Protection measures in OpenBSD

Matthieu Herrb & other OpenBSD developers

LAAS-CNRS F

Coimbra, November 2009

Agenda

Introduction

System level protection
Network level protection
What'’s missing

Conclusion

Introduction

System level protection

Network level protection

What'’s missing

Conclusion

«O>» «Fr « =

<

ae

DA

OpenBSD...

Unix-like, multi-platform operating system

Derived from BSD 4.4

Kernel + userland + documentation maintained together
3rd party applications available via the ports system
One release every 6 months

Hardware architectures: i386, amd64, alpha, arm,
macppc, sparc, sparcé4, sgi, vax...

Objectives

m Provide free code (BSD license...)

m Quality

m Correctness

m Adhering to standards (POSIX, ANSI)

m Providing good crypto tools (SSH, SSL, IPSEC,...)

— better security.

Current version

OpenBSD 4.6 released Oct 18, 2009.
New stuff :

smtpd, a new privilege separated SMTP
daemon

m tmux, a terminal multiplexer

m more sparc64 frame-buffers

virtual routing and firewalling through
routing domains

m routing daemon enhancements

m active-active firewall setups with pfsync

Introduction

System level protection

Network level protection

What'’s missing

Conclusion

«O>» «Fr « =

<

ae

“Secure by default”

Leitmotiv since 1996

Adopted since by most OS

Non required services are not activated in a default
installation.

Default configuration of services providing security

Activating services require a manual action of the
administrator

m Keep a working (functional, useful) system

— only 2 remote vulnerabilities in more than 10 years.

Coding rules

m Focus on code correctness — improves reliability, thus
security.
m Always design things for simplicity
m Peer review at every level : design, coding, even for
simple modifications
m Comprehensive search for similar errors once one is
found
m New functionalities in gcc :
m -Wbounded option
m __sentinel__ attribute

m Tools : llvm/clang, Parfait, etc.

Technologies for security

stricpy/strlcat

memory protection

privilege revoking (ex. ping)

privileges separation (ex. OpenSSH)
(chroot)

separate uids for each service

stack smashing protection (SSP) & Stackgap
use of randomness (ld.so, malloc, mmap)

Stack and memory protection

Stack overflows : the easiest exploitable vulnerability
m Stackgap

m GCC + Propolice (SSP) activated by default to build all
libraries and applications.

m Generalized use of protection against format errors in
printf()-like functions..

Propolice

http: ey
AARRARRARRRRARN
ARRRARNY

//www.trl.ibm.com/projects/security/ssp/ NNNNNNNNNNNNWN

Principle : put a “canary” on the stack, in front <= """ <

of local variables return @
m check it before return. Frame ptr
m if still alive: no overflow Canary
m if dead (overwritten): overflow — abort () ~— AL\‘:::;'S ~—

Only when there are arrays in local variables

Local
<— scalar =
variables
12222

ARRARRRARRRARRY
\\\\\\\\\\\\\\

Adopted by gcc 4.1.

http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/

W~X

Write exclusive or execution granted on a page..
m easy on some architectures (x86_64, sparc, alpha): per
page ‘X’ bit
m harder or others (x86, powerpc):
per memory segment "X’ bit

m impossible in some cases (vax, m68k, mips)

(PAX on Linux...)

Random numbers in OpenBSD

A good random numbers source is important for security.

Entropy gathering :

m from 1/O: keyboard, mouse, network or

audio cards, etc .:,,
m from hardware sources (VIA CPUs, crypto

chips)
Use:

m Pseudo-random numbers using arc4random() to not
drain entropy to fast.

m Centralized system — raises security.
(harder to observe or predict).

Randomness in the run-time linker

OpenBSD’s 1d. so loads libraries randomly in memory

Thus:

Random loading address for every shared object from one
system to another

— return to libc attacks are a lot more difficult.

Randomness in mmap()

Address returned by mmap():

If MAP_FIXED is not specified: returns a random address.

(traditional behaviour: 1st free page after a base starting
address)

Randomness in malloc()

m > 1 page allocations: mmap() — random addresses.

B < 1 page allocations: classical fixed block allocator, but
random selection of the block in the free list.

= heap attacks more difficult.

Protecting dynamically allocated memory

[Moerbeek 2009]

m Activated by /etc/malloc.conf — G

m Each bigger than one page allocation is followed by a
guard page = segmentation fault if overflow.

m Smaller allocations are randomly placed inside one page.

[mmapg
[l malloc() >= 1page

. malloc() < 1page

brk O

Code

Traditional model

OpenBSD model

o = = E = DAl

Privileges reduction

m Completely revoke privileges from privileged (setuid)
commands, or commands launched with privileges, once
every operation requiring a privilege are done.

m Group those operations as early as possible after start-up.
Examples:

m ping
® named

Privileges separation

[Provos 2003]
m Run system daemons:

m with anuid # 0
m in a chroot(2) jail

m additional helper process keeps the privileges but do
paranoid checks on all his actions.

A dozen of daemons are protected this way.

Example : X server

Main X server

Init 1

privileged

revoke

Fork
privileges

Main X server request Child
Init 2 kill_parent

unprivileged

A request
Main X server q

Main loop descriptor
. -
unprivileged privileged

open_device

Securelevels

No fine grained policy:
too complex, thus potentially dangerous.

Three levels of privileges
m kernel
m root
m user

Default securelvel = 1:

m File system flags (immutable, append-only) to limit root
access.

B Some settings cannot be changed (even by root).
m Restrict access to /dev/mem and raw devices.

m Exception: X...

Introduction

System level protection

Network level protection

What'’s missing

Conclusion

«O>» «Fr « =

<

ae

Threats on protocols

Internet: favours working stuff over security.

m easy to guess values
m forged packets accepted as valid
m information leaks

m use of time as a secret 7?7

Protection Principle

Use data that are impossible (hard) to guess wherever
arbitrary data are allowed, even if no known attack exists.
m counters
m timestamps

m packet, session, host... identifiers

Respecting constraints and avoid breaking things:
m non repetition
m minimal interval between 2 values

m avoid magic numbers

Example : TCP Reset

“Slipping in the window"”, Paul T. Watson (2004)

Resizing of TCP windows makes it easier to figure out a valid
TCP sequence number.

Target : long living TCP connections, between machines that
only have a few different connections open (BGP sessions for
instance).

OpenBSD solution:
m really random source ports
m require that RST packets are at the extreme right of the
window
m and of course also : TCP MD5 and/or IPsec protection.
(OpenBGPD rejects TCP window negotiation without one
of those).

DNS

Security based on:
m (ip source, port source, ip dest, port dest)
m 16 bits identifier
OpenBSD:
m pseudo-random identifiers since 1997
m random source port

Randomness in the network stack

Use:
m IPID (16 bits, no repetition)
m DNS Queries (16 bits, no repetition)

m TCP ISN (32 bits, no repetition, steps of 21> between 2
values)

m Source ports (don't re-use a still active port)

m TCP timestamps (random initial value, then increasing at
constant rate)

m Id NTPd (64 bits, random) instead of current time
m RIPd MD5 auth...

PF: more than one trick in its bag

Packet Filter

m Stateful filtering and rewriting (NAT) engine
m Scrub to add randomness to packets:

m TCP ISN

m IPID

m TCP timestamp

m NAT : rewriting of source ports (and possibly addresses)

Also protects non-OpenBSD machines.

Introduction

System level protection

Network level protection
What's missing

Conclusion

«O>» «Fr « =

<

ae

User application protection

m Web browsers,

m Multimedia viewers and players,

m E-mail clients,
Not protected enough. Hint : privilege separation /
sandboxing (Chrome OS)

Problem : how to handle sophisticated social engineering
attacks ?

X Windows problems

Kernel-level privileged code running in user-space.
vulnerabilities in X are thus especially critical. (cf. Loic Duflot
Cansecwest)

m Privilege separation (not enough, unfortunately)

m Kill all direct hardware register access : vesafb

m Future : KMS + DRI : programming the hardware in the
kernel, userland access controlled by DRI.

Introduction

System level protection

Network level protection

What'’s missing

Conclusion

«O>» «Fr « =

<

ae

Conclusion

Lots of progress since the beginning.
Contributed to fix bugs in many 3rd party applications.

]
]

m Copied often (good).

m Still lots of issues to address...
]

Will it be finished someday ?

Bibliography

http://www.openbsd.org/papers/index.html

A new malloc(3) for OpenBSD, Otto Moerbeek EuroBSDCon 2009, Cambridge.

Using OpenBSD Security Features to Find Software Bugs, Peter Valchev,
Reflections/Projections, Champaign-Urbana, 2007

Time is not a secret: Network Randomness in OpenBSD, Ryan McBride Asia
BSD Conference 2007

Security Measures in OpenSSH, Damien Miller Asia BSD Conference 2007
The OpenBSD Culture, David Gwyne : OpenCON 2006

Security issues related to Pentium System Management Mode, Loic Duflot,
CansecWest 2006.

Exploit Mitigation Techniques, Theo de Raadt OpenCON 2005, Venice, Italy
A Secure BGP Implementation, Henning Brauer SUCON 04

B Preventing Privilege Escalation, Niels Provos, Markus Friedl and Peter

Honeyman, 12th USENIX Security Symposium, Washington, DC, August 2003.
Enhancing XFree86 security, Matthieu Herrb LSM, Metz 2003.

http://www.openbsd.org/papers/index.html

Questions ?

	Introduction
	System level protection
	Network level protection
	What's missing
	Conclusion

