
Gen
oM

User’s Guide

Sara Fleury
Matthieu Herrb

Contents

GenoM? What for? 5

1 The demo module, an overview of GenoM 7
1.1 Principle of the module generation . 7
1.2 An example . 8
1.3 Module generation . 11
1.4 Module compilation . 13
1.5 Module execution . 13

2 Modules description 19
2.1 Vocabulary and general description . 19
2.2 Structure and functioning of modules . 20
2.3 Integration of the algorithms: the codels . 21

3 Editing a module 23
3.1 Using the XEmacs mode genom-mode . 23
3.2 Writing a module . 24

4 Module generation 33
4.1 The genom command . 33
4.2 Product of the generation . 34

5 Writing the codels 37
5.1 Different kinds of codels . 37
5.2 Simple examples of codels . 38
5.3 Codel files and compilation . 40
5.4 Accessing the IDS . 41
5.5 Reports . 41
5.6 Updating posters . 43
5.7 Splitting algorithms into codels . 44
5.8 Writing the codels . 47
5.9 Parallel activities and synchronization . 49
5.10 Coding advice . 51

6 Using modules 55
6.1 The interactive test program Essay . 55
6.2 The interactive tcl shell tclServ . 56

4 CONTENTS

6.3 Propice and transGen . 56
6.4 Accessing modules’ posters from modules . 56
6.5 Accessing modules services from modules . 58
6.6 Accessing modules services from another process 63

A Troubleshooting 65
A.1 Module generation . 65
A.2 Execution under Unix . 65
A.3 VxWorks . 66

B Communication libraries 69
B.1 Posters and posterLib . 69
B.2 Requests and csLib . 70
B.3 Execution . 70

C The files generated by GenoM 71
C.1 Source files in auto/ . 71
C.2 Binary files in ${TARGET} . 72

GenoM? What for?

GenoM (Generator of Modules) is a development framework that allows the definition and
the production of modules that encapsulate algorithms. A module is a standardized software
entity that is able to offer services which are provided by your algorithms. Modules can start
or stop the execution of these services, pass arguments to the algorithms and export the data
produced.

Now you might ask yourself: “why should I bother integrating into modules my own
algorithms that do work very well?”. That’s a pretty good question and this introduction will
try to advocate on that point and give you some answers.

Your algorithms aim to being embedded into a target machine — let’s say: a robot. You
might not embrace the way this machine works in its whole and, most important, your algo-
rithms will be integrated into a more general software system that includes other algorithms
developed by other persons. This set of algorithms share several common properties: they
must be configured (don’t you have a bunch of parameters you want to adjust?), they must
be started, interrupted, started again or stopped and we might expect them to exchange data
and communicate with other part of the system.

Consider the example of a mobile robot: depending on the requirements of its mission and
the current context of execution, the robot might need to acquire an image, localize itself,
build a local map with some sensors and move. If the environment is rather free, the robot
could plan a trajectory, but it could also decide to move on the basis of the local data given by
its proximetric sensors. To be able to schedule these rather complex (and uncertain!) actions,
it is necessary to define a protocol that can handle tasks at an abstract level. This protocol
will let the robot:

• start an action when it is needed;

• stop an action in a clean manner;

• pass a set of parameters and data to the action;

• coordinate several actions;

• get the results of these actions;

• handle the failures of the actions (yes, actions can fail!) an keep them from taking the
whole system with them when they spiral down. Failures can be as general as:

– low batteries,

– incorrect algorithm parameters,

6 GENOM? WHAT FOR?

– not enough memory to handle that case,

– the target to localize does not appear in the images,

– the algorithm cannot handle that situation yet,

– . . .

Therefore, the general concept of module and standard protocols have been defined. These
generic modules can encapsulate almost every kind of algorithm: periodic or aperiodic, syn-
chronous or asynchronous, interruptible or uninterruptible, and even yours!

Of course, you could yourself write a module on the basis of that generic model. But that’s
a long and difficult story: you will have to port your software on the different systems you
want it to run on, you will have to write test procedures to check that your module behaves
correctly in every situation, . . . and GenoM already does it for you!

The generator of modules comes with a description language, and standard templates.
The templates will let you describe your module, the services it can offer, and for each service
the list of expected parameters, the algorithms (yours!) that will be executed, the results
along with their description, the failure messages and a few other items.

With the template file and the code of your algorithms — sorry, you still must write it
yourself — GenoM produces:

• a complete module that can run on several flavor of Unix or VxWorks,

• interface libraries that will let you use the services of the module and get their results
back,

• an interactive test program that let you send several requests to the module and trigger
the execution of the corresponding services.

Now that you have an idea of what GenoM can be used for, this manual will explain you
how to actually do it. You will learn

� �
1. How to produce and use a first test module, with a concrete example.

2. How the generic modules work, and how they are structured. In
particular, some useful vocabulary is explained.

3. How to describe your own modules. The complete specification language
will be explained.

4. How to generate your modules.

5. How to integrate your algorithms into the modules.

6. How to use modules (from an interactive program, from another module,
. . .).
 	

Chapter 1

The demo module, an overview of
GenoM

A module is described with a particular syntax in a file whose name ends in “dot gen” (.gen).
In this chapter, we will write a test module which we will call “demo”. Thus the file describing
this module will be called demo.gen. The next sections explain how such a module is generated
and used.

1.1 Principle of the module generation

One can distinguish two main parts in a module:

• A server, which encapsulate algorithms and is generated automatically by GenoM from
the description file,

• The set of algorithms that you have developed, and that will be included into the module.

To combine these two parts and form a complete module, the definition of functions
that will interface the server and the algorithms together is required (at the moment only C
functions are supported). These functions are called“codels”(which stands for code elements),
and they represent the smallest grain size the server will be able to manipulate.

The first time GenoM is called, it generates empty codels. They are fully functional, but
do nothing. It’s up to you to fill them in with your own code.

To help you distinguish between the server and the codels, the corresponding files are
placed in two separate directories. The first one is called auto/ and contains all the code
generated by GenoM. The second directory is called codels/ and contains the codels — initially
a template generated by GenoM but never touched again once you have filled them in.

The figure 1.1 shows a synthetic view of the separation between auto/ and codels/ and
also represent a typical development cycle :

1. module description: edition of the .gen file,

2. and 3. server generation and compilation,

8 CHAPTER 1. THE DEMO MODULE, AN OVERVIEW OF GENOM

G oM

1 3

5

7

4

(.gen)

2

6

���������	��
���

(codels)
Module

codels/

en

Description
 file

auto/

 Algorithms

������� ���

 Test
 programs

 Interface
 library

� ���������

������������

� ��� ��

������������

Figure 1.1: Development cycle and separation between sever and codels.

4. write the codels that will invoke your algorithms,

5. and 6. compile the codels and link with the server,

7. test and use the module.

Only the points 1, 4 and 7 are in your charge. GenoM writes for you the Makefiles and
handle the compilation of the various files.

Once you have compiled a module, you can incrementally modify, add or remove services
(back to the first point) and codels (back to the point number 4).

1.2 An example

This section will illustrate a concrete use of GenoM with a “demo” module. This module will
control a mobile that can translate on a 2 meters long rail. Some of the services the “demo”
module offers are:

• select the speed (between two symbolic values DEMO_SLOW and DEMO_FAST),

• move the mobile for a given distance,

• read the current speed or position at any moment,

• suspend the motion,

• monitor particular positions and inform when the mobile goes through these positions.

To implement this, we first create a directory named demo/. In that directory we will
write the description file demo.gen, which could look like this (see next page):

1.2. AN EXAMPLE 9

� �
/* -------------------------- MODULE DECLARATION --------------------------- */

module demo {
number: 9000; /* module id: unique number */
internal_data: DEMO_STR; /* C typedef (defined below) */

};

/* ------------- DEFINITION OF THE MODULE’s INTERNAL DATABASE -------------- */

/* External definitions involved in the database definition */
#include "demoStruct.h"

/* The internal database */
typedef struct DEMO_STR {

DEMO_STATE_STR state; /* Current state of the mobile */
/* (position and speed) */

DEMO_SPEED speedRef; /* Speed reference */
double distRef; /* Distance reference */
double monitor; /* Positions monitors */

}DEMO_STR;

/* ------------------ SERVICES DEFINITION: The REQUESTS -------------------- */

/* Control request: modify the default speed */
request SetSpeed {

type: control; /* request’s type */
input: speed::speedRef; /* input: speed chosen */
c_control_func: demoControlSpeed; /* codel for validity checks */
fail_msg: INVALID_SPEED; /* possible error messages */

};

/* Control request: return the default speed */
request GetSpeed {

type: control; /* request’s type */
output: speed::speedRef; /* output: the speed */

};

/* Control request: interrupt the mobile */
request Stop {

type: control; /* request’s type */
incompatible_with: MoveDistance; /* request to interrupt */

};
 	

continued on next page...

10 CHAPTER 1. THE DEMO MODULE, AN OVERVIEW OF GENOM

... continuation of previous page

� �
/* Execution request: translate of a given distance */
request MoveDistance {

type: exec; /* request’s type */
input: distance::distRef; /* input: distance */
c_control_func: demoControlDistance; /* codel for validity checks */
fail_msg: TOO_FAR_AWAY; /* possible error messages */
c_exec_func_start: demoStartEngin; /* initialization codel */
c_exec_func: demoGotoPosition; /* main codel */
c_exec_func_end: demoStopEngin; /* termination codel */
c_exec_func_inter: demoStopEngin; /* interruption codel */
incompatible_with: MoveDistance; /* incompatible requests */
exec_task: MotionTask; /* task (thread) executing

* the codel */
};

/* Execution request: monitor a particular mobile’s position */
request Monitor {

type: exec; /* request’s type */
input: position::monitor; /* inputs: position */
output: position::state.position; /* outputs: actual pos. */
c_exec_func: demoMonitor; /* main codel */
fail_msg: TOO_FAR_AWAY; /* possible error messages */
incompatible_with: none; /* no incompatible requests */
exec_task: MotionTask; /* task (thread) */

};

/* ------------------------ POSTERS DECLARATION --------------------------- */

/* Poster that exports the current state of the mobile */
poster Mobile {

update: auto;
data: state::state, ref::distRef;
exec_task: MotionTask;

};

/* --------------------- EXECUTION TASKS DECLARATION ----------------------- */

/* Only one task (or thread) */
exec_task MotionTask {

period: 20;
delay: 0;
priority: 100;
stack_size: 2000;
c_init_func: demoInit;

};
 	

1.3. MODULE GENERATION 11

The file demo.gen is made up of five parts, each of them being identified with a keyword
(these keywords are explained in detail in chapter 3):

1. module module declaration

2. #include
and typedef struct

C include statement for the definition of structures and
declaration of the internal database

3. request requests definition: the five services offered by the
module

4. poster posters definition: posters are exported data struc-
tures that let information on the mobile state be avail-
able for other modules

5. exec_task execution task declaration (a thread for Unix) that
take care of codel execution

The #include demoStruct.h statement (the second part above) works as in C and in-
cludes the corresponding C header file. This file contains all the necessary typedef declarations
for the definition of the internal database. These structures are then used by the request
and the poster declarations.

In this example, the file demoStruct.h contains the definition of DEMO_STATE_STR and
DEMO_SPEED. This file is preferably located in the same directory as demo.gen, since it con-
tributes to the definition of the module interface.

� �
#ifndef DEMO_STRUCT_H
#define DEMO_STRUCT_H

/* Current state of the mobile */
typedef struct DEMO_STATE_STR {

double position; /* current position */
double speed; /* current speed */

}DEMO_STATE_STR;

/* Admissible speeds */
typedef enum DEMO_SPEED{
DEMO_SLOW, /* low speed */
DEMO_FAST /* high speed */

} DEMO_SPEED;

#endif /* DEMO_STRUCT_H */
 	
1.3 Module generation

The generation step is done through the genom command invocation. When a module is to
be generated for the first time, genom must be invoked with the -i option, which installs the
initial files (in particular, it installs the codels templates). Here is a sample run, for the demo
example:

12 CHAPTER 1. THE DEMO MODULE, AN OVERVIEW OF GENOM

� �
r2d2[demo] genom -i demo
Module Generator GenoM
Copyright (C) LAAS/CNRS 1994-1996
No directory auto, install it ? (y/n) y
Entering directory ‘auto’
perl demo.pl
Creating directory user
Makefile.vxworks created
Makefile.unix created
Makefile.protos created
Makefile created
demoType.h created
demoError.h created
...
demoPrintProto.h is created
prototype demoScan.c
demoScanProto.h is created
Creating directory codels
codels/ is installed, from now you can just call "gnumake"
Done.
 	
Some comments on this run:

1. The .gen extension needs not to be explicitely given. GenoM appends it automatically.

2. With the -i option, GenoM asked for a confirmation:

No directory auto, install it ? (y/n)

This is the first and also the last time GenoM asks for it. This is also your last chance
to abort the module generation. Answer n if you did not want to invoke genom.

3. GenoM creates two directories and a great number of files. You do not need to know
them all, and they will be described later in this document (they are also described in
the appendix C).

From now on, the module is ready to be compiled and run, but let’s look at the
result of the execution of genom:� �

r2d2[demo] ls
Makefile codels/ demoStruct.h demo_essay*
auto/ demo.gen startDemo
 	
GenoM created two new directories auto/ and codels/, and three new files Makefile,

demo_essay and startDemo:

• The auto/ directory is entirely dedicated to GenoM (and that is the only such directory).
It contains all the server code (see figure 1.1), and you do not need to look into it,
except if you are looking for some specific information. This document will describe
this directory later.

1.4. MODULE COMPILATION 13

• Algorithms (or a part of them) are grouped in the directory codels/. It has been
installed by the -i option. The files in that directory give you a template to start from,
and also let GenoM produce a module even if you still do not have written a single line
of code. From now on, that directory belongs to you and GenoM never goes into it again
(except if you regenerate the module with the -i option).

• The Makefile file is also under your control. That’s the main file which is used for
the compilation of the module. By default, it lets you specify which target you want to
compile for, but you can modify it to suit your needs.

• The file startDemo is a tiny script for VxWorks, and let you load your module and start
it. It also belongs to you.

• The file demo_essay is a Unix script that starts an interactive test program for this
module.

1.4 Module compilation

Attention: This description of the compilation step might be deprecated at any
time.

The compilation step is very straightforward: first, you must edit the Makefile in the demo
directory. Select the target hosts for which you want to build the module (Unix, VxWorks/ppc
or VxWorks/m68k) and modify the all target accordingly. Then, you just need to invoke
GNUmake in the demo/ directory.

� �
r2d2[demo] gnumake
-- Generate module
Module Generator GenoM
Copyright (C) LAAS/CNRS 1994-1996
Your module is up to date.

-- SERVER unix: server and client
...
-- CODELS unix
...
 	
We can notice that the Makefile invoked GenoM again. This allows to check if the module

is still up-to-date (that’s the case in the example above). If the .gen file (or a file on which
it depends) were locally modified, the module would have been regenerated.

Consequently, you just have to call GNUmake to either regenerate or compile
the module. It is not necessary to invoke “manually” Gen

oM.

1.5 Module execution

Once the server and the codels are compiled and the link edition between them has been
done, the demo module is ready to be executed. The module is located in the directory
codels/${TARGET} (see figure 1.1), where ${TARGET} = ${MACHTYPE}-{OSTYPE}. Under

14 CHAPTER 1. THE DEMO MODULE, AN OVERVIEW OF GENOM

Unix, this is an executable whose name is the name of the module (under Solaris this would
be codels/sparc-solaris/demo) and under VxWorks this is an object file (for instance
codels/m68k-vxworks/demo.o).

The next two sections present a step-by-step tutorial on how to run modules under Unix
(section 1.5.1) or VxWorks systems (section 1.5.2).

1.5.1 Execution under Unix

Attention: The description of the execution under Unix might be obsoleted at
any time.

Module startup:

1. Launch h2 init to initialize communication libraries.

� �
r2d2[demo] h2 init
Initializing csLib devices: OK
Hilare2 execution environment version 1.0
Copyright (c) 1999 LAAS/CNRS
 	

Note: if you get the following message, it is usually sufficient to answer n:

� �
r2d2[demo] h2 init
Initializing csLib devices:
Cslib devices already exist on this machine.
Do you want to delete and recreate them (y/n) ?
 	

2. Launch the module.

� �
r2d2[demo] ./codels/sparc-solaris/demo -b
DEMO :
Spawn control task ... OK
Spawn task demoMotionTask ... OK
demo: All tasks are spawned
 	

Note: adapt the path to your system (e.g. i386/NetBSD or i386-linux).

3. You’re done! So... what?

So the module is running and ready to serve requests. We will see how this can be
done with the small interactive test program demoEssay generated by GenoM in the directory
auto/${TARGET}.

1.5. MODULE EXECUTION 15

Client startup: the interactive test program demoEssay This client can be launched
with the shell script demo_essay in the main directory of the module.

� �
r2d2[demo] ./demo_essay 1
 	

Note: if you launch several clients, remember to change the number (we choose “1” in the
example above).

Killing the module:

� �
r2d2[demo] killmodule demo
 	

At this point you can start a new instance of the module.

Cleaning everything:

� �
r2d2[demo] h2 end
 	

1.5.2 Execution under VxWorks

Module startup:

1. Log on the rack, using e.g. rlogin

2. Change to the module directory

� �
cthulhu-> cd "/hilare2/src/modules/demo"
value = 0 = 0x0
 	

Note: check the returned value is ’0’. If not, this is an error (you probably misspelled
the directory name).

3. Load the module with ld� �
cthulhu-> ld < codels/m68k-vxworks/demo.o
value = 3436488 = 0x346fc8 = _semdemoInitExecTab + 0x12c
 	

16 CHAPTER 1. THE DEMO MODULE, AN OVERVIEW OF GENOM

Note: adapt the path to your system (e.g. ppc-vxworks).

4. Launch the module

� �
cthulhu-> demoTaskInit
DEMO :
Spawn control task ... OK
Spawn task demoMotionTask ... OK
demo: All tasks are spawned
value = 0 = 0x0
 	

5. The module is running!

The module is ready to serve requests. We will see how this can be done with the small
interactive test program demoEssay generated by GenoM in the directory auto/${TARGET}.

Client startup: the interactive test program demoEssay

1. On the rack (not necessarily on the same CPU), you have to load the module’s client
library. This library can send requests to and receive answers from the module. It also
contains the test program.

� �
cthulhu-> ld < auto/m68k-vxworks/demoClient.o
value = 1289384 = 0x13aca8
 	

2. Before you start the test program, you have to start on the remote station the utility
xes_server that let you create terminals on your local station from VxWorks. Check
your DISPLAY environment variable is correctly defined and do

� �
pif[] xes_server
xes_server version 2.3
Copyright (C) LAAS/CNRS 1992,1994
 	

3. On the CPU where you loaded the client library, you can now tell VxWorks where your
xes_server lives (pif in this example).

� �
cthulhu-> xes_set_host "pif"
value = 0 = 0x0
 	

4. Last, launch the test program with the sp command, with a numeric argument between
0 and 9 indicating the instance number of this client.

1.5. MODULE EXECUTION 17

� �
cthulhu-> sp demoEssay, 1
task spawned: id = 0x1335d0, name = t1
value = 1258960 = 0x1335d0
 	

If everything went well, a new terminal with a text menu appears on your screen. Each
request you can send is associated with a number, and you can notice that the five first
commands (from 0 to 4) correspond to the requests you defined in the file demo.gen. The
special command labeled ’-99’ let you kill the module.

A detailed description of this interface can be found in the section 6.1, page 55.

Chapter 2

Modules description

This chapter will explain some vocabulary we use in this document, what are modules, and
how they work.

2.1 Vocabulary and general description

A module lets you integrate your algorithms and functions as a set of services in a standard
template. It then lets you access those services with a standardized interface. Produced data
can also be retrieved in a standard way.

The services are controlled (i.e. parameterized, started or stopped) with requests, that
represent the visible part of the module. Requests can be used either by an operator, another
module, or any other program.

To each request can be associated an input parameter and an output parameter (C struc-
tures as of today). When a service ends, a reply is sent to the client who invoked the corre-
sponding request. To each reply is associated an execution report: it describes the execution
of the service and lets the client know about problems that might have occured.

There are two kind of requests: the execution requests and the control requests. Execution
requests start an actual service, whereas control requests control the execution of the services.
Control requests can set parameters, interrupt services, and so on... Each module has a
predefined control request whose name is Abort: it can interrupt any running service as well
as the module itself.

The execution time of a control request is considered to be zero. Thus, they have only
one final reply, which is sent to the client immediately. On the other hand, execution requests
can last for an arbitrary amount of time. Thus they send an intermediate reply, as soon as
the service starts. The final reply is sent when the service ends.

A running service is called an activity. Some function, such as monitoring services, can
start several activity and execute them simultaneously. Other kind of function, such as
servoing functions, cannot handle parallelism and can only start one activity at a time.

Activities can control a physical device (sensors, actuators), use the services offered by
other modules (by the mean of requests) or produce data. These data can be transfered at
the end of the execution through the final reply, or at any time by the mean of posters.

A poster is a structure (C structure as of today) that is updated by an activity and shared
in the global system. It can be read by any other component of the system (a module, an
operator, ...).

20 CHAPTER 2. MODULES DESCRIPTION

Every piece of data that goes through a module (requests or posters) is stored in an
internal database which is called Functional Internal Data Structure (fIDS for short — you
might also find the acronym SDIf which is the French translation of fIDS).

2.2 Structure and functioning of modules

As shown in the figure 2.1, a module defines two Internal Data Structures: the functional
IDS (fIDS) and the control IDS (cIDS) dedicated to the internal routines. The module also
defines tasks (threads under Unix) that execute code. There are at least two tasks:

• One (or several) execution tasks that run your services and the algorithms they are made
of,

• One control task that controls the module.

services interface library

control
 task

functional
 SDI

control
 SDI

execution tasks
activities

control
poster

functional
posters po

st
er

s
in

te
rf

ac
e

lib
ra

ry

(sensor, actuator, module, ...)

Figure 2.1: Structure of modules.

The control task:

You normally do not have to care about the control task, but it’s a good idea to learn what
it does. The control task

1. receives the requests for the module,

2. checks the validity of the input parameters and store them in the fIDS,

3. checks if the module can start a given service (handles conflicts between requests),

4. tells the right execution task to start the service,

2.3. INTEGRATION OF THE ALGORITHMS: THE CODELS 21

5. and upon the termination of a service it sends back to the client any output produced
by the service (the execution report and — if needed — the C structure declared for
that service).

Beside this, the control task maintains a poster (the control poster) that contains infor-
mations on the current state of the module (running services, activities, and so on).

Conflicts between services are handled by the following procedure: if incompatible services
are to be run at the same time, the last request has the highest priority. Activities
that happen to be incompatible with that request are interrupted. This strategy matches a
reactivity criterion and is systematically applied.

You must declare yourself which services are incompatible with which services. Note that
a service is very often incompatible with itself; you must not forget to declare this.

Execution tasks:

Your own code is executed by the execution(s) task(s).
If this code is to be periodical (servoing, monitoring, filters, ...), you will have to use a

periodical execution task and specify its period. It is also possible to use a-periodical tasks and
a sequential scheduling. Tasks are given priorities (for VxWorks only at this time), depending
on their constrains in terms of resources and CPU requirements.

In the demo example, there were only one execution task (exec_task MotionTask). This
is usually sufficient since a single execution task can handle several activities in parallel.
However, if several activities require different priorities or periods, you will have to declare
several execution tasks.

Interface libraries:

Modules provide two standard interface libraries:

• A service library, which handles requests emission and reception,

• A poster library, which contains the necessary functions to read the module posters.

2.3 Integration of the algorithms: the codels

In order to associate your code to the requests, you have to tell GenoM which are the func-
tions that must be executed to handle requests. Your algorithms must be split into several
parts (startup, main function, end, interruption, ...). Each of these parts is called a codel
(elementary code). At this time, codels are C functions.

A module is the result of the link edition between the code GenoM has generated and the
codels libraries.

Chapter 3

Editing a module

Creating a new module implies writing two distinct parts: the description of the module (the
.gen file) and codels. This chapter describes the first part, the .gen file.

3.1 Using the XEmacs mode genom-mode

It is strongly advised you use the genom-mode under XEmacs to write your module. Besides
the syntactic coloring and automatic indentation, this mode defines several commands that
create GenoM structures (requests, posters, . . .). It also includes on-line help.

Commands can be accessed by three means:

• The (X)Emacs menu bar (GenoM Mode Commands)

• A pop-up menu with button 3 of the mouse

• The following keyboard shortcuts, beginning with C-c (control-c)

C-c C-m create a new module (first command to invoke)
C-c C-i import a structure
C-c C-r create a request
C-c C-p create a poster
C-c C-e create an execution task
C-c C-b indent whole buffer
C-c C-v check that every field is filled
C-c C-d remove optional fields that are empty (delete)
C-c C-h ... on-line help

Commands that create a GenoM structure (request, poster, . . .) prompt you for a name
in the mini-buffer. Additional arguments may be requested, depending on the particular
structure you are creating. Once you have supplied all the arguments, a template for the
structure is inserted in the buffer. Optional fields are surrounded by single superior and
inferior signs (< and >). Mandatory fields are surrounded by two superior and inferior signs
(<< and >>). You can refer to the on-line help to know how to fill in these fields.

On-line help can be requested with the C-c C-h key sequence, followed by one of the
following letter:

24 CHAPTER 3. EDITING A MODULE

h lists the available commands of genom-mode
m describes modules
r describes requests
p describes posters
e describes execution tasks
i describes structures importation
g describes the module generation
c describes the codels
C-h help on help (this list)

Help pages are made up of four parts:

• What is a ...?: general description of the GenoM structure

• How to create a ...?: how to create the structure

• How to instantiate the fields ?: how to fill in the template of the structure

• Examples: some examples.

Last, active zones (updated with the sequence C-button2) are defined for each request
and each codel of the requests. When clicking (button 2) on these zones, the file containing
the corresponding codel(s) is visited and the point is positioned onto the function. If the
function does not exist, an empty template can be inserted if you want so (the module must
be generated for this to work).

3.2 Writing a module

A module description contains five parts. The five section below will describe these parts,
and use the demo module as an example. The five parts are:

1. Module declaration

2. C structures and fIDS declaration

3. Requests definition

4. Posters definition

5. Execution tasks declaration

All the GenoM structures (module, request, poster and task) use the same syntax: a
keyword, which characterizes the structure, followed by a name and several fields enclosed
between braces ({ and }). The keyword is one of module, import from, request, poster
or exec_task.

In this section, optional fields are surrounded by < and >. Mandatory fields are sur-
rounded by << and >>. Optional fields that are not instantiated must be removed before the
module is generated.

3.2. WRITING A MODULE 25

3.2.1 Module declaration

A module declaration looks like this:� �
module <<module-name>> {

number: <<module-number>>;
internal_data: <<SDI-type>>;

};
 	
This part is mandatory and lets you choose a name for your module. Fill-in the field

<<module-name>> and choose a number for <<module-number>>. This number must be
a multiple of 10 greater that 1000. It should be unique and no other module should use the
same one.

The last field you have to fill-in is <<SDI-type>>, and you must choose the name of a
valid C type (this probably should be a typedef for a structure type). This will be the module
internal database. genom-mode provides you with a default value for this field.

3.2.2 C structures and fIDS declaration

Note: the functional internal data structure (fIDS, or SDIf in French) is a C structure that
contains all the requests input and output data, as well as the posters definition. When writing
a module, this structure can be defined progressively by adding the requests parameters each
time a new request is added.

Requests parameters, replies and posters

These are C structures you should define in C header files. You can include these headers with
the #include directive, as in plain C. Since these headers are parts of the module definition,
they should be located in the main directory of your module, in the same place as the .gen
file.

These structures will be used by other modules. Thus, it is strongly advised you prefix
their names with, e.g., the name of your module (see the example demoStruct.h in the
section 1.2).

Lastly, it is also advised you protect your headers of multiple inclusion with the standard
strategy:� �

#ifndef FILENAME
#define FILENAME
...
#endif /* FILENAME */
 	
You must respect three rules in order to get your header files working with GenoM:

1. Allowed C types: GenoM can parse nearly all C type declarations. The only unknown
type is void and a few other constructions are forbidden: i. unions, and ii. recursive
type definition as in typedef B A where A is a typedef itself. A workaround for the
latter is to use a new structure:

26 CHAPTER 3. EDITING A MODULE

� �
typedef struct B {

A a;
} B;
 	

2. Limitations on pointers: Requests parameters, replies and posters will travel between
several processes, outside the module, possibly on another machine. Given that, the
notion of pointer, address or list does not make sense. They should not appear in this
context (but you can use such data types internally in your codels).

3. Alignment considerations: The structures you define can potentially be transferred
across several platforms. You must be aware that different systems do not align data
in the same way. In order to avoid problems, you should align yourself your data on
doubles (8 bytes). The following example illustrates this:� �

typedef struct PILO_MOVE {
int percentSpeed; /* percentage of max speed */
int padding; /* ALIGNMENT */
double distance; /* distance to travel */

} PILO_MOVE;
 	
External structures

It is possible to import, from other modules, external structure definitions. The corresponding
headers are included with the #include directive but, in that case, it has to be put in an
import from directive. This tells GenoM from which module the structures come, and avoid
duplication of the functions that deal with these structures.

In the example below, the module pilo uses structures defined in the module loco:� �
import from loco {
#include "locoStruct.h"
};
#include "piloStruct.h"

typedef struct PILO {
PILO_MOVE move;
LOCO_REF reference;

} PILO;
 	
It is recommended that you do not hard-code the path to the external headers. Instead,

use the option -I upon the module generation.

What should (and should not) the fIDS contain?

Requests parameters, requests replies and almost every poster will pass through the fIDS:
thus, they must be declared in this structure. The fIDS is also a way to exchange data
between tasks (or threads) inside a module. Conversely, data exchanged between codels of
the same task only do not need to be declared here.

3.2. WRITING A MODULE 27

3.2.3 Requests definition

There are threes types of requests: control, execution and initialization. The three types are
identified by the field type and one of the three keywords control, exec and init.

Examples of requests can be found in the chapter 1.

Control requests

They are defined with the keyword control in the field type:

� �
request <<request-name>> {

doc: "doc";
type: control;
input: <name>::<sdi-ref>;
input_info: <default-val>::"<name>", ...;
output: <name>::<sdi-ref>;
c_control_func: <codel>;
fail_msg: <msg-name>, ...;
incompatible_with: <exec-rqst-name>, ...;

};
 	
• doc is a short string that describes the service usage.

• input and output define respectively the input parameter and the output parameter of
the request. name is the name of this variable and sdi-ref the name of the corresponding
member of the fIDS (e.g. input: position::state.position).

• input_info lets you define default values as well as a comment for each member of the
input structure. This information is used for interactive requests invocation.

• c_control_func is a codel (C function) which is executed by the control task and which
controls the validity of the input parameter.

• fail_msg is a list of possible reports returned by the control codel (the special report
”OK” is always implicitly defined).

• incompatible_with is a list of requests of this module that are declared incompatible
with this request. Activities corresponding to the listed requests will be interrupted
upon invocation of this service. Two special keywords all and none let you declare all
requests (or none) to be incompatible with this one.

Execution requests

They are defined with the keyword exec in the field type. As opposed to the control requests,
those requests declare services that will be executed and they define a few more fields:

28 CHAPTER 3. EDITING A MODULE

� �
request <<request-name>> {

doc: "doc";
type: exec;
exec_task: <<exec-task-name>>;
input: <name>::<sdi-ref>;
input_info: <default-val>::"<name>", ...;
output: <name>::<sdi-ref>;
c_control_func: <codel>;
c_exec_func_start: <codel>;
c_exec_func: <codel>;
c_exec_func_end: <codel>;
c_exec_func_inter: <codel>;
c_exec_func_fail: <codel>;
fail_msg: <msg-name>, ... ;
incompatible_with: <exec-rqst-name>, ... ;

};
 	
• exec_task is the name of the execution task in charge of the codels execution.

• c_exec_func_start, c_exec_func, c_exec_func_end, c_exec_func_inter and
c_exec_func_fail are the codels of this service. All fields are optional, but at least
one of func_start, func or func_end must be defined. Codels are further described in
chapter 5.

• All other fields serve the same purpose as in control requests. See previous paragraph
for a description.

Initialization request

A special execution request is the initialization request. It is identified by the keyword
init in the field type (all other fields are the same as for execution requests). This
special request can be used to perform some initialization upon module startup. There
can be at most one such request and the module will not accept to serve any other
execution request until the init has been invoked. Control requests will still be served,
and can be used to set several parameters used by the init request.

In order to allow the invocation of the init request from a standard shell (for instance
as soon as the module is spawned), GenoM builds an executable called <module>Init
(where <module> is the name of the module) in auto/${TARGET}. This executable takes
exactly as many parameters as in the structure declared in the input field, in the same
order as they appear in the structure.

3.2.4 Posters definition

The posters let you export data, either automatically (you don’t have anything to do) or “by
hand” inside a codel. Data may be a member of the fIDS or not.

3.2. WRITING A MODULE 29

Data from the fIDS� �
poster <<poster-name>> {

update: <<update-type>>;
data: <<name>>::<<sdi-ref>>, ... ;
exec_task: <<exec-task-name>>;

};
 	
• update indicates whether the poster is updated automatically (auto) or by a codel

(user). The auto mode is usually chosen for periodical data such as a position.

• data is the list of data you wish to include in the poster. It is given in the same way as
the input and output parameters of the requests: a name, followed by a reference to a
member of the fIDS.

• exec_task is the task which owns the poster. This task is in charge of the update of
the poster for auto posters. Note that only the task which owns the poster can change
its content.

The data structure of the poster is a concatenation of the list of declared data. The
corresponding C type is defined by GenoM in the file auto/<module>Poster.h and its name
is <MODULE>_<POSTER>_STR (all uppercase) where <MODULE> is the name of the module and
<POSTER> the name of the poster.

For instance, the Mobile poster of the demo module (chapter 1) is defined as follow:

� �
typedef struct DEMO_MOBILE_POSTER_STR {
DEMO_STATE_POSTER_STR state;
double ref;

} DEMO_MOBILE_POSTER_STR;
 	
Other data

Data exported by posters are not necessarily members of the fIDS. This can be the case if
i. data structures are big: it is not advised to put them in the fIDS and copy them several
times, ii. data structures do not have a predefined size, as for lists for instance.

For this kind of posters, two new fields are defined:

� �
poster <<poster-name>> {

update: user;
type: <<type-name>>;
exec_task: <<exec-task-name>>;
c_create_func: <codel>;

};
 	
• type is the name of the C type of the data structure.

30 CHAPTER 3. EDITING A MODULE

• c_create_func optionally designates the name of a C function which is used to create
the poster structure. If it is not given, the module performs the memory allocation by
itself, using the size of the given C type.

3.2.5 Execution tasks declaration� �
exec_task <<exec-task-name>> {

period: <number>;
delay: <number>;
priority: <<number>>;
stack_size: <<number>>;
c_init_func: <codel>;
c_end_func: <codel>;
c_func: <codel>;
cs_client_from: <module-name>, ... ;
poster_client_from: <module-name>::<poster-name>, ... ;
fail_msg: <msg-name>, ... ;

};
 	
• period (optional) defines a periodical task. The period is given as an integer number

in ticks (at the moment, a tick is 5ms under VxWorks and 10ms under Unix). Take
care: the period must be a divisor or a multiple of 20. (e.g. 1, 2, 4, 5, 10, 20, 40, 60,
. . .).

• delay (optional integer in ticks). All periodical tasks with the same period will wake
up at the same time. The delay can be used to delay the waking up of a particular task
by the amount of ticks specified. delay can be none for a-periodical tasks.

• priority is used by the scheduler of the operating system. It is an integer between 0
(highest) and 255 (lowest). Priorities must be used to make sure that tasks with strong
real-time constraints will match their requirements. A common strategy is to use a
priority roughly “proportional to the inverse” of the period.

• stack_size is the size (in bytes) of the stack for this task. The size you need depends
essentially on the size of the local variables you use. A stack which is too small will
produce unpredictable results, so be sure to largely overestimate what you need. A
good choice is usually 20.000 bytes. You can then use utilities like checkStack for
VxWorks to obtain a better estimate. Note that under Unix, stack size are not used at
this time (the stack is grown dynamically).

• c_init_func is the initialization codel. It is called only once, just before the module is
ready to answer requests. It can be used to initialize internal variables (see also the init
request, which can be used if the initialization requires user inputs).

• c_end_func is the symmetric of the c_init_func. It is called once, just before the
module exits.

• c_func is a permanent codel. It is executed each time the execution tasks wakes up.
Thus, for a periodical task, it is also periodical.

3.2. WRITING A MODULE 31

• cs_client_from is a list of modules you wish to send requests to. It might be deprecated
in future releases.

• poster_client_from is a list of posters from other modules that you wish to use in
this module. This list is made up of coma separated items, where each item is of the
form <module>::<poster>. It might be deprecated in future releases.

• fail_msg is a list of reports that can be reported by the permanent activity c_func.
Since this activity does not belong to a request, its reports are stored in the control
poster of the module.

Chapter 4

Module generation

4.1 The genom command

Synopsis

genom [-ictxnd] [-Ipath] [-Dmacro] <module>[.gen]

Description

genom is the command that generates a module. The module argument is the name
of the file which contains the description of the module. The .gen is optional and is
automatically appended if omitted.

genom accepts the following options:
-i Installs the directory codels/: you should use this option when generating

the module for the first time. When called with -i, genom will install the
directory codels/ as well as templates for the codel files in this directory.
It will also create all the Makefiles (in the main directory and in the
codels directory) used to compile the module. If the files that would
normally be installed are already present, genom will ask for confirmation
before overwriting files.

-c Conditional regeneration: module is regenerated only if files from which
it depends have been modified since last generation (i.e. the .gen file or
files it includes).

-t Tcl libraries generation: Generates Tcl interface libraries. They are
mandatory if you wish to control this module from a tcl interpreter (see
section 6.2).

-x Propice libraries generation: Generates Propice interface libraries. They
are mandatory if you wish to control this module from a Propice program.

-n Generates the perl script that is used to generate the module, without
actually executing it.

-d Turns on debugging mode inside the yacc parser.
-Ipath Defines paths for included files (same as -I option of cc).
-Dmacro Defines macros as for cc.

Once the module has been installed (-i option) for the first time, you just have to
invoke make (GNUmake is required) in the main directory to regenerate or compile the
module.

34 CHAPTER 4. MODULE GENERATION

The -i option modifies files in the codels/ directory. Use it carefully. If you wish
to manually get a new template file for the codels, you can find them in the direc-
tory auto/user/. These files are always up-to-date. Also consider the XEmacs mode
genom-mode, which lets you insert codel templates into existing codel files (see chap-
ter 3).

4.2 Product of the generation

The module generation produces files in the two directories codels/ and auto/. The files
located in the codels/ directory are described in the next chapter. This section describes the
files located in the auto/ directory. The demo module is used as an example: you can always
replace the string demo by the name of your module.

Compiling these files produces binary objects and executables in the ${TARGET} sub--
directories. See appendix C for information on the file-system hierarchy.

4.2.1 Interface libraries

Requests library: demoMsgLib

This library implements the basic requests functions (request emission, replies reception) and
is used by the clients of this module.

The C source code of this library can be found in demoMsgLib.c and the prototypes
in demoMsgLibProto.h. The header file demoMsgLib.h, which must be included by clients,
contains the definitions for the server identification and communication establishment (name
and size of the mailbox, . . .).

To use this library, you must link your program with demoMsgLib.o under VxWorks (note
that the library demoClient.o already includes demoMsgLib.o) and demoClient.a under
Unix.

Posters library: demoPosterLib

This library implements the basic posters functions for this module (read and display func-
tions). The same structure as above is used: demoPosterLib.c is the source code and
demoPosterLibProto.h the prototypes definition. demoPosterLib.h defines the name of
the posters along with their data structures. The cIDS structure is also defined there1.

To use this library, you must link with demoPosterLib.o (or demoClient.o if you want
to use posters and requests), and demoClient.a under Unix.

4.2.2 Useful header files

The file demoHeader.h must be included in every codel file. It contains the definitions of
several constants that characterize the module (name, period, posters, . . .) as well as the two
macros that let you access the IDS (SDI F and SDI C).

The file demoError.h contains the definitions of the error codes (reports declared in the
fail_msg field) of this module.

1the structures included by the cIDS are defined in the file modules.h, located in the genom source tree.

4.2. PRODUCT OF THE GENERATION 35

The file demoType.h defines the actual IDS structure. It is not necessarily the same as
in the .gen file, especially if the module defines reentrant requests (i.e. compatible with
themselves).

4.2.3 Tcl library

The files demoTcl.c and demo.tcl are used by Tcl to control the module. See section 6.2 in
this document.

4.2.4 Propice library

The files located in the propice/ directory are used by Propice to control the module. See
section 6.3 in this document.

4.2.5 Executables: server, test program, initialization request

The executable demoEssay is an interactive test program. To use it, you just have to load
${TARGET}/demoClient.o (VxWorks) or run ${TARGET}/demo_essay (Unix).

The files demoCntrlTask.c, demoMotionTask.c and demoModuleInit.c contain the mod-
ule’s execution tasks source code. Once compiled, they produce the files demoModule.o
(VxWorks) and demoServer.a (Unix). The file demoModuleInit.c produces the function
demoTaskInit which spawns the module.

The file demoInit.c contains the code that invokes the Initialization request of the module
(if the module defines one). To use it, run demoInit (under Unix, the executable is in
${TARGET} and under VxWorks, it is contained in the demoModule.o object file).

4.2.6 Other files

The files demoScan.h and demoPrint.h contain the definition of the interactive functions that
scan the arguments of the module requests. These functions are used by the test program
demoEssay.

Appendix C gives an exhaustive list of the files produced by GenoM.

Chapter 5

Writing the codels

Codels are C functions (at this time) that interface a module and your algorithms: the module
executes the codels, which, in turn, execute your own functions. In particular, codels can
retrieve the requests parameters, map them into useful data for your functions, and then call
these functions.

5.1 Different kinds of codels

5.1.1 Codels associated to requests

Sending a request to a module ends up in executing the code of the codels associated to the
request. Two types of codels can be distinguished:

• control codels (defined with c_control_func) are executed by the control task. They
are essentially used for checking the validity of the input parameters of the request, just
before these parameters are actually written into the fIDS.

• execution codels (defined with c_exec_func*) are executed by an execution task and
represent the actual action of the service. Their execution create an activity, which lasts
until completion of the service. These codels exist only for execution requests.

The parameters of the C functions associated to the codels are the input and output
structures of the request. The input data can thus be passed to your functions, and you can
write the results into the output structure.

5.1.2 Codels associated to execution tasks

Three codels can be optionally defined for each execution task:

• Initialization codel (c_init_func). This codel is executed only once, when the ex-
ecution task is initialized and just before it starts serving requests. One can use this
codel to initialize the fIDS, and set default values to parameters.

• Termination codel (c_end_func). This codel is executed by the execution task upon
destruction of the module, just after it has stopped serving requests.

• Permanent codel (c_func). This codel is executed each time the task wakes up
(therefore periodically if the task is periodic). This codel creates a permanent activity.

38 CHAPTER 5. WRITING THE CODELS

5.2 Simple examples of codels

5.2.1 Example of control codel

Control codels are used to check the validity of input parameters of a control or an execution
request. They can prevent entering erroneous values into the fIDS. For execution requests,
they can also check that the module is in an adequate state before executing the requested
service.

Control codels take the input parameter of the request as input and must return either
OK if the parameter is valid, or ERROR if it is not. Warning: in the latter case, you must have
defined an error code and you must set it before returning ERROR.

If the codel returns OK, the input parameter is copied into the fIDS and the execution
continues. If the codel returns ERROR, the parameter is not copied into the fIDS and the final
reply is sent back to the client, along with the report which has been set by the codel. For
an execution request, the activity is not started. The error code is fundamental: if it is not
set, the client will have no idea of what happened.

As an example, here is the control codel demoControlSpeed of the request SetSpeed of
the module demo. This request expects a speed as input (structure DEMO_SPEED). Therefore,
the codel takes a pointer to this structure as first parameter. The structure DEMO_STR is
defined in the file demoStruct.h (see chapter 1).� �

STATUS
demoControlSpeed(DEMO_SPEED *speed, int *report)
{

/* Refuse *speed if the value is erroneous */
if (*speed != DEMO_SLOW && *speed != DEMO_FAST) {

*report = S_demoCntrlTask_INVALID_PARAMETER;
return ERROR;

}
/* Parameter is valid: it will be entered into the fIDS */
return OK;

}
 	
5.2.2 Example of execution codel

Execution codels are always associated to an execution request. They perform the actual
actions of the service.

For this first example, we will write a request that compute the norm of a 2-dimensional
vector. The standard math library already has such a function:� �

double
hypot(double x, double y);
 	
What we have to do now is to add to the module a request which we call Hypot. An

execution codel will do the actual computation, and call hypot(). The input parameter will
be a structure which will contain two members, x and y: we call it DEMO_VECTOR_STR. The
output parameter is a single double.

5.2. SIMPLE EXAMPLES OF CODELS 39

In the file demo.gen, we write:

� �
/* fIDS declaration */
typedef struct DEMO_STR {

DEMO_STATE_STR state; /* Current state */
DEMO_SPEED speedRef; /* Speed reference */
DEMO_VECTOR_STR vector;
double norm;
...

};

/* Hypot request */
request Hypot {

doc: "compute sqrt(x*x+y*y)";
type: exec; /* execution request */

input: vector::vector; /* vector (x, y) */
input_info: /* default values and */

0.0::"X coordinate", /* description of */
0.0::"Y coordinate"; /* parameters */

output: norm::norm; /* norm (result) */
c_exec_func: demoHypotExec; /* execution codel */
exec_task: MotionTask; /* execution task */
incompatible_with: Hypot; /* incompatibilities */

};
 	
In the file demoMotionTaskCodels.c, which contains all the codels for this task, we write

the demoHypotExec codel:

� �
ACTIVITY_EVENT
demoHypotExec(DEMO_VECTOR_STR *vector, double *norm, int *report)
{

*norm = hypot(vecteur->x, vecteur->y);
return ETHER;

}
 	
The return ETHER statement tells GenoM that the activity is terminated: the client will

get the final reply. We will see later the other values that can be returned at the end of an
execution codel.

The next step is to compile the module, and link it with the hypot() function. In this
case, hypot is a function of the standard library, so there’s nothing special to do. But it the
function were a function of your own, defined in a non-standard library, you would have to
edit the Makefiles and complete the variables:

• CPPFLAGS for the path to the headers of your library.

• LIBS for the path to the library itself.

40 CHAPTER 5. WRITING THE CODELS

Here is what it could look like with our example and the Makefile in the codels/ directory:

� �
[...]
CPPFLAGS += -I$(DEMO) -I$(DEMO)/auto -I$(DIRUNIX) -I$(DIRGENOM)
CPPFLAGS += -I/usr/include
[...]
LIBS = /usr/lib/libm.a
 	
If your external functions were defined in a C file in the codel/ directory (instead of in

an external library), you would simply add this file to the list of files to be compiled into the
codels library:

� �
[...]
SRCS = \

demoCntrlTaskCodels.c \
demoMotionTaskCodels.c

SRCS += hypot.c
[...]
 	
This simple example showed how to integrate your algorithms into codels. The sections 5.7

page 44 and 5.8 page 47 will present more complex examples.

5.3 Codel files and compilation

5.3.1 Splitting codels into several files

To help you write the codels, the -i option of genom generates empty templates in the codels/
directory. Then, you just have to complete the templates.

Note that if you use the -i option and those files already exist, genom asks for confirmation
before overwriting any file. It is not possible to fuse locally modified templates with fresh new
ones. However, the templates are always generated in the auto/users/ directory, so that you
can fuse parts together by yourself. The genom-mode can help you to do this: see chapter 3.

By default, there is one codel file per task. Control codels are grouped in the source file
demoCntrlTaskFunc.c and execution codels are grouped in the the source file demo<Exec
Task>Func.c, where <Exec Task> is the name of the execution task for those codels.

You are free to define additional files, or change the initial organization. Be sure you
update the SRC variable in the Makefile to reflect your changes.

5.3.2 Makefiles

Several Makefile are generated by genom. By default, they compile your codels files, and per-
form the link edition with the module server (demoModule.o for VxWorks and demoServer.a
for Unix).

Each file is compiled in the ${TARGET} subdirectory. For unix, the compilation produces
the executable demo and for VxWorks the object file demo.o.

You can change the standard Makefiles to suit your needs. In particular, you can:

5.4. ACCESSING THE IDS 41

• add files to the SRC list.

• add libraries to the LIBS list.

• add compilation flags such as -I or -D to the variable CPPFLAGS.

5.4 Accessing the IDS

You can access this structure from a codel at any time. A mutual exclusion lock protects the
structure against concurrent accesses.

5.4.1 The fIDS

The macro SDI_F defined in the auto/<module>Header.h header represent a pointer to the
fIDS of the module.

Warning: the input and output parameters of the requests can be those of simultaneous
activities (if the request is compatible with itself). In that case, these parameters are not
pointers to members of the fIDS structure declared in the module. Each activity must have
its own set of parameters, and GenoM generates arrays for that case. The member you have
defined in the fIDS still exists, but is not used. Thus, you should always avoid reading
parameters of a request directly from the fIDS, except if that request is incompatible with
itself.

5.4.2 The cIDS

The cIDS contains various parameters of the module (period, poster names, clients ids, . . .)
and its current state (activities, . . .). You can read the members of this structure thanks to
macros defined in auto/<module>Header.h.

Here is a non-exhaustive list, for a module pilo client of another module loco and with
an execution task Motion which updates a poster Ref:

name value
PILO_MOTIONTASK_NUM Id of the exec. task MotionTask
PILO_REF_POSTER_ID Poster Ref Id
PILO_MOTION_LOCO_CLIENT_ID Client id for loco
CURRENT_ACTIVITY_NUM(i∗) Current activity number
EXEC_TASK_PERIOD(i∗) Execution task period (seconds)

(∗) i is the id of the execution task, for instance PILO_MOTIONTASK_NUM.

5.5 Reports

In real situations, every action can fail. On a machine which interacts with its environment, it
is necessary to think of every such abnormal situation, in order to protect the whole system.
In case of an execution error, it is necessary to i. restore a sane state locally, to be able to
restart another execution and ii. report a precise information to the client so that it can take
appropriate decisions.

The list of abnormal situations is defined with the field fail_msg of every request.
These are strings, wich are meant to be human readable: for instance INVALID_PARAMETERS,

42 CHAPTER 5. WRITING THE CODELS

POSTER_NOT_FOUND, NOT_ENOUGH_MEMORY, IMPORTANT_DRIFT, CASE_NOT_MANAGED,
SOLUTION_NOT_FOUND, . . .

Reports must be precise: avoid strings such as ERROR. However, it is not necessary to recall
the name of the request: the client knows it already. Thus, a report INVALID_PARAMETERS
could be used for several requests without loss of information.

Modules must also restore themselves into a sane state and handle correctly future re-
quests. For instance, in the case of a NOT_ENOUGH_MEMORY, the module should free every
unused memory in order to be able to process less demanding requests. If the failure is such
that the module cannot restore a sane sate, it should put itself into the ZOMBIE state and wait
for a human debugger.

5.5.1 Numerical values of reports

Reports which are declared in the fail_msg field are mapped into 32 bits integers with the
VxWorks format.

The name of this integer is build as follow: S_<source>_<report>, where <source>
is the name of the task or the library which defines the <report> string. For instance:
S_demoCnrtlTask_INVALID_PARAMETER.

The numerical value is computed as follow:

• the 16 highest significative bits encode the id of the task or the library which defines
the report. This number is the id of the module N , N +1 for the requests library, N +2
for the posters library, N + 3 for the first execution task,

• the 16 lowest significative bits encode the id of the report inside the module, and is
computed by GenoM.

Error codes are stored in the file auto/<module>Error.h.

5.5.2 Installing the reports

Warning: this procedure might be deprecated.
By default, clients will display the numerical value of the reports. However, it is possible

to install reports in a global database. Client can then display reports as human read-
able strings. To do so, you must use the command h2addErrno located in the directory
/usr/local/hilare2/src/errorLib:

� �
pif[demo] cd /usr/local/robots/posix/src/errorLib
pif[errorLib] h2addErrno /usr/local/hilare2/src/modules/demo/auto/demoError.h
pif[errorLib] gnumake
 	

5.5.3 Displaying the reports

Warning: this procedure might be deprecated.
To display a report in clear text, use function of the library h2errorLib (installed in

/usr/local/hilare2/src/errorLib/).

5.6. UPDATING POSTERS 43

void h2printErrno(int bilan); display the string associated to the report
char const *h2getMsgErrno(int numErr); return the string associated to the report
void h2perror(char *string); display the string string followed by the

the string associated to the last report
(errno variable)

5.6 Updating posters

Posters which are declared as user must be updated by the codels. There are several ways to
do so: depending on the type of poster, you can use functions of the poster library posterLib
(see appendix B) or the function generated by GenoM (see below). The function posterWrite
is of particular interrest:

int posterWrite(POSTER_ID posterId, int offset, char *buf, int nbytes)

posterId is the poster id: e.g. PILO_REF_POSTER_ID for the poster Ref in module pilo.
posterWrite writes nbytes from buffer buf in the poster structure, starting at offset offset.
It returns the number of bytes actually written, normally nbytes.

Consider the example of poster Mobile in module demo. Its structure is:

� �
typedef struct DEMO_MOBILE_POSTER_STR {
DEMO_STATE_STR state;
double ref;

} DEMO_MOBILE_POSTER_STR;
 	
Example 1: you update the ref member. Since it is not at the beginning of the poster,

you must compute the offset:

� �
DEMO_MOBILE_POSTER_STR *mobile;
int offset;
double ref;
...
offset = (char *)(&mobile->ref) - (char *)(&mobile);
posterWrite(DEMO_MOBILE_POSTER_ID, offset, &ref, sizeof(ref));
 	

Example 2: GenoM produces a function that do the same as the above example:

� �
double ref;
...
if (demoMobileRefPosterWrite(DEMO_MOBILE_POSTER_ID, &ref) == ERROR) {

/* stop ... */
}
...
 	

44 CHAPTER 5. WRITING THE CODELS

Another more practical method consists in getting the actual address of the poster struc-
ture. This is done thanks to the posterAddr function. This function returns a pointer to the
structure of the poster, and you can write into it directly. Be sure to protect writings to the
poster with posterTake before writing anything in it and posterGive once you are done.

The three functions take one parameter: the poster id. posterTake takes another argu-
ment: POSTER_WRITE or POSTER_READ, for accessing the poster in write or read mode.

� �
static DEMO_STATE_POSTER_STR *addrPosterMotion = NULL;

/* Get the poster address */
addrPosterMotion = posterAddr(DEMO_STATE_POSTER_ID);
if (addrPosterMotion == NULL) {

*report = errnoGet();
return ERROR;

}

/* Update the poster */
posterTake(DEMO_STATE_POSTER_ID, POSTER_WRITE);
addrPosterMotion->state.speed = state.speed;
posterGive(DEMO_STATE_POSTER_ID);
 	

5.7 Splitting algorithms into codels

As we have already mentioned, algorithms must be integrated into codels. In the simple
example presented in the beginning of the chapter, the hypot function was put in a single
codel. For more complex algorithms, it will be necessary to split the functions call into several
codels. You will have to write the succession of codel calls.

The choice of the number of codels is generally not unique. But it is important to keep
in mind that a codel is the smallest entity that a module can handle. In particular, a codel
cannot be interrupted: during its execution the module cannot do anything else. The way
you split your algorithms will thus determine the latency of the module.

Consider the two most common classes of codels: periodical codels and aperiodical codels.

5.7.1 Periodical codels

For periodical codels (servoing, monitoring, filtering, . . .), the same function must be called
periodically. To do so, an execution request will be associated to a periodical execution task
and the codel will be invoked at each period.

Typically, this codel will be the execution codel of the request (c_exec_func). To let the
execution task call the codel periodically, the latter must let the task know that the activity
is not finished when the codel returns. This is done by returning EXEC instead of ETHER. The
activity stays in the state EXEC and the execution codel will be called at the next task’s wake
up.

Consider request Monitor, which monitorates the position of the mobile and throw an
alert when it has the requested value, say, myPos. The execution codel demoMonitor (see
below) is invoked (return EXEC;) until the position myPos has not been reached with the

5.7. SPLITTING ALGORITHMS INTO CODELS 45

DEMO_THRESHOLD precision. Once this position is reached, the activity ends (return ETHER;)
and the final reply is sent to the client.

� �
ACTIVITY_EVENT
demoMonitor(double *monPos, double *pos, int *bilan)
{

/* Get the current position */
*pos = SDI_F->state.position;

/* Test if we are in the monitored zone */
if (fabs(*monPos - *pos) > DEMO_THRESHOLD) {

/* if not, we continue with the same codel */
return EXEC;

}

/* The mobile is in the goal area: end the activity */
return ETHER;

}
 	
In this example, we used only one execution codel, which was invoked periodically.
If an algorithm had required an initialization step (e.g. for a sensor, a variable, starting an-

other service, . . .), this would have been done thanks to the start codel (c_exec_func_start).
This codel corresponds to the START state, and is always executed first if it is defined. At the
end of this codel, we would return EXEC; to switch to the EXEC state, or ETHER if we want
to stop everything.

Similarily, a termination phasis would be defined thanks to the termination codel (the
c_exec_func_end field) associated to the END state. To indicate, at the end of the execution
codel, that we want to go through this termination state, we just have to return END; instead
of ETHER.

5.7.2 Aperiodical codels

In the case of an aperiodical codel (e.g. a trajectory planning), the request associated to the
codel will be associated to an aperiodical execution task. The codel could be made up of only
one part, but if its execution took a while, it would be advised to split it into several atomic
pieces. You can then use the different states as mentioned in the previous section to glue
pieces together.

5.7.3 Interrupting a codel

An activity that goes through several codels (or several times through the same codel), can
be interrupted. (as we already mentioned it, a single codel cannot be interrupted). When
this occurs, the activity goes into the INTERrupted state, and the c_exec_func_inter codel
is executed. By default, there is no such codel, and the activity goes immediatly into the
ETHER state.

A sudden interruption can sometimes be problematic. You might for instance want to
stabilize a dynamic system before actually stopping, free some memory, or stop another

46 CHAPTER 5. WRITING THE CODELS

activity which is correlated to the one which is beeing interrupted. In that case, define a
c_exec_func_inter codel which will handle the necessary operations.

5.7.4 States and transitions of activities

The different states an activity can go through are shown on figure 5.1. The external ring
correspond to the normal sequencing: ETHER → START → EXEC → END → ETHER. START and
END states are optional. On any transition, one can go into the INTER state.

START

EXEC

END

FAIL

INTER

SLEEPETHER ZOMBIE

Figure 5.1: States and transitions of activities.

Note: in case of a problem, one can go into the FAIL state, or even directly into the ZOMBIE
state. The module is then frozen.

As of today, the number of states is fixed and a future version might change this. However,
a workaround is still possible with the current version, by using internal state variables. The
current states are recalled in the following table:

state comments codel (if defined)
START startup state c_exec_func_start
EXEC main execution state c_exec_func
END termination state c_exec_func_end
FAIL failure (and module freeze) c_exec_func_fail
INTER interruption state c_exec_func_inter
SLEEP suspended activity (waits an external event

to go back into EXEC)
ETHER terminated activity
ZOMBIE terminated activity and frozen module

State description:

• START is the first step of the execution. If the codel is not specified, the activity goes
directly into state EXEC.

5.8. WRITING THE CODELS 47

It is up to you to define the following transitions. To do so, codels must return one value
of the enum START, EXEC, END, ETHER, FAIL, ZOMBIE or SLEEP, which corresponds to the state
of the same name. One does normally follow the sequence START → EXEC → END → ETHER.

• EXEC, END and INTER are decribed in the previous sections.

• ETHER indicates that the activity does not exist anymore.

• ZOMBIE indicates that the activity stopped due to an abnormal situation. The module
is then frozen and will not answer any requests anymore. A special request Abort let
you resume the activity, which then goes into the ETHER state. This state can be useful
if you want to debug some problem. It can also be useful if you want to re-synchronize
two modules.

• FAIL terminates the activity, just before going into ZOMBIE. The codel can do some
additional cleanup.

• SLEEP suspends an activity, and waits for an external event to occur (a request, or an
h2evn event). Then it returns to the EXEC state.

The following table summarize the possible transitions, for each state:

possible transitions
state (codel) START EXEC/SLEEP END ETHER FAIL ZOMBIE
START (c_exec_func_start) X X X X X X
EXEC (c_exec_func) X X X X X
END (c_exec_func_end) X X X X
INTER (c_exec_func_inter) X X X
FAIL (c_exec_func_fail) X X

Note: a termination state (END, FAIL or INTER) is never interrupted.

5.8 Writing the codels

5.8.1 Control codels c_control_func

See example in section 5.2.1, page 38.

5.8.2 Execution codels c_exec_func_*

Execution codels have 1, 2 or 3 parameters, depending on the request. These codels can have,
in this order and if the corresponding data is defined, a pointer to the input structure, a
pointer to the output structure and a pointer to the report (always defined). Codels return
an ACTIVITY_EVENT, as exposed in the previous section.

Here is the demoGotoPosition execution codel (c_exec_func) of the MoveDistance re-
quest of the module demo. This codel, invoked periodically, controls the speed of the mobile
(according to the one specified with the SetSpeed request), and stops when the requested
position is reached. We suppose we have two low level functions which control the mobile:

• STATUS mobileState(double *position, double *speed) which get the current sta-
tus of the mobile (thanks to sensors) and

48 CHAPTER 5. WRITING THE CODELS

• STATUS mobileMove(double position, double speed) which move the mobile to the
requested position at the requested speed.

� �
ACTIVITY_EVENT
demoGotoPosition(double *goal, int *bilan)
{

double remain; /* remaining distance (m) */
double speed; /* requested speed (m/s) */
double increment; /* position change (m) */

/* Measure current speed and position */
if (mobileState(&(SDI_F->state.position), &(SDI_F->state.speed)) != OK) {

*bilan = S_demoMotionTask_MOBILE_OUT_OF_ORDER;
return ETHER;

}

/* Compute the remaining distance */
remain = *goal - SDI_F->state.position;

/* Get the reference speed */
if (SDI_F->speedRef == DEMO_SLOW)

speed = DEMO_SLOW_SPEED;
else

speed = DEMO_FAST_SPEED;

/* Compute an elementary move, according to the speed and period */
increment = speed * DEMO_MOTION_TASK_PERIOD;

/* Are we done? */
if (fabs(remain) < increment) {

if (mobileMove(*goal, 0) != OK) {
*bilan = S_demoMotionTask_MOBILE_OUT_OF_ORDER;
return ETHER;

}
return END;

}

/* Continue */
if (mobileMove(SDI_F->state.position +

SIGN(remain) * increment, speed) != OK) {
*bilan = S_demoMotionTask_MOBILE_OUT_OF_ORDER;
return ETHER;

}
return EXEC;

}
 	
Notes:
The SDI_F macro let you acces the fIDS structure.
DEMO_MOTION_TASK_PERIOD is the period of the execution task (stored in the cIDS).
We will see later how one can access IDSs and how reports can be used.

5.9. PARALLEL ACTIVITIES AND SYNCHRONIZATION 49

5.8.3 Initialization codel c_init_func

One initialization codel can be associated to any execution task, by the mean of the field
c_init_func. It is usually used to initiliaze the fIDS to a known state. It takes only one
parameter: a pointer to the report. It returns either OK or ERROR (in that case the module
does not start).

For the demo module, this codel chooses a default speed for the mobile and intializes its
state. Note that fISD are not automatically initialized with zeros.

The constants and default values used by a module are usually defined in a header file in
the main directory of the module. In that case this is demoConst.h.

� �
STATUS
demoInit(int *bilan)
{
SDI_F->state.position = 0.;
SDI_F->state.speed = 0;
SDI_F->distRef = 0;
SDI_F->posRef = 0;
SDI_F->speedRef = DEMO_SLOW;

return OK;
}
 	

5.8.4 Permanent activity codel c_func

A permanent activity can be defined for any execution task, by the mean of the field c_func.
It is executed each time the task wakes up. It is usually used to set up a filtering function
(pose computation, sonar echos reading, . . .), or a permanent servoing activity which starts
and stops with the module.

This codel takes only one parameter, a pointer on the report, and returns a STATUS (OK or
ERROR). Be warned that if an error is returned, the execution task is suspended (it is resumable
with a taskResume).

Since this activity is not associated to a request, the report is stored in the cIDS as well
as in the control poster. Clients can read the poster to know the status of this activity.

5.9 Parallel activities and synchronization

Execution requests can only be declared compatible or incompatible with each other. In
the first case, their execution becomes completely independent one another. In the second
case, they interrupt themselves. There are some intermediate cases, where requests must
synchronize, or exchange data. Those cases are to be handled by the codels.

To do so, it is possible to use activity ids: each eactivity is identified be a number between
0 and MAX_ACTIVITIES−1. From a codel, the current activity number is returned by the
macro CURRENT_ACTIVITY_NUM.

This id can be used to exchange information between activities. For instance, it would
be possible to declare a global (static) array, of size MAX_ACTIVITIES, in which each ele-

50 CHAPTER 5. WRITING THE CODELS

ment would contain information regarding each activity (current state, order of arrival of the
request, number of the previous and next activity, . . .).

Consider the following example, where you wish to concatenate several motion requests for
a mobile. The motion request must be compatible with itself (because it must not interrupt
the latest motion request) but the execution codel EXEC must not start before the previous
request has completed. This must be handled internally, and the transition START → EXEC of
a new activity must be synchronized with the transition EXEC → END of the activity.

Such a synchronization can be achieved in the codel c_exec_func_start. This codel can
register new activities in a global array, attach to them the previous activity, and stay in the
START state until the previous activity stops. The latter information will be registered by the
codel c_exec_func_end.

The following code proposes an example of such start and end codels, along with the
global data definition:

� �
/* Global array for "Motion" requests */
struct DEMO_MOTION_STR {

ACTIVITY_EVENT state;
int next;

} demoMotionTab[MAX_ACTIVITIES] = {ETHER, -1};

/* Latest "Motion" request sent */
static int demoMotionLast = -1;
 	
� �

/* Start codel c_exec_func_start of the "Motion" activity */
ACTIVITY_EVENT
demoMotionStart(MOTION_STR *params, int *bilan)
{

int current = CURRENT_ACTIVITY_NUM(DEMO_MOTIONTASK_NUM);

/* If that is a new activity */
if (demoMotionTab[current].state == ETHER) {

/* If there is an active activity: wait */
if (demoMotionLast != -1) {

demoMotionTab[current].state = START;
demoMotionTab[demoMotionLast].next = current;

}
/* No activity: one can start immediately */
else {

demoMotionTab[current].state = EXEC;
}

/* Append ourselves to the end of the list */
demoMotionLast = current;

}
return (demoMotionTab[current].state);

}
 	

5.10. CODING ADVICE 51

� �
/* Termination codel c_exec_func_end of the "Motion" activity */
ACTIVITY_EVENT
demoMotionEnd(MOTION_STR *params, int *bilan)
{

int current = CURRENT_ACTIVITY_NUM(DEMO_MOTIONTASK_NUM);
int next;

/* Next activity number */
next = demoMotionTab[current].next;

if (next == -1)
/* If there is no next activity */
demoMotionLast = -1;

else
/* Unblock next activity */
demoMotionTab[next].state = EXEC;

/* This activity is terminated */
demoMotionTab[current].next = -1;
demoMotionTab[current].state = ETHER;
return ETHER;

}
 	
Warning: if a synchronized activity fails (either because it is interrupted or because of a

problem), it must signal it to other pending activities in order to also cancel them. It will
also be necessary to set up a way to re-synchronize with clients, for instance with a control
request.

5.10 Coding advice

5.10.1 General coding rules

A module is designed to be integrated in a complex system: users and maintainers are usually
not the same people. For this reason, it is very important to respect a few coding rules.

• Split programs into functions and files of a reasonable size;

• Prototype functions;

• Comment your code while you are writing it:

– A comment for each function which documents the purpose and the limitations
you are aware of.

– A comment for an average of 3 or 4 lines of code.

• Avoid global variables;

• Avoid magic numbers (use constants and #define).

52 CHAPTER 5. WRITING THE CODELS

• Choose a uniform style, and follow it. For instance, VxWorks uses all uppercased words,
separated by underscores for constants (e.g. DEMO_SPEED) and lowercase words, with a
first uppercase letter for each word but the first (e.g. controlSpeed) for symbols;

• Prefix all exported symbols (types, constants, functions, . . .) with e.g. the module
name;

• Use explicit names. Avoid short names such as i, nb, num.

• Check validity of input parameters and return a report in case of an error.

5.10.2 Case of embedded real-time systems

Modules are likely to be embedded on a distant machine, where they will interact with other
modules and processes. This implies a few constraints since a failure of your module can
affect the integrity of the whole system.

Memory limitations: Memory is usually limited on embedded systems: there is not so
often a virtual memory system. You must thus avoid big data structures, and free as
much as possible unused memory. This can be done thanks to the END and INTER states
of the codels.

Memory sharing: Some systems (e.g. VxWorks) do not have private address space for
processes. Global data is shared among every processes which runs on the same CPU.
You must thus discriminate as much as possible global names. In such system, there is
nothing that will prevent global variables with the same name to interfere!

Furthermore, there are systems which do not provide memory access checks. It is
possible to read or write in the whole memory, even in the system memory. Array read
or writes beyond bounds will lead to unpredictable results... It is very advised to process
to memory checks with adequate tools such as workShop or purify.

Temporal constrains: For activities that do have hard temporal constrains,

• Give a high priority to the task,

• Avoid displays such as printf(), which can be very time consuming.

• Avoid dynamic memory allocations, expensive and not necesseraly bounded in
time. Modules generated by GenoM do no dynamic memory allocation: they ex-
ecute in constant time. Moreover, memory allocation can always fail, and thus
block an execution. It is safer to do all allocation (static or dynamic) upon module
startup.

To check that your activities do no last too much, you can display precise statistics for
codels. See chapter 6 in this document.

Error recovery: As opposed to a simulated system, you cannot just display an error message
and exit when you encounter an abnormal situation. The message will usually be lost (or
not seen) and the whole system can be in danger (with potential dangerous situations
for the machine).

You must thus:

5.10. CODING ADVICE 53

1. Think of every possible problem (invalid parameters, case not handled by the
function, insufficient memory, . . .) and define reports for every such situation.

2. Detect failures: check the parameters, check the results of functions.

3. Always keep a sane state inside your functions: free memory, . . .

4. Signal every problem with an appropriate error code

5. And if you display something, do not forget to precise the name of the module and
the function implied.

Chapter 6

Using modules

This chapter presents some means of using the services provided by a module and of addressing
data in the posters.

6.1 The interactive test program Essay

The interactive test program is a client of a module. One can launch several instances of it,
provided they are given different numbers (see chapter 1).

This program proposes a menu, which associates a number to each command: You just
have to enter the number corresponding to the command you want to execute. Pressing the
return key without giving any number invokes the last command.

6.1.1 Sending a request

The N requests of the module are numbered from 0 to N − 1. If a request has some input
parameters, they must be entered interactively.

The bracketed value is a default value: simply pressing return will select it. To interrupt
the interactive input, type “.” (a single dot): defaults values will be affected to the remaining
parameters. Default values are initialized to 0. Then they contain the last entered value.

Once you have entered the input data, you must confirm the execution. Type “a” to abort.
For an execution request, you must choose between the blocking mode or the non-blocking
mode. In the first case, the execution of the interactive program will be kept blocking until
the final reply of the request. In the second case, the request is just sent and you will be able
to see its final replies later, by yourself (with the command 77, see below).

6.1.2 Other commands

Six other commands are defined:

55: posters Display posters. This command displays another menu, which lets view either
a whole poster or a poster’s sub-structure.

66: abort Interrupt an activity. This command displays the list of running activities, and
waits for the number of the activity you wish to interrupt. Just type enter to leave this
menu.

56 CHAPTER 6. USING MODULES

Note: if there is no running activity, you can stop the module by entering -99. -66 will
resume suspended tasks.

77: replies Read the final replies. You must read pending replies from time to time to empty
the mailbox.

88: state Display the module state, i.e. the control poster.

99: quit Terminate the program. But not the module!

-99: end Terminate the program AND the module.

6.2 The interactive tcl shell tclServ

tclServ is a server which connects to a list of modules on one side, and accepts tcl clients
on the other side. Clients can then send requests to a set of modules, using the tcl scripting
language. This can be done either interactively, or by the mean of scripts.

To be able to use this functionality, you must generate the module with the option -t. A
separate document is (will be?) available, and describe the usage of this server.

6.3 Propice and transGen

You must generate the module with the option -x. A separate document is (not yet) available.

6.4 Accessing modules’ posters from modules

Two different cases must be considered.

• The name of the poster to be accessed is known (e.g. the position of a mobile in the
module which produces it).

• The poster name is not known a priori, and can be dynamically chosen.

6.4.1 The poster name is known

To be able to read such a poster from the codels of a module, the three steps below must be
followed:

First step: “poster client” declaration

Posters names must be declared within the field poster_client_from of each execution
task which will read those posters (i.e. the one that runs the codels that implement those
functions).

For instance, the execution task named MotionTask can be enabled to read the poster
Mobile from the module demo and the poster Echoes from the module us by stating:

6.4. ACCESSING MODULES’ POSTERS FROM MODULES 57

� �
exec_task MotionTask {

...
poster_client_from: demo::demoMobile, us::usEcho;
...

};
 	
This declaration lets GenoM find the necessary libraries and call the adequate initialization

functions.

Second step: reading a poster from within its clients’ codels

From within the codels, you can call the poster functions of the libraries usPosterLib and
demoPosterLib (in the auto/ directory of these modules). You just need to include the files
usPosterLib.h and demoPosterLib.h in the codels’ file.

The poster library provides read functions (functions xxxPosterRead) and display func-
tions (functions xxxPosterShow) for the control and execution posters of a module.

In the following example, one first reads the whole poster demoMobile, then only a sub-
structure Ref (see page 43 for the structure definition):

� �
#include "demoPosterLib.h"

DEMO_MOBILE_POSTER_STR mobile;
double ref;

demoMobilePosterRead(&mobile);
demoMobileRefPosterRead(&ref);
 	

These functions return a STATUS (OK or ERROR). Only the read functions have a parameter,
which is the address of the structure in which the read data will be copied.

As shown in the example, the function name is the concatenation of i. the name of the
module, ii. the name of the poster (Cntrl for the control poster), iii. the sub-structure name
(when a subpart of the poster is addressed instead of its whole) and iv. the suffix PosterRead
or PosterShow. These functions can be found in the header demoPosterLibProto.h.

Third step: compilation

Beware: this part might be subject to important changes
To use libraries correspondig to other modules, you must:

• Define the path of this module in an Init.make file. The variable is the name of the
module, all in uppercase letters.

For instance: DEMO = /usr/local/robots/modules/sara/demo.

• Add to the Makefile.unix and Makefile.vxworks a line such as

CPPFLAGS += -I${DEMO} -I${DEMO}/auto.

58 CHAPTER 6. USING MODULES

• Add to the Makefile.unix a line like:

LIBS += ${DEMO}/auto/${TARGET}/demoClient.a.

For VxWorks, you must load the client library demoPosterLib.o or demoClient.o
(which contains the first one).

6.4.2 The poster name is not known

If the name of the poster to read is unknown (e.g. if it will be set by a user) you cannot use
its library. You must use basic functions of the generic posterLib library instead.

When, at run time, you will get the name of the poster, you must first find its id number,
which is done thanks to the functions posterFind, as shown in the example below:

� �
static POSTER_ID distantPosterId;
char *name;
...
if (posterFind(name, &distantPosterId) == ERROR) {

*report = errnoGet();
}
...
 	

We have already seen how to write into posters. The read function works in the same
way:

The posterRead function has the same prototype as the posterWrite function:

int posterRead(POSTER_ID posterId, int offset, char *buf, int nbytes)

posterId is the poster id (returned by posterFind), offset is the offset in bytes from the
beginning of the structure and nBytes is the number of bytes to read. The function returns
the number of bytes actually read (normally nBytes).

As for posterWrite, it is also possible to use the address of the poster and write directly
into it, thanks to the posterAddr function. Such accesses must be protected with a pair of
posterTake and posterGive (posterTake must be called with the flag POSTER_READ instead
of POSTER_WRITE).

� �
double speed;

posterTake(posterId, POSTER_READ);
speed = addrPosterMotion->state.speed;
posterGive(posterId);
 	

6.5 Accessing modules services from modules

It is possible to send requests to module from any process, and in particular from other
modules (i.e. from their codels). As for posters, you must follow three steps:

6.5. ACCESSING MODULES SERVICES FROM MODULES 59

6.5.1 First step: declaring modules

The modules to which you want to send requests are to be declared in the execution task field
cs_client_from. For instance, if you wish to use the services of the modules demo and us:� �

exec_task MotionTask {
...
cs_client_from: demo, us;
...

};
 	
This step lets GenoM find the necessary communication libraries and automatically call

the initialization functions (create a mailbox, and get a client id).

6.5.2 Second step: sending requests and receiving replies

You can send requests from codels through the functions of the two libraries usMsgLib
and demoMsgLib (in the case of our example). To do so, you need to include the headers
usMsgLib.h and demoMsgLib.h.

The library demoMsgLib defines several functions whose names are concatenation of: i.
the name of the module, ii. the name of a request (Abort for the interrupt request), iii. a
suffix showing its purpose. Four suffixes are available:

suffix function
RqstSend send a request (non blocking)
ReplyRcv receive a reply (final or intermediate) (blocking or not)
RqstAndRcv send a request and receive the final reply (blocking)
RqstAndAck send a request and receive the intermediate reply (blocking)

For a control request, you can use the function RqstAndRcv even though it is blocking:
indeed, control requests are meant to execute in a very short time, so that the final reply
should quickly occur.

However, for an execution request it is strongly advised to use the function RqstAndAck,
which waits only for the intermediate reply (acknowledgment of the reception of the request).
In general, you cannot block your module until the completion of the remote request. The
final reply will be read with the non-blocking function ReplyRcv, which you will have to call
until reception of the reply.

Consider this example:

• To send the control request SetSpeed to the demo module, you can use the function
demoSetSpeedRqstAndRcv.

• To send the execution request Monitor, you can use:

– the function demoMonitorRqstAndAck and then
– the function demoMonitorReplyRcv in non-blocking mode, until the reply comes.

(if there is nothing else to do, the SLEEP state is particularly well suited).

The prototypes of these functions are defined in the header auto/demoMsgLibProto.h.
Generic functions (as for posters) also exists, and are documented in the sections below).

60 CHAPTER 6. USING MODULES

6.5.3 Third step: compilation

To compile and link under Unix, you can use the same procedure as for posters. For VxWorks,
the library to load is demoMsgLib.o, or demoClient.o which includes it.

6.5.4 An example

We present here a few examples, which involve a module pilo that must send the SetSpeed
and MoveDistance requests to the module demo. These requests are sent by the execution
task CmdTask. The cs_client_from: demo field has been declared in this task.

Sending a control request: RqstAndRcv

The functions RqstAndRcv can have 2, 3 or 4 arguments, depending on the input and output
declarations of the request:

� �
int ...RqstAndRcv(CLIENT_ID clientId,

[STR_IN *in,] [STR_OUT *out,] int *report);
 	
• The first argument is the client number. For instance: PILO_CMDTASK_DEMO_CLIENT_ID

for the module pilo, client of the module demo, in the execution task CmdTask (see
header piloHeader.h.

• The second and third arguments (between square brackets) are optional, and defined
only if the request defines an input or an output parameter.

• The last argument is the report, returned by the request.

This function returns FINAL_REPLY_OK if everything went well, or ERROR if not.

The following example sends the SetSpeed request from the codel piloSendRequest of
the module pilo:

� �
ACTIVITY_EVENT
piloSendRequest(DEMO_SPEED *speed, int *report)
{

if (demoSetSpeedRqstAndRcv(PILO_CMDTASK_DEMO_CLIENT_ID,
speed, report) != FINAL_REPLY_OK) {

return FAIL;
}
return EXEC;

}
 	

6.5. ACCESSING MODULES SERVICES FROM MODULES 61

Sending an execution request: RqstAndAck� �
int ...RqstAndAck(CLIENT_ID clientId,

int *rqstId, int replyTimeOut,
[STR_IN *in,] [STR_OUT *out],
int *activity, int *report);
 	

In comparison with the ...RqstAndRcv functions, the RqstAndAck functions have three
more arguments:

• rqstId is filled with the request id. This id will let you read the reply later.

• replyTimeOut is the time (in ticks) for which you want to wait for the final reply. The
value 0 means “wait forever”.

• activity is the activity number. This number will let you get information on it (state)
or abort it.

Note: if the execution is very fast, you can get the final reply immediately. This is why
this function also has the out parameter.

This function returns WAITING_FINAL_REPLY if the intermediate reply has been received,
or FINAL_REPLY_OK if the final reply has already been received. ERROR is returned in case of
a problem.

The following example shows the sending of the Monitor request from piloSendRequest2
in the module pilo:

� �
/* Global variables */
static int piloDemoMonitoRqstId = -1; /* Number of the request */
static int demoMonitorActivity; /* Number of the activity */
static double piloDemoMonitorOut; /* Output parameter */

ACTIVITY_EVENT
piloSendRequest2(double *posMon, int *report)
{

switch (demoMonitorRqstAndAck(PILO_CMDTASK_DEMO_CLIENT_ID,
&demoMonitorRqstId, 0,
*posMon, &piloDemoMonitorOut,
&demoMonitorActivity, report)) {

case WAITING_FINAL_REPLY:
return SLEEP;

case FINAL_REPLY_OK:
piloDemoMonitorRqstId = -1;
return END;

default:
return ZOMBIE;

} /* switch */
}
 	

62 CHAPTER 6. USING MODULES

Receiving replies: ReplyRcv

� �
int ...ReplyRcv(CLIENT_ID clientId,

int rqstId, int block,
[OUT *out], int *activity, int *bilan);
 	

This function takes two new arguments:

• rqstId, which is the identification number returned when the request was sent,

• block, which tells if we want to block until the reply arrives or not.

The following example shows the reception of the reply of the Monitor request from the
codel waitReply. We use the static variables defined in the previous example.

� �
ACTIVITY_EVENT
waitReply(double *posMon, int *report)
{

switch (demoMonitorReplyRcv(PILO_CMDTASK_DEMO_CLIENT_ID,
demoMonitorRqstId, NO_BLOCK,
&piloDemoMonitorOut, &demoMonitorActivity,
&report)) {

case WAITING_FINAL_REPLY:
return SLEEP;

case FINAL_REPLY_OK:
piloDemoMonitorRqstId = -1;
return END;

default:
return ZOMBIE;

} /* switch */
}
 	

Important note: The activity which sends the request and reads its reply can be in-
terrupted. In that case, the codel which reads the final reply might never be executed. It
is not advised to let such an activity pending, without reading its reply. To avoid this, you
must define an interrupt codel, in which you will interrupt the activity started by the initial
sending of your request. This can be done tanks to the Abort request:

6.6. ACCESSING MODULES SERVICES FROM ANOTHER PROCESS 63

� �
ACTIVITY_EVENT
interActi(double *posMon, int *bilan)
{

/* No current activity */
if (piloDemoMonitorRqstId == -1)

return ETHER;

/* interrupt the Monitor activity */
if (demoAbortRqstAndRcv(PILO_CMDTASK_DEMO_CLIENT_ID,

&demoMonitorActivity, bilan) != FINAL_REPLY_OK)
return ZOMBIE;

/* Wait for the final reply (which should arrive shortly thanks to the
interruption */

if (demoMonitorReplyRcv(PILO_CMDTASK_DEMO_CLIENT_ID,
demoMonitorRqstId, BLOCK_ON_FINAL_REPLY,
&piloDemoMonitorOut, &demoMonitorActivity,
&bilan) != FINAL_REPLY_OK)

return ZOMBIE;

piloDemoMonitorRqstId = -1;
return ETHER;

}
 	
6.6 Accessing modules services from another process

6.6.1 The library posterLib

The library demoPosterLib provides an initialization function demoPosterInit and a set of
read functions (ending with PosterRead) and display functions (ending in PosterShow) for
the control and execution posters of modules.

6.6.2 The library msgLib

Before you can use this library, you have to create a mailbox in order to receive the replies of
remote servers. This is done with the function csMboxInit.

Then, you must initialize connections for individual clients: for instance demoClientInit
in the libray demoMsgLib.

Before you quit, you must free this connection with demoClientEnd and close the mailbox
with csMboxEnd.

Appendix A

Troubleshooting

A.1 Module generation

Avoid conflicts with GenoM keywords: in the .gen file, do not use variables nor functions
named type, control, poster, . . .

Avoid conflicts with structure names which are generated by GenoM: DEMO_STR, . . .
GenoM should parse every valid C file. As of today, a few problems remain, especially for

unions and recursive typedefs such as typedef PILO_MOVE_STR PILO_MOVE_STR_2[2]. You
should not use them at this time.

Problems may also arise if you use different names for a structure and a typedef associated
to that structure, as in the following example:

� �
/* XXX avoid that at this time */
typedef struct DIST_STR {

double dist;
} dist_str;
 	

A.2 Execution under Unix

A.2.1 csLib initialization failures� �
rantanplan% h2 init
Initializing csLib devices:
Cslib devices already exist on this machine.
Do you want to delete and recreate them (y/n) ?
 	
→ csLib is already initialized. You can answer n if everything is ok and you don’t need

to initialize csLib again. Answer y if you need to reset csLib.

66 APPENDIX A. TROUBLESHOOTING

A.2.2 Module startup failures� �
rantanplan% ./codels/i386-linux/demo -b
Hilare2 execution environment version 1.0
Copyright (c) 1999 LAAS/CNRS
demo: error creating /home/matthieu/.demo.pid: File exists
 	
→ You didn’t kill properly an old instance of the module. Use the command “killmodule

<module-name>”.

� �
waits[demo] ./codels/sparc-solaris/demo
DEMO :
Spawn control task ... demoCntrlTask/posterCreate:

S_h2devLib_DUPLICATE_DEVICE_NAME
 	
→ The control poster already exists: an old module was not killed properly, see above.

A.2.3 Interactive “Essay” program failures

The shell blocks after sending a request: launch another task with another number.

A.3 VxWorks

A.3.1 Loading failures� �
undefined symbol: rdima
 	
→ The dynamic link edition failed: the symbol rdima (a function, or a variable) is unde-

fined. You must load the library that defines it before the library that uses it.

A.3.2 Module startup failures

A.3.3 Interactive “Essay” program failures

The terminal window does not show up.

• You didn’t launch xes_server on the remote station.

• The DISPLAY variable is unset, or is not properly set

• You do not authorize the remote machine to display on your display server.

• You did not define under VxWorks which Unix machine will host the display:
use xes_set_host <host> and xes_get_host to check.

A.3. VXWORKS 67

A.3.4 It was working, but...

Besides problems specific to your codels, some common problems can be the cause of sudden
failures:

A stack is too small
You can easily detect this with the command checkStack. This command displays the

stack usage for all tasks. If a stack size is labeled OVERFLOW, the stack is too small. If
the corresponding task is an execution task of a module, you just have to increase its size,
recompile and run the module again (stack_size field). If the task is a control task, you
have to turn the control codel into an execution codel (and increase the stack size of the
consequent execution task).

Local variables in your functions are stored on the stack. Avoid big arrays and other
huge structures. Be careful with the stdio functions such as fopen which are great stack
consumers!

Not enough memory
You can detect this with the command memShow. Check that you do not use huge data

structures and that you free memory as often as possible.

Common bugs in codels
Writes beyond arrays’ bounds and writes in memory pages that do not belong to you are

very common mistakes. Use common Unix tools such as purify or workshop to debug.

Appendix B

Communication libraries

Communication between modules is based on two libraries: posterLib for posters and csLib
for requests. This appendix presents a short overview of the functions of composing these
libraries.

B.1 Posters and posterLib

Posters are shared memory segments, that can be written by their owners and read by any
process. The basic poster handling functions and their prototypes are:

name description
posterCreate poster creation
posterFind look for a poster id given its name
posterWrite write into a poster
posterRead read a poster
posterAddr get the poster address
posterTake take the poster semaphore
posterGive give the poster semaphore
posterIoctl query information about the poster (date, ...)
posterDelete delete a poster
posterShow display the state of every poster
posterMemCreate create a poster at the given address

STATUS posterCreate (char *name, int size, POSTER_ID *id);
STATUS posterFind (char *name, POSTER_ID *id);
int posterWrite (POSTER_ID id, int offset, void *buf, int size);
int posterRead (POSTER_ID id, int offset, void *buf, int size);
void * posterAddr (POSTER_ID id);
STATUS posterTake (POSTER_ID id, POSTER_WRITE);

or (POSTER_ID id, POSTER_READ);
STATUS posterGive (POSTER_ID id);
STATUS posterIoctl (POSTER_ID id, int code, char *parg);
STATUS posterDelete (POSTER_ID id);
STATUS posterShow (void);
STATUS posterMemCreate (char *name, int busSpace, void *pPool, int size,

POSTER_ID *id);
(busSpace: POSTER LOCAL MEM, POSTER SM MEM,

POSTER VME A32, POSTER VME A24)

70 APPENDIX B. COMMUNICATION LIBRARIES

B.2 Requests and csLib

Communication between modules is based on the client/server library csLib. Messages (re-
quests and replies) are held in mailboxes (ring buffers).

csLib has the following properties:

• Both the sending of requests and the reception of replies can be done in non-blocking
mode.

• The reception of a request is associated to the execution of a C function.

• A request generates at most two replies.

• There is no dynamic memory allocation.

• It runs under Unix and VxWorks.

The client side provides the following functions:

name description
csClientInit
csClientRqstSend Send a request
csClientReplyRcv Receive a reply

B.3 Execution

VxWorks

There is normally nothing to do

Unix

Launch h2 init.
To access remote posters (on another machine), define the POSTER_HOST environment

variable with the name of the server machine (there can be only one, i.e. all the posters must
be hosted by the same machine).

The poster server posterServ is launched by h2 init, except if POSTER_HOST is defined.

Between Unix and VxWorks

This is not possible anymore with this version of GenoM.

Appendix C

The files generated by GenoM

This appendix presents a description of the files generated by GenoM (source files and compiled
libraries).

C.1 Source files in auto/

Server side:
demoCntrlTask.c control task
demoMotionTask.c execution task MotionTask
demoHeader.h constants and macros for IDSs (must included in the codels).
demoType.h C structures of the module (included by demoHeader.h).
demoModuleInit.c module startup.
demoInit.c initialization request.

Client side:
demoMsgLib.{c,h,Proto.h} Requests libraries.
demoConnectLib.c Smaller version of the library demoMsgLib.c: use this if you use

csLib directly.
demoPosterLib.{c,h,Proto.h} Posters libraries.
demoError.h Error codes (reports).

Test program:
demoEssay.c interactive test program
demoScan.{c,h} interactive scan of input structures
demoPrint.{c,h} display the C structures of the module

Tcl :
demoClient.tcl tcl scripts for request definition
demoTcl.c tclServ server functions

Propice:
propice/

72 APPENDIX C. THE FILES GENERATED BY GENOM

C.2 Binary files in ${TARGET}

• Libraries for VxWorks (beside individual .o object files):

– Server side:

demoCntrlTask.o  demoModule.o
demoDeplacementTask.o
demoModuleInit.o
demoInit.o

– Client side:

demoConnectLib.o } demoConnectLib.o
demoEssay.o }

demoTest.o

 demoEssay.o

demoScan.o
demoPrint.o
demoMsgLib.o
demoPosterLib.o

• Libraries for Unix:

– Server side:

demoCntrlTask.o }
demoServeur.ademoDeplacementTask.o

demoModuleInit.o
demoInit.o } demoInit*

– Client side:

demoConnectLib.o
demoEssay.o } demoEssay*
demoScan.o

 demoClient.a
demoPrint.o
demoMsgLib.o
demoPosterLib.o

— December , . Revision . —

	GenoM? What for?
	The demo module, an overview of GenoM
	Principle of the module generation
	An example
	Module generation
	Module compilation
	Module execution

	Modules description
	Vocabulary and general description
	Structure and functioning of modules
	Integration of the algorithms: the codels

	Editing a module
	Using the XEmacs mode genom-mode
	Writing a module

	Module generation
	The genom command
	Product of the generation

	Writing the codels
	Different kinds of codels
	Simple examples of codels
	Codel files and compilation
	Accessing the IDS
	Reports
	Updating posters
	Splitting algorithms into codels
	Writing the codels
	Parallel activities and synchronization
	Coding advice

	Using modules
	The interactive test program Essay
	The interactive tcl shell tclServ
	Propice and transGen
	Accessing modules' posters from modules
	Accessing modules services from modules
	Accessing modules services from another process

	Troubleshooting
	Module generation
	Execution under Unix
	VxWorks

	Communication libraries
	Posters and posterLib
	Requests and csLib
	Execution

	The files generated by GenoM
	Source files in auto/
	Binary files in ${TARGET}

