
Protection measures in OpenBSD

Matthieu Herrb & other OpenBSD developers

Coimbra, November 2009



Agenda

1 Introduction

2 System level protection

3 Network level protection

4 What’s missing

5 Conclusion



Agenda

1 Introduction

2 System level protection

3 Network level protection

4 What’s missing

5 Conclusion





OpenBSD...

Unix-like, multi-platform operating system

Derived from BSD 4.4

Kernel + userland + documentation maintained together

3rd party applications available via the ports system

One release every 6 months

Hardware architectures: i386, amd64, alpha, arm,
macppc, sparc, sparc64, sgi, vax...



Objectives

Provide free code (BSD license...)

Quality

Correctness

Adhering to standards (POSIX, ANSI)

Providing good crypto tools (SSH, SSL, IPSEC,...)

→ better security.



Current version

OpenBSD 4.6 released Oct 18, 2009.
New stuff :

smtpd, a new privilege separated SMTP
daemon

tmux, a terminal multiplexer

more sparc64 frame-buffers

virtual routing and firewalling through
routing domains

routing daemon enhancements

active-active firewall setups with pfsync

...



Agenda

1 Introduction

2 System level protection

3 Network level protection

4 What’s missing

5 Conclusion



“Secure by default”

Leitmotiv since 1996

Adopted since by most OS

Non required services are not activated in a default
installation.

Default configuration of services providing security

Activating services require a manual action of the
administrator

Keep a working (functional, useful) system

→ only 2 remote vulnerabilities in more than 10 years.



Coding rules

Focus on code correctness→ improves reliability, thus
security.

Always design things for simplicity

Peer review at every level : design, coding, even for
simple modifications

Comprehensive search for similar errors once one is
found

New functionalities in gcc :

-Wbounded option
__sentinel__ attribute

Tools : llvm/clang, Parfait, etc.



Technologies for security

strlcpy/strlcat

memory protection

privilege revoking (ex. ping)

privileges separation (ex. OpenSSH)

(chroot)

separate uids for each service

stack smashing protection (SSP) & Stackgap

use of randomness (ld.so, malloc, mmap)



Stack and memory protection

Stack overflows : the easiest exploitable vulnerability

Stackgap

GCC + Propolice (SSP) activated by default to build all
libraries and applications.

Generalized use of protection against format errors in
printf()-like functions..



Propolice

http:

//www.trl.ibm.com/projects/security/ssp/

Principle : put a “canary” on the stack, in front
of local variables

check it before return.

if still alive: no overflow

if dead (overwritten): overflow→ abort()

Only when there are arrays in local variables

Adopted by gcc 4.1.

Arrays

Canary

Arguments

Frame ptr

return @

Local

Local
scalar

variables

http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/


W^X

Write exclusive or execution granted on a page..

easy on some architectures (x86_64, sparc, alpha): per
page ’X’ bit

harder or others (x86, powerpc):
per memory segment ’X’ bit

impossible in some cases (vax, m68k, mips)

(PAX on Linux...)



Random numbers in OpenBSD

A good random numbers source is important for security.

Entropy gathering :

from I/O: keyboard, mouse, network or
audio cards, etc.

from hardware sources (VIA CPUs, crypto
chips)

Use:

Pseudo-random numbers using arc4random() to not
drain entropy to fast.

Centralized system→ raises security.
(harder to observe or predict).



Randomness in the run-time linker

OpenBSD’s ld.so loads libraries randomly in memory

Thus:
Random loading address for every shared object from one
system to another
→ return to libc attacks are a lot more difficult.



Randomness in mmap()

Address returned by mmap():

If MAP_FIXED is not specified: returns a random address.

(traditional behaviour: 1st free page after a base starting
address)



Randomness in malloc()

> 1 page allocations: mmap()→ random addresses.

< 1 page allocations: classical fixed block allocator, but
random selection of the block in the free list.

⇒ heap attacks more difficult.



Protecting dynamically allocated memory

[Moerbeek 2009]

Activated by /etc/malloc.conf→ G

Each bigger than one page allocation is followed by a
guard page⇒ segmentation fault if overflow.

Smaller allocations are randomly placed inside one page.



malloc() >= 1page

mmap()

malloc() < 1page

Traditional model OpenBSD model

brk

brk

Stack

CodeCode

Stack



Privileges reduction

Completely revoke privileges from privileged (setuid)
commands, or commands launched with privileges, once
every operation requiring a privilege are done.

Group those operations as early as possible after start-up.
Examples:

ping
named



Privileges separation

[Provos 2003]

Run system daemons:

with an uid 6= 0
in a chroot(2) jail

additional helper process keeps the privileges but do
paranoid checks on all his actions.

A dozen of daemons are protected this way.



Example : X server

Main X server

unprivileged

unprivileged

privileged

Child

Main X server

Main X server

Main loop

Init 2

Init 1

request

ack

request

descriptor

kill_parent

open_device

privileged

Forkrevoke
privileges



Securelevels

No fine grained policy:
too complex, thus potentially dangerous.

Three levels of privileges

kernel

root

user

Default securelvel = 1:

File system flags (immutable, append-only) to limit root
access.

Some settings cannot be changed (even by root).

Restrict access to /dev/mem and raw devices.

Exception : X...



Agenda

1 Introduction

2 System level protection

3 Network level protection

4 What’s missing

5 Conclusion



Threats on protocols

Internet: favours working stuff over security.

easy to guess values

forged packets accepted as valid

information leaks

use of time as a secret ??



Protection Principle

Use data that are impossible (hard) to guess wherever
arbitrary data are allowed, even if no known attack exists.

counters

timestamps

packet, session, host... identifiers

Respecting constraints and avoid breaking things:

non repetition

minimal interval between 2 values

avoid magic numbers



Example : TCP Reset

“Slipping in the window”, Paul T. Watson (2004)

Resizing of TCP windows makes it easier to figure out a valid
TCP sequence number.

Target : long living TCP connections, between machines that
only have a few different connections open (BGP sessions for
instance).

OpenBSD solution:

really random source ports

require that RST packets are at the extreme right of the
window

and of course also : TCP MD5 and/or IPsec protection.
(OpenBGPD rejects TCP window negotiation without one
of those).



DNS

Security based on:

(ip source, port source, ip dest, port dest)

16 bits identifier

OpenBSD:

pseudo-random identifiers since 1997

random source port



Randomness in the network stack

Use:

IPID (16 bits, no repetition)

DNS Queries (16 bits, no repetition)

TCP ISN (32 bits, no repetition, steps of 215 between 2
values)

Source ports (don’t re-use a still active port)

TCP timestamps (random initial value, then increasing at
constant rate)

Id NTPd (64 bits, random) instead of current time

RIPd MD5 auth...



PF: more than one trick in its bag

Packet Filter

Stateful filtering and rewriting (NAT) engine

Scrub to add randomness to packets:

TCP ISN
IP ID
TCP timestamp
NAT : rewriting of source ports (and possibly addresses)

Also protects non-OpenBSD machines.



Agenda

1 Introduction

2 System level protection

3 Network level protection

4 What’s missing

5 Conclusion



User application protection

Web browsers,

Multimedia viewers and players,

E-mail clients,

Not protected enough. Hint : privilege separation /
sandboxing (Chrome OS)
Problem : how to handle sophisticated social engineering
attacks ?



X Windows problems

Kernel-level privileged code running in user-space.
vulnerabilities in X are thus especially critical. (cf. Loïc Duflot
Cansecwest)

Privilege separation (not enough, unfortunately)

Kill all direct hardware register access : vesafb

Future : KMS + DRI : programming the hardware in the
kernel, userland access controlled by DRI.



Agenda

1 Introduction

2 System level protection

3 Network level protection

4 What’s missing

5 Conclusion



Conclusion

Lots of progress since the beginning.

Contributed to fix bugs in many 3rd party applications.

Copied often (good).

Still lots of issues to address...

Will it be finished someday ?



Bibliography

http://www.openbsd.org/papers/index.html

A new malloc(3) for OpenBSD, Otto Moerbeek EuroBSDCon 2009, Cambridge.

Using OpenBSD Security Features to Find Software Bugs, Peter Valchev,
Reflections/Projections, Champaign-Urbana, 2007

Time is not a secret: Network Randomness in OpenBSD, Ryan McBride Asia
BSD Conference 2007

Security Measures in OpenSSH, Damien Miller Asia BSD Conference 2007

The OpenBSD Culture, David Gwyne : OpenCON 2006

Security issues related to Pentium System Management Mode, Loïc Duflot,
CansecWest 2006.

Exploit Mitigation Techniques, Theo de Raadt OpenCON 2005, Venice, Italy

A Secure BGP Implementation, Henning Brauer SUCON 04

Preventing Privilege Escalation, Niels Provos, Markus Friedl and Peter
Honeyman, 12th USENIX Security Symposium, Washington, DC, August 2003.

Enhancing XFree86 security, Matthieu Herrb LSM, Metz 2003.

http://www.openbsd.org/papers/index.html


Questions ?


	Introduction
	System level protection
	Network level protection
	What's missing
	Conclusion

