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I. MOBILITY MARKOV CHAINS

In [1], we defined a type of mobility model that we coined
as mobility Markov chain (MMC), which can represent in
a compact yet precise way the mobility behaviour of an
individual. In short, a MMC is a probabilistic automaton in
which states represent points of interest (POIs) of an individual
and transitions between states corresponds to a movement from
one POI to another one. The automaton is probabilistic in the
sense that a transition between POIs is non deterministic but
rather that there is a probability distribution over the transitions
that corresponds to the probability of moving from one POI to
another (edges are directed). Note that Markov models are a
popular technique that have been used in the past for the study
of motion (for instance see [2] for a recent work using hidden
Markov networks to extract POIs from geolocated data).

More formally, a MMC is a transition system composed of:
• A set of states P = {p1, . . . , pn}, in which each state
pi corresponds to a POI (or a set of POIs). These
POIs may have been learned for instance by running a
clustering algorithm on the trail of mobility traces from
an individual or simply by collecting the locations that
he has posted on a geolocated social network such as
Foursquare or Gowalla. Each state (i.e. POI) is therefore
associated with a physical location.Moreover, it is often
possible to attach a semantic label to the states of the
mobility Markov chain, such as for instance “home”
instead of simply p1” or “work” instead of p2.

• A set of transitions, T = {t1,1, . . . , tn,n}, where each
transition ti,j represents a movement from the state pi to
the state pj . Each transition ti,j has a probability assigned
to it that corresponds to the probability of moving from
state pi to state pj . Sometimes an individual can move
from one POI, go somewhere else (but not to one of his
usual POIs) and come back later to the same POI. For
example, an individual might leave his house to go wash
his car in a facility near his home and come back 30
minutes later. This type of behaviour is materialized in
the mobility Markov chain by a transition from one state
to itself.

A MMC can be represented either as a transition matrix or
as a directed graph in which nodes correspond to states and
there is a directed weighted edge between two nodes if and
only if the transition probability between these two nodes is

non-null. The sum of all the edges’ weights leaving from a
state is equal to 1.

For instance, consider for illustration purpose, an individual,
that we refer thereafter as “Alice”, who has a set of 4 important
POIs that she visits often plus some other POIs that are less
important to her mobility. In order to represent her mobility
behaviour, we could define a MMC composed of 5 states, one
for each important POI plus a last one that will contain all
the infrequent POIs. Suppose now that we have been able to
collect her trail of mobility traces (e.g., by tracking her mobile
phone [3]), then possibly we could have learnt the following
MMC (Figure 1). For more details, about MMC we refer the
reader to [1].
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Fig. 1. Alice’s Mobility Markov Chain.

II. INTRODUCING TIME INTO MOBILITY MARKOV CHAINS

In this section, we describe an algorithm for learning
Temporal Mobility Markov Chains (TMMC). This algorithm
is an extension of the one described in [1] to which we add
the temporal aspect. Basically, the gist of this algorithm is
to decompose time into n different discrete timeslices. For
example, with n = 4, we can observe mobility in one of the
following timeslices: morning, afternoon, evening and night.
Each POI from the original MMC will thus be represented by
n different states in the TMMC, one for each timeslice. If we



Algorithm 1 Temporal mobility Markov chain algorithm
Require: Trail of (mobility) traces M , merging distance d,

speed threshold ε, time interval threshold mintime, time
slices definition timeslices

1: Run a clustering algorithm on M to learn the most
significant clusters

2: Merge all the clusters that are within d distance of each
other

3: Let listPOIs be the list of all remaining clusters
4: for each cluster C in listPOIs do
5: Compute the time interval and the density of C
6: end for
7: for each cluster C in listPOIs do
8: if C.time interval > mintime then
9: Add C to freqPOIs (the list of frequent POIs)

10: else
11: Add C to infreqPOIs (the list of infrequent POIs)
12: end if
13: end for
14: Sort the clusters in freqPOIs by decreasing order ac-

cording to their densities
15: for each cluster Ci in freqPOIs (for 1 ≤ i ≤ n−1) do
16: for each time slice t in timeslices do
17: Create a state pi/t in the mobility Markov chain
18: end for
19: end for
20: Create a state pinfrequent representing all the clusters

within infreqPOIs
21: Let M ′ be the trail of traces obtained from M by removing

all the traces whose speed is above ε
22: for each mobility trace in M ′ do
23: if the distance between the trace and the state pi is less

than d and the state pi is the closest state then
24: determine t the appropriate time slice for the trace
25: label the trace with “pi/t”
26: else
27: label the state with the value “unknown”
28: end if
29: end for
30: Squash all the successive mobility traces sharing the same

(time and space) label into a single occurrence
31: Compute all the transition probabilities between each pair

of states of the Markov chain
32: return the mobility Markov chain computed

take Alice’s home for example, which is state p1 on Figure
1., it will be represented by the states P1morning, P1afternoon,
P1evening and P1night. Remark that the scale of the timeslicing
can be tuned to match the required level of detail. For example,
the timeslices can also be winter, spring, summer, autumn
or even months or years, . . .

In a nutshell, Algorithm 1 starts (line 1) by applying a
clustering algorithm on a trail of traces of an individual in
order to identify clusters of locations that are significant.

Then, in order to reduce the number of resulting clusters,
the algorithm merges clusters whose medoids are within a
predefined distance d of each other (line 2). Each resulting
cluster is considered as a POI, and the medoid of the cluster
is considered to be the physical location of the POI. For each
cluster (lines 4 to 6), we compute the number of mobility
traces inside the cluster (which we call the density of the
cluster) and the time interval (measured in days) between the
earliest and the latest mobility traces of the cluster (line 5).
The POIs (i.e. clusters) are then split (lines 7 to 13) into two
categories; the frequent POIs that correspond to POIs whose
time interval is above or equal to a certain threshold mintime
and the infrequent POIs whose time interval is below this
threshold mintime. In the set of frequent POIs (line 14), we
sort the POIs by decreasing order according to their densities.
Therefore, the first POI will be the denser and the last POI
the less dense.

Now, we can start to build the temporal mobility Markov
chain by creating a state for each tuple < POI, timeslice >
within the set of frequent POIs (lines 15 to 19) and also a
last state representing the set of infrequent POIs (line 20).
Each state is then assigned a weight that is set to its density.
Afterwards (line 21), we come back to the trail of traces
that have been used to learn the POIs and we remove all
the moving points (whose speed is above ε, for ε a small
predefined value). Then, we traverse the trail of traces in
a chronological order (lines 22 to 29) labeling each of the
mobility traces either with the tag of closest POI and the
appropriate timeslice (line 25) or with the tag “unknown” if the
mobility trace is not within d-distance of one of the frequent or
infrequent POIs (line 27). From this labeling, we can extract
sequences spatio-temporal chunks that have been visited by
the individual in which all the successive mobility traces
sharing the same label are merged into a single occurrence
(line 30). For example, a typical day could be summarized by
the following sequence “phome/morning ⇒ pwork/morning ⇒
pwork/afternoon ⇒ psport/afternoon ⇒ psport/evening ⇒
“unknown′′ ⇒ phome/evening”. From the set of sequences
extracted, we compute the transition probabilities between
the different states of the MMC by counting the number of
transitions between each pair of states and then normalizing
these probabilities (line 31). If we observe a subsequence in
the form of “pi/t ⇒ “unknown” ⇒ pi/t” then we increment
the count from the state pi/t to itself (which translates in the
graph representation by a self-arrow).
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