Rigorous Uniform Approximation of D-finite Functions

Mioara Joldes*

Joint work with
Alexandre Benoit**, Marc Mezzarobba**

* École Normale Supérieure de Lyon, Arénaire Team, Laboratoire de l’Informatique du Parallélisme
** INRIA Roquencourt, Algorithms Team
D-finite Functions

Definition

A function $y : \mathbb{R} \rightarrow \mathbb{R}$ is **D-finite** if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \cdots + a_0 y = 0, \quad a_i \in \mathbb{Q}[x]. \quad (1)$$
D-finite Functions

Definition

A function $y : \mathbb{R} \rightarrow \mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \cdots + a_0 y = 0, \quad a_i \in \mathbb{Q}[x]. \quad (1)$$

Examples

$f(x) = \exp(x) \iff \{f' - f = 0, \ f(0) = 1\}$.
D-finite Functions

Definition

A function $y : \mathbb{R} \to \mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \cdots + a_0 y = 0, \quad a_i \in \mathbb{Q}[x]. \quad (1)$$

Examples

- $f(x) = \exp(x) \iff \{f' - f = 0, \ f(0) = 1\}$.
- $\cos, \ \arccos, \ \text{Airy functions}, \ \text{Bessel functions}, \ \ldots$
D-finite Functions

Definition

A function $y : \mathbb{R} \to \mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \cdots + a_0 y = 0, \quad a_i \in \mathbb{Q}[x].$$

(1)

Examples

$f(x) = \exp(x) \leftrightarrow \{f' - f = 0, f(0) = 1\}$.

$\cos, \arccos, \text{Airy functions}, \text{Bessel functions}, \ldots$

About 60% of Abramowitz & Stegun
D-finite Functions

Definition

A function $y : \mathbb{R} \to \mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \cdots + a_0 y = 0, \quad a_i \in \mathbb{Q}[x].$$ \hspace{1cm} (1)

Differential equation + initial conditions = Data Structure

Examples

$f(x) = \exp(x) \leftrightarrow \{f' - f = 0, \ f(0) = 1\}.$

cos, arccos, Airy functions, Bessel functions, ...

About 60% of Abramowitz & Stegun
D-finite Functions

Definition

A function \(y : \mathbb{R} \to \mathbb{R} \) is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

\[
L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \cdots + a_0 y = 0, \quad a_i \in \mathbb{Q}[x].
\] (1)

Differential equation + initial conditions = Data Structure

How can we approximate a D-finite function \(f \)?

Polynomial approximation:

\[
f(x) \approx \sum_{i=0}^{n} f_i x^i
\]
Uniform Approximation of D-finite Functions

Problem

Given an integer \(d \), and a D-finite function \(f \) specified by a differential equation with polynomial coefficients and suitable boundary conditions, find the coefficients of a polynomial \(p(x) \) of degree \(d \) and a “small” bound \(B \) such that \(|p(x) - f(x)| < B \) for all \(x \) in \([-1, 1]\).

Applications:
- Repeated evaluation on a line segment
- Plot
- Numerical integration
- Computation of minimax approximation polynomials using the Remez algorithm
Problem

Given an integer \(d \), and a D-finite function \(f \) specified by a differential equation with polynomial coefficients and suitable boundary conditions, find the coefficients of a polynomial \(p(x) \) of degree \(d \) and a “small” bound \(B \) such that \(|p(x) - f(x)| < B \) for all \(x \) in \([-1, 1]\).

Applications: Repeated evaluation on a line segment

- Plot
- Numerical integration
- Computation of minimax approximation polynomials using the Remez algorithm
Why?

- Get the correct answer, not an “almost” correct one
- Bridge the gap between scientific computing and pure mathematics - speed and reliability
Rigorous Uniform Approximation of D-finite Functions

Why?
- Get the correct answer, not an “almost” correct one
- Bridge the gap between scientific computing and pure mathematics - speed and reliability

How?
- Use Floating-Point as support for fast computations
- Bound roundoff, discretization, truncation errors in numerical algorithms
- Compute enclosures instead of approximations
Rigorous Uniform Approximation of D-finite Functions

- Why?
 - Get the correct answer, not an “almost” correct one
 - Bridge the gap between scientific computing and pure mathematics - speed and reliability

- How?
 - Use Floating-Point as support for fast computations
 - Bound roundoff, discretization, truncation errors in numerical algorithms
 - Compute enclosures instead of approximations

- What?
 - Interval arithmetic
Chebyshev Series vs Taylor Series

Two approximations of f:
- by Taylor series
 \[f = \sum_{n=0}^{+\infty} c_n x^n, \quad c_n = \frac{f^{(n)}(0)}{n!}, \]
- or by Chebyshev series
 \[f = \sum_{n=-\infty}^{+\infty} t_n T_n(x), \]
 \[t_n = \frac{1}{\pi} \int_{-1}^{1} T_n(t) \frac{f(t)}{\sqrt{1 - t^2}} dt. \]

Basic properties of Chebyshev polynomials

\[T_n(\cos(\theta)) = \cos(n\theta) \]

\[
\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1 - x^2}} \, dx = \begin{cases}
0 & \text{if } m \neq n \\
\frac{\pi}{2} & \text{if } m = 0 \\
\frac{\pi}{2} & \text{otherwise}
\end{cases}
\]

\[T_{n+1} = 2xT_n - T_{n-1} \]
\[T_0(x) = 1 \]
\[T_1(x) = x \]
\[T_2(x) = 2x^2 - 1 \]
\[T_3(x) = 4x^3 - 3x \]
Chebyshev Series vs Taylor Series

Two approximations of f:

- by Taylor series

$$f = \sum_{n=0}^{+\infty} c_n x^n, \quad c_n = \frac{f^{(n)}(0)}{n!},$$

- or by Chebyshev series

$$f = \sum_{n=-\infty}^{+\infty} t_n T_n(x),$$

$$t_n = \frac{1}{\pi} \int_{-1}^{1} T_n(t) \frac{f(t)}{\sqrt{1-t^2}} dt.$$
Bad approximation outside its circle of convergence

\[
\text{arctan}(2x)
\]

Taylor approximation
Approximation of $\arctan(2x)$ by Chebyshev expansion of degree 11.
Convergence Domains:

For Taylor series:
- disc centered at $x_0 = 0$ which avoids all the singularities of f

For Chebyshev series:
- elliptic disc with foci at ± 1 which avoids all the singularities of f
Chebyshev Series vs Taylor Series III

Convergence Domains:

For Taylor series:
- disc centered at $x_0 = 0$ which avoids all the singularities of f
- Taylor series cannot converge over entire $[-1, 1]$ unless all singularities lie outside the unit circle.

For Chebyshev series:
- elliptic disc with foci at ± 1 which avoids all the singularities of f
- Chebyshev series converge over entire $[-1, 1]$ as soon as there are no real singularities in $[-1, 1]$.
Chebyshev Series vs Taylor Series III

Convergence Domains:

For Taylor series:
disc centered at $x_0 = 0$ which avoids all the singularities of f

For Chebyshev series:
elliptic disc with foci at ±1 which avoids all the singularities of f

- Taylor series can not converge over entire $[-1, 1]$ unless all singularities lie outside the unit circle.

- Chebyshev series converge over entire $[-1, 1]$ as soon as there are no real singularities in $[-1, 1]$.

Chebyshev Series vs Taylor Series IV

Truncation Error:

Taylor series, Lagrange formula:

\[\forall x \in [-1, 1], \ \exists \xi \in [-1, 1] \text{ s.t.} \]

\[f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}. \]
Truncation Error:

Taylor series, Lagrange formula:
\[
\forall x \in [-1, 1], \exists \xi \in [-1, 1] \text{ s.t. } f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.
\]

Chebyshev series, Bernstein-like formula:
\[
\forall x \in [-1, 1], \exists \xi \in [-1, 1] \text{ s.t. } f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{2^n(n+1)!}.
\]
Truncation Error:

Taylor series, Lagrange formula:

\[f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n + 1)!} (x - x_0)^{n+1}. \]

Chebyshev series, Bernstein-like formula:

\[f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{2^n(n + 1)!}. \]

[✓] We should have an improvement of \(2^n\) in the width of the Chebyshev truncation error.
Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series $\pi_d(f)$ are near-best uniform approximations [Chap 5.5, Mason & Handscomb 2003].
Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series $\pi_d(f)$ are near-best uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let p_d^* is the polynomial of degree at most d that minimizes $\|f - p\|_\infty = \sup_{-1 \leq x \leq 1} |f(x) - p(x)|$.

...we lose at most 2 bits $\Lambda_{10} = 2^{2.2}$...

...we lose at most 3 bits $\Lambda_{30} = 2^{3.05}$...

...we lose at most 3 bits $\Lambda_{500} = 2^{3.78}$...
Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series $\pi_d(f)$ are *near-best* uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let p^*_d is the polynomial of degree at most d that minimizes

$$\|f - p\|_{\infty} = \sup_{-1 \leq x \leq 1} |f(x) - p(x)|.$$

Then

$$\|f - \pi_d(f)\|_{\infty} \leq \left(\frac{4}{\pi^2} \log d + O(1)\right) \|f - p^*_d\|_{\infty} \overset{\Lambda_d}{\leq}$$

(2)
Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series $\pi_d(f)$ are near-best uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let p^*_d is the polynomial of degree at most d that minimizes

$$\|f - p\|_{\infty} = \sup_{-1 \leq x \leq 1} |f(x) - p(x)|.$$

$$\|f - \pi_d(f)\|_{\infty} \leq \left(\frac{4}{\pi^2} \log d + O(1) \right) \left\| f - p^*_d \|_{\infty} \right\|_{\infty} \Lambda_d$$ (2)

- $\Lambda_{10} = 2.22... \rightarrow$ we lose at most 2 bits
- $\Lambda_{30} = 2.65... \rightarrow$ we lose at most 2 bits
- $\Lambda_{100} = 3.13... \rightarrow$ we lose at most 3 bits
- $\Lambda_{500} = 3.78... \rightarrow$ we lose at most 3 bits
Previous Work

Computation of the Chebyshev coefficients for D-finite functions

- Using a relation between coefficients Clenshaw (1957)
- Using the recurrence relation between the coefficients Fox-Parker (1968)
- The tau method of Lanczos (1938), Ortiz (1969-1993)

Validation:

- Monomial basis: Verified integration of Taylor Models (Makino & Berz, 1998)
Given a linear differential equation with polynomial coefficients, boundary conditions and an integer d

- Compute a polynomial approximation p on $[-1, 1]$ of degree d of the solution f in the Chebyshev basis in $O(d)$ arithmetic operations.
- Compute a sharp bound B such that $|f(x) - p(x)| < B$, $x \in [-1, 1]$ in $O(d)$ arithmetic operations.
Theorem (60's, BenoitJoldesMezzarobba11)

\[\sum u_n T_n(x) \text{ is solution of a linear differential equation with polynomial coefficients iff the sequence } u_n \text{ is cancelled by a linear recurrence with polynomial coefficients.} \]
Theorem (60's, BenoitJoldesMezzarobba11)

\[\sum u_n T_n(x) \text{ is solution of a linear differential equation with polynomial coefficients iff the sequence } u_n \text{ is cancelled by a linear recurrence with polynomial coefficients.} \]

Recurrence relation + good initial conditions \(\Rightarrow\) Fast numerical computation of the coefficients

Taylor: \(\exp = \sum \frac{1}{n!} x^n \)

Rec: \(u(n + 1) = \frac{u(n)}{n+1} \)

\[
\begin{align*}
 u(0) &= 1 & 1/0! &= 1 \\
 u(1) &= 1 & 1/1! &= 1 \\
 u(2) &= 0,5 & 1/2! &= 0,5 \\
 \vdots & & \vdots \\
 u(50) &\approx 3,28.10^{-65} & 1/50! &\approx 3,28.10^{-65}
\end{align*}
\]
Chebyshev Series of D-finite Functions

Theorem (60's, BenoitJoldesMezzarobba11)

\[\sum u_n T_n(x) \text{ is solution of a linear differential equation with polynomial coefficients iff the sequence } u_n \text{ is cancelled by a linear recurrence with polynomial coefficients.} \]

Recurrence relation + good initial conditions ⇒ Fast numerical computation of the coefficients

<table>
<thead>
<tr>
<th>Taylor: (\exp = \sum \frac{1}{n!} x^n)</th>
<th>Chebyshev: (\exp = \sum I_n(1) T_n(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec: (u(n + 1) = \frac{u(n)}{n+1})</td>
<td>Rec: (u(n + 1) = -2nu(n) + u(n - 1))</td>
</tr>
<tr>
<td>(u(0) = 1) & (1/0! = 1)</td>
<td>(u(0) = 1, 266)</td>
</tr>
<tr>
<td>(u(1) = 1) & (1/1! = 1)</td>
<td>(I_0(1) \approx 1, 266)</td>
</tr>
<tr>
<td>(u(2) = 0, 5) & (1/2! = 0, 5)</td>
<td>(u(1) = 0, 565)</td>
</tr>
<tr>
<td>(u(2) \approx 0, 136) & (I_1(1) \approx 0, 565)</td>
<td>(u(2) \approx 0, 136)</td>
</tr>
<tr>
<td>(u(50) \approx 3, 28.10^{-65}) & (1/50! \approx 3, 28.10^{-65})</td>
<td>(I_2(1) \approx 0, 136)</td>
</tr>
<tr>
<td>(\vdots) & (\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>
Chebyshev Series of D-finite Functions

Theorem (60’s, Benoit Joldes Mezzarobba 11)

\[\sum u_n T_n(x) \text{ is solution of a linear differential equation with polynomial coefficients iff the sequence } u_n \text{ is cancelled by a linear recurrence with polynomial coefficients.} \]

Recurrence relation + good initial conditions \(\Rightarrow\) Fast numerical computation of the coefficients

Taylor: \(\exp = \sum \frac{1}{n!} x^n\)
Rec: \(u(n+1) = \frac{u(n)}{n+1}\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(u(n))</th>
<th>(u(n)/n!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1/1!</td>
</tr>
<tr>
<td>2</td>
<td>0, 5</td>
<td>1/2!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/2!</td>
</tr>
<tr>
<td>50</td>
<td>(\approx 3, 28.10^{-65})</td>
<td>1/50! (\approx 3, 28.10^{-65})</td>
</tr>
</tbody>
</table>

Chebyshev: \(\exp = \sum I_n(1) T_n(x)\)
Rec: \(u(n+1) = -2nu(n) + u(n-1)\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(I_n(1))</th>
<th>(u(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 266</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0, 565</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0, 136</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(\approx 0)</td>
<td>(\approx 0)</td>
</tr>
<tr>
<td>50</td>
<td>(\approx 4, 450.10^{67})</td>
<td>(\approx 2, 934.10^{-80})</td>
</tr>
</tbody>
</table>

Convergent and Divergent Solutions of the Recurrence

Study of the Chebyshev recurrence

If $u(n)$ is solution, then there exists another solution $v(n) \sim \frac{1}{u(n)}$

Newton polygon of a Chebyshev recurrence

For the recurrence $u(n+1) + 2nu(n) - u(n-1)$

Two independent solutions are $I_n(1) \sim (2n)!$ and $K_n(1) \sim (2n)!$

Miller's algorithm
To compute the first N coefficients of the most convergent solution of a recurrence relation of order 2

Initialize $u(N) = 0$ and $u(N-1) = 1$ and compute the first coefficients using the recurrence backwards

Normalize u with the initial condition of the recurrence
Convergent and Divergent Solutions of the Recurrence

Study of the Chebyshev recurrence

If $u(n)$ is solution, then there exists another solution $v(n) \sim \frac{1}{u(n)}$

For the recurrence $u(n + 1) + 2nu(n) - u(n - 1)$

Two independent solutions are $I_n(1) \sim \frac{1}{(2n)!}$ and $K_n(1) \sim (2n)!$
Convergent and Divergent Solutions of the Recurrence

Study of the Chebyshev recurrence

If $u(n)$ is solution, then there exists another solution $v(n) \sim \frac{1}{u(n)}$

For the recurrence $u(n + 1) + 2nu(n) - u(n - 1)$

Two independent solutions are $I_n(1) \sim \frac{1}{(2n)!}$ and $K_n(1) \sim (2n)!$

Miller’s algorithm

To compute the first N coefficients of the most convergent solution of a recurrence relation of order 2

- Initialize $u(N) = 0$ and $u(N - 1) = 1$ and compute the first coefficients using the recurrence backwards
- Normalize u with the initial condition of the recurrence

Newton polygon of a Chebyshev recurrence
Algorithm for Computing the Coefficients

Input: a differential equation of order \(r \) with boundary conditions
Output: a polynomial approximation of degree \(N \) of the solution

- compute the Chebyshev recurrence of order \(2s \geq 2r \)
- for \(i \) from 1 to \(s \)
 - using the recurrence relation backwards, compute the first \(N \) coefficients of the sequence \(u^{[i]} \) starting with the initial conditions
 \[
 \left(u^{[i]}(N + 2s), \ldots, u^{[i]}(N + i), \ldots, u^{[i]}(N + 1) \right) = (0, \ldots, 1, \ldots, 0)
 \]
- combine the \(s \) sequences \(u^{[i]} \) according to the \(r \) boundary conditions and the \(s - r \) symmetry relations
Example: Back to exp

\[u(52) = 0 \]
\[u(51) = 1 \]
\[u(50) = -102 \]

\[\vdots \]
\[u(2) \approx -4.72 \times 10^{80} \]
\[u(1) \approx 1.96 \times 10^{81} \]
\[u(0) \approx -4.4 \times 10^{81} \]

\[I_{52}(1) \approx 2.77 \times 10^{-84} \]
\[I_{51}(1) \approx 2.88 \times 10^{-82} \]
\[I_{50}(1) \approx 2.93 \times 10^{-80} \]

\[\vdots \]
\[I_{2}(1) \approx 0.14 \]
\[I_{1}(1) \approx -0.57 \]
\[I_{0}(1) \approx 1.27 \]
Example: Back to \(\exp \)

\[
\begin{align*}
 u(52) &= 0 \\
 u(51) &= 1 \\
 u(50) &= -102 \\
 &\vdots \\
 u(2) &\approx -4,72.10^{80} \\
 u(1) &\approx 1,96.10^{81} \\
 u(0) &\approx -4,4.10^{81} \\
 C &= \sum_{n=-50}^{50} u(n)T_n(0) \approx -3,48.10^{81} \\
 I_{52}(1) &\approx 2,77.10^{-84} \\
 I_{51}(1) &\approx 2,88.10^{-82} \\
 I_{50}(1) &\approx 2,93.10^{-80} \\
 &\vdots \\
 I_{2}(1) &\approx 0,14 \\
 I_{1}(1) &\approx -0,57 \\
 I_{0}(1) &\approx 1,27
\end{align*}
\]
Example: Back to exp

\[
\frac{u(52)}{C} = 0 \quad \quad I_{52}(1) \approx 2,77.10^{-84}
\]
\[
\frac{u(51)}{C} \approx -2,88.10^{-82} \quad \quad I_{51}(1) \approx 2,88.10^{-82}
\]
\[
\frac{u(50)}{C} \approx 2,93.10^{-80} \quad \quad I_{50}(1) \approx 2,93.10^{-80}
\]
\[
\vdots \quad \quad \vdots
\]
\[
\frac{u(2)}{C} \approx 0,14 \quad \quad I_{2}(1) \approx 0,14
\]
\[
\frac{u(1)}{C} \approx -0,57 \quad \quad I_{1}(1) \approx -0,57
\]
\[
\frac{u(0)}{C} \approx 1,27 \quad \quad I_{0}(1) \approx 1,27
\]
\[
C = \sum_{n=-50}^{50} u(n)T_{n}(0) \approx -3,48.10^{81}
\]
Given a linear differential equation with polynomial coefficients, boundary conditions and an integer d

- Compute a polynomial approximation p on $[-1, 1]$ of degree d of the solution f in the Chebyshev basis in $O(d)$ arithmetic operations.
- Compute a sharp bound B such that $|f(x) - p(x)| < B$, $x \in [-1, 1]$ in $O(d)$ arithmetic operations.
Fixed Point Theorem Applied to a Differential Equation: f is solution of

$$y'(x) - a(x)y(x) = 0, \text{ with } y(0) = y_0,$$

if and only if f is a fixed point of τ defined by

$$\tau(y)(t) = y_0 + \int_0^t a(x)y(x)dx.$$
Fixed Point Theorem Applied to a Differential Equation: f is solution of

$$y'(x) - a(x)y(x) = 0, \text{ with } y(0) = y_0,$$

if and only if f is a fixed point of τ defined by

$$\tau(y)(t) = y_0 + \int_0^t a(x)y(x)dx.$$

For all rational functions $a(x)$, if $\frac{||a||_\infty^j}{j!} < 1$ then $\forall i \geq j$, τ^i is a contraction map.
Algorithm for a Differential Equation of Order 1

Given p, compute a sharp bound B such that $|f(x) - p(x)| < B$, $x \in [-1, 1]$.

Algorithm (Find B)

- $p_0 := p$
- while $i! < \|a\|_\infty^i$
 - Compute $p_i(t)$ a rigorous approximation of $\tau(p_{i-1}) = \int_0^t a(x)p_{i-1}(x)dx$ s.t. $\|\tau(p_{i-1}) - p_i\|_\infty < M$.
- Return

$$B = \frac{\|p_i - p\|_\infty + M \sum_{j=1}^i \frac{\|a\|_\infty^{j-1}}{j!}}{1 - \frac{\|a\|_\infty^i}{i!}}$$
Final Algorithm

Algorithm

INPUT: Differential equation with boundary conditions and a degree \(d \)
OUTPUT: a polynomial approximation of degree \(d \) and a bound

- Compute an approximation \(P \) of degree \(d \) of the solution with the first algorithm
- Compute the bound \(B \) of the approximation with the second algorithm.
- return the pair \(P, B \)
Example

\[(x + 5)y^{(3)}(x) + (-x^3 - 5x^2 + 4x + 5)y^{(2)}(x) + (6x^3 + 6 + 3x)y^{(1)}(x) + (-3x^3 - x^2 - 2x + 4)y(x) = 0, \quad y(0) = -6, \; y^{(1)}(0) = 1, \; y^{(2)}(0) = -2\]

Compute coefficients of polynomial of degree 30.
Validated bound: \(0.58 \cdot 10^{-14}\).