4 Presentation of Kong

4.1 Overview of Kong

Kong, the Koncurrent places Grinder, is an open-source12 formal verification
tool for Petri nets. It can take advantage of structural reductions to accelerate
the verification of reachability properties.

Kong is written in Python and requires version 3.5 or higher. Scripts and
models included in the GitHub repository are used for benchmarking and for
continuous testing. Kong is intended to be as understandable as possible; the
code is heavily documented, and we provide many tracing and debugging options
that can help a user understand its inner workings.

The main application [5,6] of Kong is to accelerate the computation of the
concurrency relation of a Petri net using polyhedral reductions, that is comput-
ing the concurrency relation on a reduced version of the input net, and then
tracing back the result to the original net (more details in Sect. 4.4). But Kong
is not only designed for this problem, as well as for one-safe and ordinary Petri
nets. It also provides procedures to check if a given marking is reachable, without
any constraints on the bound of places.

4.2 Command-Line Invocation of Kong

Kong offers a command-line interface with various subcommands to expose its
different features. The tool provides several options, which are described in the
documentation using “--help”.

The main subcommands of Kong are “conc” and “dead” for, respectively,
computing the concurrency relation and the list of dead places in a net.

Kong can be executed as a Python script or converted into a standalone
executable using cx_Freeze. Each subcommand only requires the path to the
input Petri net (with a .pnml or .nupn extension). Hence a typical call to Kong
is of the form “./kong.py conc model.pnml”. We also provide two main options
to limit the exploration performed by Cæsar.bdd: “--bdd-timeout” to set a
12 https://github.com/nicolasAmat/Kong

https://github.com/nicolasAmat/Kong

A Toolchain to Compute Concurrent Places of Petri Nets 11

time limit and “--bdd-iterations” to limit the number of iterations. Debugging
options are described in Sect. 4.6.

A call to “kong.py conc” delegates the computation of the concurrency
relation on the reduced net to the tool Cæsar.bdd. It can also take as
input a precomputed concurrency matrix of the reduced net, using option
“--reduced-matrix”. Likewise, the “dead” subcommand provides such option
if we have a precomputed list of dead places for the reduced net.

For the sake of readability, it is possible to disable the run-length encoding
of the concurrency matrix produced by Kong or to print the place ordering.

4.3 Auxiliary Tools Invoked by Kong

When computing a concurrency matrix, Kong relies on an external tool, such
as Cæsar.bdd, to compute the concurrency matrix of the reduced net.

In our approach, the computation of polyhedral reductions is delegated to
the tool Reduce. We can also reuse a precomputed reduced net with the option
“--reduced-net”.

4.4 Principles of Kong

In a nutshell, Kong can compute a reduced Petri net, (N ′,M ′), from an initial
one, (N,M), and prove properties about the initial net by exploring only the
state space of the reduced one. A difference with previous works on structural
reductions [8,30], is that our approach is not tailored to a particular class of
properties—such as safety or the absence of deadlocks—but could be applied to
more general problems.

The correctness of our tool relies on two main theoretical notions. First, a
new state space abstraction method, that we called polyhedral abstraction in [1,2],
which involves a combination of structural reductions and linear arithmetic con-
straints between the marking of places. Second, a new data structure, called To-
ken Flow Graph (TFG) in [5,6], that can be used to compute properties based
on a polyhedral abstraction. We give a short overview of these two notions in
this paper. Nonetheless, our main objective here is to describe the features im-
plemented in our tool.

The basic operation involved in our approach is to compute reductions of
the form (N,M) ▷E (N ′,M ′) where: N is an initial Petri net (that we want
to analyse); N ′ is a residual net (hopefully simpler than N); and E is a system
of linear equations. The goal is to preserve enough information in E so that we
can rebuild the reachable markings of N knowing only those of N ′. We say in
this case that N and N ′ are E-equivalent. While there are many examples of
the benefits of structural reductions when model-checking Petri nets, the use of
an equation system (E) for tracing back the effect of reductions is new.

A TFG is a Directed Acyclic Graph (DAG) that can be built from an E-
equivalence statement, (N,M) ▷E (N ′,M ′), capturing the specific structure of
the equations in E, that allows us to reason about the reachable markings by

12 N. Amat et al.

Net Reduction (N ′,m′) and E(N,m)

TFG Construction

E

JEK

Dimensionality
Reduction

JEK

C(N,m)C(N ′,m′)

Reduce

Kong

Fig. 3: Kong’s architecture.

playing a token game on this graph. Kong can build a TFG from sequences of
reductions computed using Reduce, and use it to symbolically explore the state
space of the initial net.

4.5 Software Architecture of Kong

Our tool is basically composed of three modules: kong.py the front-end program
in charge of parsing command-line options; pt.py a Petri net parser; and tfg.py
the data structure and computational module based on Token Flow Graphs. We
illustrate the architecture of Kong in Fig. 3, where we describe the different steps
involved during a typical computation. The first step is to reduce the input Petri
net, say (N,M), using the Reduce tool. Reduce outputs a reduced net (N ′,M ′)
and a system of linear equations E. We display in Fig. 4 a sequence of structural
reductions, with their equations, computed using Reduce. By construction, the
result of this first stage is guaranteed to be a polyhedral abstraction. Then we
build a Token Flow Graph, JEK, from the set of linear equations in E.

If the initial net has some non-trivial NUPN information, we are able to
project the decomposition on the reduced net. This can be done using the graph
structure of the TFG.

At this stage, we must distinguish two possible cases. First, the net could be
fully reduced, meaning the resulting net is “empty”; it has no remaining places.
In this case, the set of markings of (N,M) gives exactly the solutions of the
linear system E. Hence, the TFG is enough to compute the concurrency matrix
using an algorithm that we call dimensionality reduction. Otherwise, we have
a non-trivial reduced net, in which case we need to compute the concurrency
matrix of (N ′,M ′).

A Toolchain to Compute Concurrent Places of Petri Nets 13

4.6 Net Reduction on a Concrete Example

The simplest way to illustrate the usage of Kong is to look at a concrete exam-
ple. This is also a good opportunity to show the debugging options provided by
our tool. Assume (N,M) is the net in top left position in Fig 4.

Structural reduction is performed iteratively, until no new reductions are
possible. We display, Fig. 4, a sequence of three reductions that leads to the
result computed with Reduce; the marked net at the bottom-right. Each row
is an example of reduction, and its associated equation. First, it is always safe
to remove a redundant place, e.g., a place with the same pre and post conditions
than another one. This is the case with places p4, p5. Redundant places can
sometimes be found by looking at the structure of the net, but we can use
more elaborate methods to find redundant places by solving an integer linear
programming problem [34]. After the removal of p5, we obtain the equation
p4 = p5, and we are left with the residual net at the left part of row 2. In this
case, we can use an agglomeration rule, which states that we can fuse places
inside a “deterministic sequence” of transitions. For instance, places p1 and p2
can be fused into a new place, a1, and p3, p4 can be fused into a2. Similar
situations, where we can aggregate several places together, can be found by
searching patterns in the net. After this step, we conclude with a new opportunity
to reduce a redundant place, based on the structural invariant a1 = a2.

At the end of this process, we obtain the reduced net, (N ′,M ′), with only 3
places instead of 6. We also obtain a system of four linear equations E ≜ (p5 =
p4), (a1 = p1 + p2), (a2 = p3 + p4), (a1 = a2).

Kong provides an option, “--save-reduced-net”, to save the reduced net
into a specific file. Additionally, we can print the reduction equations with the
option “--show-equations”.

4.7 Token Flow Graph Construction

Kong can build the TFG associated with the linear system E; see Fig. 5. It is
possible to output a graphical version of the TFG using option “--draw-graph”,
which requires the graphviz Python library. The TFG is a DAG where the
vertices are the places of the input and reduced net, in addition to the free
variables from E. The set of roots (nodes with no predecessor) is exactly the set
of places of the reduced net N ′. Arcs in the TFG are used to depict the relation
induced by equations in E.

A TFG includes two different kinds of arcs. Arcs for redundancy equations,
q →• p, represent equations of the form p = q (or p = q + r + . . . in which case
we also have r→•p, . . .), corresponding to redundant places. In this case, we say
that place p is removed by arc q →• p, because the marking of q may influence
the marking of p, but not necessarily the other way round.

The second kind of arcs, a ◦→ p, is for agglomeration equations. It represents
equations of the form a = p+ q, generated when we agglomerate several places
into a new one. In this case, we expect that if we can reach a marking with k
tokens in a, then we can certainly reach a marking with k1 tokens in p and k2

14 N. Amat et al.

p0

p1 p2

p3

p4

p5

p6

▷p5=p4

p0

p1 p2

p3

p4

p6

p0

p1 p2

p3

p4

p6

▷a1=p2+p1
a2=p4+p3

p0

p6

a1

a2

p0

p6

a1

a2

▷a1=a2

p0

p6

a2

Fig. 4: Example of sequence of three reductions leading from the net N to N ′.

tokens in q when k = k1+k2. Hence, information flows in reverse order compared
to the case of redundancy equations. This is why, in this case, we say that places
p and q are removed. We also say that node a is inserted ; it does not appear in
N but may appear as a new place in N ′. We can have more than two places in
an agglomeration.

The idea is that each relation X→• v or v ◦→X corresponds to one equation
v =

∑
vi∈X vi in E, and that all the equations in E should be reflected in the

TFG. We also want to avoid situations where the same place is removed more
than once, or where some place occurs in the TFG but is never mentioned in
N , N ′ or E. All these constraints can be expressed using a suitable notion of
well-formed graph built from E in [5,6].

We can use the TFG to reason about the reachable markings of a net by
playing a “token game” on this DAG. Basically, we can put tokens on the roots
of the graph (given a marking of N ′) then propagate them downwards while
respecting the constraints dictated by the →• and ◦→ arcs. The result observed
on the ◦→-leaf nodes (the places of N) is guaranteed to be reachable in (N,M).

A Toolchain to Compute Concurrent Places of Petri Nets 15

generated equations
R |- p5 = p4
A |- a1 = p2 + p1
A |- a2 = p4 + p3
R |- a1 = a2

p0 p6a2

a1

p3

p4

p1 p2 p5

Fig. 5: Equations generated from net N , in Fig.4, and associated TFG JEK.

4.8 Dimensionality Reduction Algorithm

The final stage is to compute the concurrency matrix of the input net, C(N,M),
from the one of the reduced net, C(N ′,M ′). Currently, Kong uses Cæsar.bdd
to compute C(N ′,M ′). But we could adapt Kong to use any other tool that
can compute the concurrency relation, such as [36]. It is possible to output this
matrix with option “--show-reduced-matrix”.

We can give an intuition for our Dimensionality Reduction algorithm using
our example. For instance, we have that place a2, in the reduced net N ′ of Fig. 4,
is non-dead (because we can fire both input transitions). As a consequence, all
the successors nodes of a2 in the TFG (that are also places in N) must also be
non-dead, meaning C[pi, pi] = 1 for all i in 1..5. Also, we can deduce that p4 is
concurrent to p5 (meaning C[p4, p5] = 1), because of the redundancy p5 = p4,
and p1, p2 are concurrent to p3, p4, p5. A detailed description of our algorithm
can be found in [5,6].

5 Experiments with the Toolchain

We now report about the assessment of our integrated toolchain to large bench-
marks of significant complexity. We first describe our benchmarks, and how
they were produced (Sect. 5.1), then present the results of experiments on these
benchmarks (Sects. 5.2 and 5.3), and finally discuss the validation of these results
(Sect. 5.4).

5.1 Benchmarks for Experiments

We have chosen to base our assessment on the collection of Petri nets provided
by the Model Checking Contest (MCC) [7,26], a yearly international competition
devoted to the evaluation of formal verification tools. This collection grows every
year and has been constructed by gathering complex models provided by the
Petri-net community. Given that the challenge of computing concurrent places
is not covered by the MCC, we are confident that this collection provides an
unbiased ground for our experiments.

16 N. Amat et al.

The 2022 edition of the MCC13 provides 128 (potentially parameterized)
models, which amount to a total of 1628 individual nets. After excluding colored
nets, this total drops down to 1387 nets, available in both PNML and NUPN for-
mats. We opted for the NUPN format, taking as is any model natively provided
in this format, while converting all other models from PNML to NUPN using
the Pnml2Nupn translator. Since our experiments require unit-safe NUPNs
(keeping in mind that one-safe, ordinary nets are trivial, unit-safe NUPNs), we
proceeded in two (independent) steps:

– Among these 1387 nets, we kept those that were ordinary and whose initial
marking was one-safe; this was done by discarding all NUPN files containing
“!multiple_arcs” or “!multiple_initial_tokens” pragmas. This resulted
in 777 nets, from which we selected those that were provably unit-safe, either
because they contained a “!unit_safe” pragma, or by invoking Cæsar.bdd
or ConcNupn to check unit-safeness14. This led to 705 nets, from which we
further excluded 3 nets that were found to be (potentially) isomorphic to
3 other nets according to structural signatures computed using Cæsar.bdd
with its “-signature” option. We therefore obtained 702 unit-safe, non-
isomorphic NUPNs.

– Among these 1387 nets, we also considered the 610 ones contain-
ing “!multiple_arcs” and/or “!multiple_initial_tokens” pragmas. By
deleting these pragmas, we obtained “new” nets, in which each arc has mul-
tiplicity one and each place contains at most one token initially. Again, we
retained only those nets that were provably unit-safe, using Cæsar.bdd
and/or ConcNupn, followed by a manual verification of the safeness indi-
cations given by the authors of these models. This resulted in 439 nets, from
which we eliminated all (potentially) isomorphic nets, still using structural
signatures; doing so, many nets were rejected, because a fraction of MCC
nets are just derived from each other by changing the number of tokens in
the initial marking. This left us with 148 unit-safe, non-isomorphic NUPNs.

By gathering both sets of 702 and 148 nets, we obtained a collection of 850 nets.
We made sure that all of them have distinct structural signatures, so that the
collection contains no isomorphic duplicates. Notice that this collection is twice
as large as that used in our earlier work [3], which used 424 nets taken from the
2021 edition of the MCC. Table 1 summarizes statistical properties about our
collection, highlighting its diversity of models.

To assess the performance of our toolchain on “traditional” Petri nets (as
in our earlier work [3]), we built a second collection of 850 nets obtained by
removing all unit-related information from the NUPNs of the collection described
in Table 1. Notice that 18.6% of the first collection (i.e., 158 trivial NUPNs) are
also present in the second collection, and that the second collection contains a

13 https://mcc.lip6.fr/2022/models.php
14 This succeeded for all the nets considered here, although, in general, unit-safeness

may be difficult to determine for large nets.

https://mcc.lip6.fr/2022/models.php

A Toolchain to Compute Concurrent Places of Petri Nets 17

property yes no
pure 57.3% 42.7%
free-choice 2.4% 97.6%
extended free-choice 2.4% 97.6%
marked graph 0.0% 100.0%
state machine 0.7% 99.3%

property yes no
connected 94.5% 5.5%
strongly connected 20.2% 79.8%
conservative 9.3% 90.7%
sub-conservative 16.6% 83.4%
trivial 18.6% 81.4%

feature min value max value average median std deviation
#places 4 78 643 2 665.2 403 7 712
#transitions 1 1 070 836 10 479.5 677 48 460
#arcs 4 25 615 632 106 034 2 760 1 023 467
arc density 0 50 1.7 0.5 3.6
#units 4 78 644 1 317 67 5 800
height 1 2 891 24.4 2 164.6
width 3 78 643 1 273.7 56 5 799

Table 1: Structural, behavioural, and numerical properties of the 850 NUPNs.

pair of isomorphic duplicates, originating from two NUPNs that only differ by
their unit trees.

5.2 Experiments on Nested-Unit Petri Nets

We assessed the performance of our toolchain by separately running Cæsar.bdd
and Kong (which itself invokes Reduce to compute net reductions, and
Cæsar.bdd to compute the concurrency matrices of reduced nets) on each of
the 850 NUPNs of our first collection. Each run was made using two different
wallclock timeout values: 10 minutes (corresponding to the patience of a human
user waiting for the result computed by a tool) and one hour (corresponding
to the duration granted by the MCC to each of its examinations). In order to
vary the computation time allocated to the marking-graph-exploration phase
of Cæsar.bdd, we set the environment variable CAESAR_BDD_TIMEOUT to three
possible values: 25%, 50%, and 75% of the wallclock timeout. To perform our
experiments, we used the machine clusters (Intel x64 processors) of the French
Grid’5000 testbed15; further details about the experimental setting are given in
Sect. 5.4.

Table 2 summarizes the outcome of these experiments, focussing on three
types of results: (i) the percentage of complete matrices generated by a tool
during a specified timeout; (ii) the average percentage of known values (i.e., “0”
or “1”) in all the matrices generated from the 850 NUPNs; and (iii) the average
computation time taken by the tool to generate these matrices.

Finally, we present supplementary data to address potential biases that could
affect the average computation time in our performance evaluation due to the
15 https://www.grid5000.fr

https://www.grid5000.fr

18 N. Amat et al.

observed results tool timeout
10min 1 hour

complete matrices Cæsar.bdd 62.7% 66.6%
Kong 64.5% 67.6%

average matrix completion Cæsar.bdd 72.1% 76.2%
Kong 74.4% 77.4%

average computation time Cæsar.bdd 3min 36 sec 17min 44 sec
Kong 3min 14 sec 16min 40 sec

average computation time, considering only Cæsar.bdd 46 sec 3min 26 sec
those matrices fully computed by both tools Kong 33 sec 2min 26 sec

Table 2: Performance results of the toolchain on the first collection.

significant difference between general computation time and the timeout value.
We calculate the average time based solely on matrices that are successfully
computed by both tools (525 and 527 respectively, with timeouts of 10 min and
1 hour). By excluding partial matrices, we ensure a more accurate representation
of the acceleration achieved when Kongis used in conjunction with Cæsar.bdd.

In this table, CAESAR_BDD_TIMEOUT is set to 50% of the wallclock timeout
(i.e., 5 and 30 minutes); our experiments show that, when CAESAR_BDD_TIMEOUT
increases, the number of complete matrices slightly increases (by 1.7% maximum)
but matrix completion decreases (by -4.8% maximum), as BDD calculations take
most of the time, preventing later approaches (structural rules, quadratic under-
and over-approximations) from being applied.

The key finding of Table 2 is that our toolchain can entirely solve 64.5% of
our first collection in less than ten minutes.

0 100 200 300 400 500 600
Running time (seconds)

Timeout: 10 minutes

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f c
om

pl
et

e
m

at
ric

es

Kong
Caesar.bdd

0 600 1200 1800 2400 3000 3600
Running time (seconds)

Timeout: 1 hour

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f c
om

pl
et

e
m

at
ric

es

Kong
Caesar.bdd

Fig. 6: Percentage of complete matrices on the first collection.

A Toolchain to Compute Concurrent Places of Petri Nets 19

0 100 200 300 400 500 600
Running time (seconds)

Timeout: 10 minutes

0%

20%

40%

60%

80%

100%

Av
er

ag
e

co
m

pl
et

io
n

ra
te

Kong
Caesar.bdd

0 600 1200 1800 2400 3000 3600
Running time (seconds)

Timeout: 1 hour

0%

20%

40%

60%

80%

100%

Av
er

ag
e

co
m

pl
et

io
n

ra
te

Kong
Caesar.bdd

Fig. 7: Average matrix completion on the first collection.

Figures 6 and 7 provide additional information about the speed of the tools
by showing the growth, as time elapses, of the number of complete matrices gen-
erated and the matrix completion rate. The red dotted vertical line corresponds
to the 50% value given to CAESAR_BDD_TIMEOUT (5 and 30 minutes, respectively).
These figures show very fast progress during the first minutes, which progres-
sively slows down, followed by a rebound upon expiration of the BDD timeout,
as other techniques (structural rules, under- and over-approximations) are exe-
cuted and show their effectiveness. Despite the impression given by these figures,
there is no horizontal asymptote, as infinite CPU time should allow the results
to reach 100%.

5.3 Experimental Results on Petri Nets

We did the same experiments as in Sect. 5.2 on our second collection, which con-
tains Petri nets without unit-related information. Table 3 presents the results of
these experiments. Compared to Table 2, all percentages are significantly lower,
since the symbolic exploration of reachable markings becomes more demanding
once unit-related information has been dropped, thereby increasing the number
of BDD variables: this confirms the practical importance of the NUPN concept.
In Table 3, the value of CAESAR_BDD_TIMEOUT is set to 50%; our experiments
show that, when CAESAR_BDD_TIMEOUT increases, the number of complete ma-
trices slightly increases (by 3.8% maximum) but matrix completion decreases
(by -6.3% maximum); these observations are in line with those of Sect. 5.2, the
influence of CAESAR_BDD_TIMEOUT being somewhat greater when unit-related in-
formation is not present.

Figures 8 and 9 show the effectiveness of our toolchain as time elapses. To-
gether with Table 3, these figures illustrate the added value of the structural

20 N. Amat et al.

observed results tool timeout
10min 1 hour

complete matrices Cæsar.bdd 52.5% 59.9%
Kong 59.6% 63.4%

average matrix completion Cæsar.bdd 62.1% 68.1%
Kong 69.8% 73.7%

average computation time Cæsar.bdd 4min 30 sec 23min 28 sec
Kong 3min 39 sec 19min 16 sec

average computation time, considering only Cæsar.bdd 50 sec 5min 18 sec
those matrices fully computed by both tools Kong 29 sec 2min 34 sec

Table 3: Performance results of the toolchain on the second collection.

0 100 200 300 400 500 600
Running time (seconds)

Timeout: 10 minutes

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f c
om

pl
et

e
m

at
ric

es

Kong
Caesar.bdd

0 600 1200 1800 2400 3000 3600
Running time (seconds)

Timeout: 1 hour

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f c
om

pl
et

e
m

at
ric

es

Kong
Caesar.bdd

Fig. 8: Percentage of complete matrices on the second collection.

A Toolchain to Compute Concurrent Places of Petri Nets 21

0 100 200 300 400 500 600
Running time (seconds)

Timeout: 10 minutes

0%

20%

40%

60%

80%

100%

Av
er

ag
e

co
m

pl
et

io
n

ra
te

Kong
Caesar.bdd

0 600 1200 1800 2400 3000 3600
Running time (seconds)

Timeout: 1 hour

0%

20%

40%

60%

80%

100%

Av
er

ag
e

co
m

pl
et

io
n

ra
te

Kong
Caesar.bdd

Fig. 9: Average matrix completion on the second collection.

reductions performed by Kong, especially when state-space exploration is time-
intensive.

5.4 Validation of Results

Beforehand, the algorithms of Cæsar.bdd for computing concurrent places had
been intensively validated on a test suite of 13,116 nets [10, Sect. 5.6]. When
bringing together the software components of our toolchain, we also did a pre-
liminary validation of Kong on roughly 7 200 “small” nets (having less than
20 places each), and brought enhancements to ensure plain interoperability be-
tween the components of the toolchain.

For the validation of results, we also used ConcNupn, which implements the
quadratic under- and over-approximations of Sect. 3.3. This tool can be invoked
exactly in the same way as Cæsar.bdd, but ignores the CAESAR_BDD_TIMEOUT
and CAESAR_BDD_ITERATIONS environment variables, as it does not perform any
BDD-based marking graph exploration.

On each x64 machine of the Grid’5000 testbed, we decided to run only two
experiments in parallel, in order to benefit from the highest clock frequency of
the processor, and to avoid dividing the 96-Gbyte RAM between too many tasks.
The exit status and the standard error stream of each tool invoked to compute
concurrency matrices was systematically recorded and analysed. This enabled us
to proactively detect crashes, unexpected interrupts, and other run-time errors
(e.g., memory shortage arising from two memory-intensive benchmarks concur-
rently running on the same machine). When there was a doubt about an execu-
tion, it was systematically restarted as a single task on a machine. All experi-
ments were repeated to ensure that their results, including execution times and
matrix completion rates, were consistent across executions.

22 N. Amat et al.

We checked that each concurrency matrix generated by our experiments was
syntactically correct, i.e., that the matrix after decompression was indeed trian-
gular, only contained valid characters, and was not truncated (having as many
rows as places of the corresponding net).

We developed a script that checks whether two matrices generated from the
same net are compatible, which is defined as follows: for each “0” element in
one matrix, the corresponding element in the other matrix should be “0” or “·”,
and for each “1” element in one matrix, the corresponding element in the other
matrix should be “1” or “·”. In particular, two complete matrices are compatible
iff they are identical.

For each of the 850 benchmarks of Sect. 5.1, we generated many matrices
by invoking our tools with various options: (i) Cæsar.bdd was invoked with
several BDD-timeout values, including 0, which means that the marking graph
exploration (see Sect. 3.3) is turned off, and +∞ (actually, the value of the global
timeout), which means that structural rules and the quadratic under- and over-
approximations are never invoked; (ii) Kong was invoked with three different
back-ends: Cæsar.bdd (invoked with several timeout values), ConcNupn, and
a “dummy” tool that always gives Kong a reduced matrix containing only un-
known values; (iii) ConcNupn was invoked too. For each non-trivial NUPN, we
also generated these matrices for the Petri net obtained by removing all unit-
related information from the NUPN. In total, this gave 17 matrices for each
trivial NUPN and 34 matrices for each non-trivial NUPN; we cross-checked all
these matrices two by two to make sure that they are compatible, and did not
find any problem.

6 Conclusion

The concurrent-place problem is an old issue, which can be traced back at least to
the 80s [23, Sect. 9]. It is of practical importance, as it subsumes the dead-place
problem and seems unavoidable for decomposing a net into a flat or hierarchical
NUPN. The formulation of this problem is extremely simple, but its complexity
(PSPACE-complete) makes it difficult, especially on large nets, for which the
solution may require too much memory or time, unless one is ready to accept
partial solutions only (namely, incomplete concurrency matrices).

The present article proposes a toolchain that addresses this fascinating prob-
lem. The toolchain combines different tools that implement a wealth of com-
plementary techniques: state-space exploration using BDDs, structural rules for
concurrent places, quadratic over- and under-approximation of reachable mark-
ings, and polyhedral abstraction of the state space based on structural reductions
and linear arithmetic constraints on markings.

When applied to a collection of 850 nets from the Model Checking Contest,
our toolchain was able to determine all concurrent places for roughly 55% of the
nets in less than one minute, and 65% in less than ten minutes. Building this
toolchain enabled us to improve the individual tools, e.g., by making sure that

A Toolchain to Compute Concurrent Places of Petri Nets 23

Kong introduces no performance overhead when directly invoking Cæsar.bdd
on input nets that cannot be reduced.

Concerning future work, the clearest objective would be to improve the
toolchain and its components to better address the challenging nets of our bench-
mark. For instance:

– Cæsar.bdd could be enhanced with heuristics to keep the dynamic reorder-
ing of BDDs under control (avoiding situations where, on large nets, most
of the CPU time is spent in reordering) and by implementing more compact
BDD encodings for the markings of unit-safe, hierarchical NUPNs (so as to
reduce the number of BDD variables).

– Kong is also destined to evolve. We plan to explore new reduction rules,
and we are particularly interested in reachability queries expressed using a
Boolean combination of constraints over place markings. Another interest-
ing problem would be the verification of generalized mutual exclusion con-
straints, as in [19], that amount to invariants

∑
p∈P wp.m(p) ⩽ k involving

weighted sums over the marking of places, with w1, . . . , wn, and k constants
in Z.

Finally, we believe that the concurrent-place problem should become part of the
Model Checking Contest, so as to foster the development of new algorithms and
tools for this problem. Such an evolution could take place after a few prelimi-
nary changes, such as replacing Boolean queries (e.g., does the net contain dead
places?) by more precise ones (e.g., what are the dead places of the net?).

Acknowledgements

Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
Cnrs, Renater, and several Universities as well as other organizations. We are
grateful to Lom Messan Hillah for his Pnml2Nupn translator, to Fabio Somenzi
for providing us with the latest version 3.1.0 of Cudd, to Bernard Berthomieu
for providing the tool Reduce, and to Silvano Dal Zilio and Didier Le Botlan
for their contributions to Kong.

A Run-Length-Encoding Compression

As mentioned in Sect. 2.3, each line of the concurrency matrix is compressed
using a simple run-length-encoding scheme: any sequence of n > 3 consec-
utive identical characters is replaced by a single character followed by the
value of n enclosed between parentheses. For instance, the following sequence
of 18 characters: “10000..........001” is replaced by a sequence of 13 charac-
ters: “10(4).(10)001”. Table 4 illustrates the compression of an entire matrix,
and Table 5 gives an implementation in C of the compression and decompression
algorithms (which we also implemented in Awk, Python, and Bourne shell).

24 N. Amat et al.

This scheme enjoys three nice properties: (i) the size (in characters) of the
compressed output is always less or equal to the size of the input; in practice,
we observed a reduction factor of 214 (mean value) up to 4270 (maximal value)
measured on 12,671 NUPNs; (ii) compressing an already compressed input has
no effect; (iii) compression and decompression can operate on the fly (e.g., using
coroutines, pipes, or data streams), meaning that it is not mandatory to generate
a matrix entirely before starting to compress it, and that one can compare two
(or more) compressed matrices without having to decompress them entirely in
advance.

1
01
001
0001
0000.
00000.
0000001
0.0000..
010000.01
010000.001
010000.0001
0010.0000001
00010.0000001
010000.0000001
01..000......11
0.00000.0000000.
0000..........001

1
01
001
0001
0(4).
0(5).
0(6)1
0.0(4)..
010(4).01
010(4).001
010(4).0001
0010.0(6)1
00010.0(6)1
010(4).0(6)1
01..000.(6)11
0.0(5).0(7).
0(4).(10)001

Table 4: Sample uncompressed matrix (left) and its compressed version (right).

A Toolchain to Compute Concurrent Places of Petri Nets 25

#include <assert.h>
#include <stdbool.h>
#include <stdio.h>

int uncompress () {
char c, previous = ’\0’;
int repeat = 0;
while (true) {

if (repeat > 0) {
assert (previous != ’\0’);
assert (previous != ’\n’);
putchar (previous);
−− repeat;

} else {
c = getchar ();
if (c == EOF)

return 0;
if (c != ’(’) {

putchar (c);
previous = c;

} else {
scanf ("%d)", &repeat);
assert (repeat > 3);
−− repeat;

}
}

}
}

int compress () {
char c, previous = ’\0’;
int n, repeat = 0;
while (true) {

c = getchar ();
if (c == previous) {

assert (c != ’\0’);
assert (c != EOF);
assert (c != ’\n’);
++ repeat;

} else {
// flush repetition buffer, if any
if (repeat > 3) {

printf ("(%d)", repeat);
} else if (repeat > 0) {

for (n = 1; n < repeat; ++ n)
putchar (previous);

}
if (c == EOF)

return 0;
putchar (c);
if (c == ’0’) {

previous = ’\0’;
repeat = 0;

} else {
previous = c;
repeat = 1;

}
}

}
}

Table 5: Decompression (left) and compression (right) algorithms.

26 N. Amat et al.

References

1. Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral ab-
straction and SMT-based model checking for Petri nets. In: International Con-
ference on Application and Theory of Petri Nets and Concurrency (Petri Nets).
Lecture Notes in Computer Science, vol. 12734, pp. 164–185. Springer (2021).
https://doi.org/10.1007/978-3-030-76983-3_9

2. Amat, N., Berthomieu, B., Dal Zilio, S.: A Polyhedral Abstraction for Petri
Nets and its Application to SMT-Based Model Checking. Fundamenta Informati-
cae 187(2–4), 103–138 (2022). https://doi.org/10.3233/FI-222134, publisher: IOS
Press

3. Amat, N., Chauvet, L.: Kong: A tool to squash concurrent places. In: Bernar-
dinello, L., Petrucci, L. (eds.) Proceedings of the 43rd International Conference
on Application and Theory of Petri Nets and Concurrency (PETRI NETS’22).
Lecture Notes in Computer Science, vol. 13288, pp. 115–126. Springer (2022).
https://doi.org/10.1007/978-3-031-06653-5_6

4. Amat, N., Dal Zilio, S.: SMPT: A Testbed for Reachabilty Methods in General-
ized Petri Nets. In: Chechik, M., Katoen, J., Leucker, M. (eds.) Formal Methods
(FM’23). Lecture Notes in Computer Science, vol. 14000, pp. 445–453. Springer
(2023). https://doi.org/10.1007/978-3-031-27481-7_25

5. Amat, N., Dal Zilio, S., Le Botlan, D.: Accelerating the Computation of Dead
and Concurrent Places using Reductions. In: Laarman, A., Sokolova, A. (eds.)
Proceedings of the 27th International SPIN Symposium on Model Checking of
Software. Lecture Notes in Computer Science, vol. 12864, pp. 45–62. Springer,
Aarhus, Denmark (2021). https://doi.org/10.1007/978-3-030-84629-9_3

6. Amat, N., Dal Zilio, S., Le Botlan, D.: Leveraging polyhedral reductions for solv-
ing Petri net reachability problems. International Journal on Software Tools for
Technology Transfer (Dec 2022). https://doi.org/10.1007/s10009-022-00694-8

7. Amparore, E.G., Berthomieu, B., Ciardo, G., Dal-Zilio, S., Gallà, F., Hillah, L.,
Hulin-Hubard, F., Jensen, P.G., Jezequel, L., Kordon, F., Botlan, D.L., Liebke,
T., Meijer, J., Miner, A.S., Paviot-Adet, E., Srba, J., Thierry-Mieg, Y., van Dijk,
T., Wolf, K.: Presentation of the 9th Edition of the Model Checking Contest.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Proceedings (Part III)
of 25th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’19, TOOLympics), Prague, Czech Republic.
Lecture Notes in Computer Science, vol. 11429, pp. 50–68. Springer (Apr 2019).
https://doi.org/10.1007/978-3-030-17502-3_4

8. Berthelot, G.: Transformations and Decompositions of Nets. In: Brauer, W.,
Reisig, W., Rozenberg, G. (eds.) Petri Nets: Central Models and their Properties
(ACPN’86). Lecture Notes in Computer Science, vol. 254, pp. 359–376. Springer
(1987). https://doi.org/10.1007/978-3-540-47919-2_13

9. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA - Construction of ab-
stract state spaces for petri nets and time petri nets. International Journal of Pro-
duction Research 42(14) (2004). https://doi.org/10.1080/00207540412331312688

10. Bouvier, P., Garavel, H.: Efficient Algorithms for Three Reachability Problems
in Safe Petri Nets. In: Buchs, D., Carmona, J. (eds.) Proceedings of the 42nd
International Conference on Application and Theory of Petri Nets and Concurrency
(PETRI NETS’21), Paris, France. Lecture Notes in Computer Science, vol. 12734,
pp. 339–359. Springer (Jun 2021). https://doi.org/10.1007/978-3-030-76983-3_17

https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.3233/FI-222134
https://doi.org/10.1007/978-3-031-06653-5_6
https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/s10009-022-00694-8
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1007/978-3-030-76983-3_17

A Toolchain to Compute Concurrent Places of Petri Nets 27

11. Bouvier, P., Garavel, H., Ponce de León, H.: Automatic Decomposition of Petri
Nets into Automata Networks – A Synthetic Account. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) Proceedings of the 41st International Conference on Application
and Theory of Petri Nets and Concurrency (PETRI NETS’20), Paris, France.
Lecture Notes in Computer Science, vol. 12152, pp. 3–23. Springer (Jun 2020).
https://doi.org/10.1007/978-3-030-51831-8_1

12. Garavel, H.: Nested-Unit Petri Nets: A Structural Means to Increase Efficiency
and Scalability of Verification on Elementary Nets. In: Devillers, R.R., Valmari, A.
(eds.) Proceedings of the 36th International Conference on Application and The-
ory of Petri Nets and Concurrency (PETRI NETS’15), Brussels, Belgium. Lec-
ture Notes in Computer Science, vol. 9115, pp. 179–199. Springer (Jun 2015).
https://doi.org/10.1007/978-3-319-19488-2_9

13. Garavel, H.: Nested-Unit Petri Nets. Journal of Logical and Algebraic Methods in
Programming 104, 60–85 (Apr 2019). https://doi.org/10.1016/j.jlamp.2018.11.005

14. Garavel, H.: Proposal for Adding Useful Features to Petri-Net Model Checkers.
Tech. Rep. abs/2101.05024, arXiv Computing Research Repository (Dec 2020),
https://arxiv.org/abs/2101.05024

15. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. Springer International Journal
on Software Tools for Technology Transfer (STTT) 15(2), 89–107 (Apr 2013).
https://doi.org/10.1007/s10009-012-0244-z

16. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd – Essays Dedicated
to Ed Brinksma on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 10500, pp. 3–26. Springer (Oct 2017). https://doi.org/10.1007/978-3-
319-68270-9_1

17. Garavel, H., Serwe, W.: State Space Reduction for Process Algebra Specifications.
Theoretical Computer Science 351(2), 131–145 (Feb 2006)

18. Garavel, H., Sifakis, J.: Compilation and Verification of LOTOS Specifications. In:
Logrippo, L., Probert, R.L., Ural, H. (eds.) Proceedings of the 10th IFIP Interna-
tional Symposium on Protocol Specification, Testing and Verification (PSTV’90),
Ottawa, Canada. pp. 379–394. North-Holland (Jun 1990)

19. Giua, A., DiCesare, F., Silva, M.: Generalized mutual exclusion constraints on nets
with uncontrollable transitions. In: IEEE International Conference on Systems,
Man, and Cybernetics. IEEE (1992). https://doi.org/10.1109/ICSMC.1992.271666

20. IEC: GRAFCET specification language for sequential function charts. Interna-
tional Standard 60848:2013, International Electrotechnical Commission, Geneva
(Feb 2013)

21. ISO/IEC: LOTOS – A Formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. International Standard 8807, International Or-
ganization for Standardization – Information Processing Systems – Open Systems
Interconnection, Geneva (Sep 1989), https://www.iso.org/standard/16258.html

22. ISO/IEC: High-level Petri Nets – Part 2: Transfer Format. International Stan-
dard 15909-2:2011, International Organization for Standardization – Information
Technology – Systems and Software Engineering, Geneva (2011)

23. Janicki, R.: Nets, Sequential Components and Concurrency Relations. The-
oretical Computer Science 29, 87–121 (1984). https://doi.org/10.1016/0304-
3975(84)90014-8

24. Karatkevich, A.: Conditions of SM-Coverability of Petri Nets (Sep 2012),
https://www.researchgate.net/publication/267508814_Conditions_of_
SM-Coverability_of_Petri_Nets

https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1016/j.jlamp.2018.11.005
https://arxiv.org/abs/2101.05024
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1109/ICSMC.1992.271666
https://www.iso.org/standard/16258.html
https://doi.org/10.1016/0304-3975(84)90014-8
https://doi.org/10.1016/0304-3975(84)90014-8
https://www.researchgate.net/publication/267508814_Conditions_of_SM-Coverability_of_Petri_Nets
https://www.researchgate.net/publication/267508814_Conditions_of_SM-Coverability_of_Petri_Nets

28 N. Amat et al.

25. Kordon, F., Bouvier, P., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Amat, N.,
Amparore, E., Berthomieu, B., Biswal, S., Donatelli, D., Galla, F., , Dal Zilio, S.,
Jensen, P., Jezequel, L., He, C., Le Botlan, D., Li, S., Paviot-Adet, E., Srba, J.,
Thierry-Mieg, Y., Walner, A., Wolf, K.: Complete Results for the 2021 Edition of
the Model Checking Contest. http://mcc.lip6.fr/2021/results.php (Jun 2021)

26. Kordon, F., Bouvier, P., Garavel, H., Hulin-Hubard, F., Amat., N., Amparore, E.,
Berthomieu, B., Donatelli, D., Dal Zilio, S., Jensen, P., Jezequel, L., He, C., Li, S.,
Paviot-Adet, E., Srba, J., Thierry-Mieg, Y.: Complete Results for the 2022 Edition
of the Model Checking Contest. http://mcc.lip6.fr/2022/results.php (Jun 2022)

27. Kovalyov, A.: A Polynomial Algorithm to Compute the Concurrency Relation of
a Regular STG. In: Yakovlev, A., Gomes, L., Lavagno, L. (eds.) Hardware Design
and Petri Nets, chap. 6, pp. 107–126. Springer, Boston, MA, USA (Jan 2000).
https://doi.org/10.1007/978-1-4757-3143-9_6

28. Kovalyov, A., Esparza, J.: A Polynomial Algorithm to Compute the Concurrency
Relation of Free-choice Signal Transition Graphs. In: Proceedings of the 3rd Work-
shop on Discrete Event Systems (WODES’96), Edinburgh, Scotland, UK. pp. 1–6.
IEEE (Jun 1996)

29. Kovalyov, A.V.: Concurrency Relations and the Safety Problem for Petri Nets. In:
Jensen, K. (ed.) Proceedings of the 13th International Conference on Application
and Theory of Petri Nets (ICATPN’92), Sheffield, UK. Lecture Notes in Computer
Science, vol. 616, pp. 299–309. Springer (Jun 1992). https://doi.org/10.1007/3-540-
55676-1_17

30. Murata, T., Koh, J.: Reduction and expansion of live and safe marked
graphs. IEEE Transactions on Circuits and Systems 27(1) (1980).
https://doi.org/10.1109/TCS.1980.1084711

31. Murata, T.: Petri Nets: Analysis and Applications. Proceedings of the IEEE 77(4),
541–580 (1989)

32. Peterson, J.L.: Petri Nets. ACM Computing Surveys 9(3), 223–252 (1977)
33. Semenov, A., Yakovlev, A.: Combining Partial Orders and Symbolic Traversal for

Efficient Verification of Asynchronous Circuits. In: Ohtsuki, T., Johnson, S. (eds.)
Proceedings of the 12th International Conference on Computer Hardware Descrip-
tion Languages and their Applications (CHDL’95), Makuhari, Chiba, Japan. IEEE
(Aug–Sep 1995). https://doi.org/10.1109/ASPDAC.1995.486371

34. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) Advanced Course on Petri Nets (ACPN’96). Lecture Notes in Computer
Science, vol. 1491, pp. 309–373. Springer (1996). https://doi.org/10.1007/3-540-
65306-6_19

35. Wiśniewski, R., Karatkevich, A., Adamski, M., Kur, D.: Application of Compara-
bility Graphs in Decomposition of Petri Nets. In: Proceedings of the 7th Interna-
tional Conference on Human System Interactions (HSI’14), Costa da Caparica, Por-
tugal. pp. 216–220. IEEE (Jun 2014). https://doi.org/10.1109/HSI.2014.6860478

36. Wiśniewski, R., Wiśniewska, M., Jarnut, M.: C-exact hypergraphs in concurrency
and sequentiality analyses of cyber-physical systems specified by safe Petri nets.
IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2893284

http://mcc.lip6.fr/2022/results.php
https://doi.org/10.1007/978-1-4757-3143-9_6
https://doi.org/10.1007/3-540-55676-1_17
https://doi.org/10.1007/3-540-55676-1_17
https://doi.org/10.1109/TCS.1980.1084711
https://doi.org/10.1109/ASPDAC.1995.486371
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1109/HSI.2014.6860478
https://doi.org/10.1109/ACCESS.2019.2893284

	A Toolchain to Compute Concurrent Places of Petri Nets
	Introduction
	Petri Nets
	Nested-Unit Petri Nets
	Concurrent Places
	Outline

	Overview of the Toolchain
	Software Components of the Toolchain
	Input Formats for Petri Nets
	Output Format for Concurrent Places

	Presentation of Caesar.bdd
	Overview of Caesar.bdd
	Command-Line Invocation of Caesar.bdd
	Principles of Caesar.bdd

	Presentation of Kong
	Overview of Kong
	Command-Line Invocation of Kong
	Auxiliary Tools Invoked by Kong
	Principles of Kong
	Software Architecture of Kong
	Net Reduction on a Concrete Example
	Token Flow Graph Construction
	Dimensionality Reduction Algorithm

	Experiments with the Toolchain
	Benchmarks for Experiments
	Experiments on Nested-Unit Petri Nets
	Experimental Results on Petri Nets
	Validation of Results

	Conclusion
	Run-Length-Encoding Compression

