Experiences on the use of reset control in low-level feedback loops for the automotive industry

Luca Zaccarian
LAAS-CNRS and University of Trento

thanks to D. Nesic, A.R. Teel
S. Tarbouriech, C. Prieur, D. Alberer, F. Biral,
M. Cordioli, F. Panizzolo, M. Mueller, H. Waschl,
F.S. Panni, T. Loquen, F. Fichera

2016 IEEE Workshop on Open Problems and Challenges in Automotive Control

2016 IEEE-CDC, Las Vegas (USA), December 11, 2016
An analog integrator and its Clegg extension [Clegg 1958]

Integrators: core components of dynamical control systems

\[
\begin{align*}
\dot{x}_c &= A_c x_c + B_c v \\
\dot{x}_c &= 1 \frac{v}{RC}
\end{align*}
\]

- In an analog integrator, the state information is stored in a capacitor.
An analog integrator and its Clegg extension \cite{Clegg1958}

Integrators: core components of dynamical control systems

\[
\dot{x}_c = A_c x_c + B_c v
\]

Example: PI controller

- **Clegg’s integrator** \cite{Clegg1958}:
 - *feedback diodes*: the *positive* part of \(x_c \) is all and only coming from the *upper* capacitor (and viceversa)
 - *input diodes*: when \(v \leq 0 \) the upper capacitor is reset and the lower one integrates (and viceversa) \([R_d \ll 1]\)
 - As a consequence \(\Rightarrow \) \(v \) and \(x_c \) *never* have *opposite signs*
Hybrid dynamics rule flowing or jumping of solutions

Hybrid Clegg integrator:

\[
\dot{x}_c = \frac{1}{RC} v, \quad \text{allowed when } x_c v \geq 0,
\]
\[
x_c^+ = 0, \quad \text{allowed when } x_c v \leq 0,
\]

- **Flow set** \(C \): where \(x_c \) may flow (1st eq’n)
- **Jump set** \(D \): where \(x_c \) may jump (2nd eq’n)

- Clegg’s integrator Clegg [1958]:
 - *feedback diodes*: the **positive** part of \(x_c \) is all and only coming from the **upper** capacitor (and viceversa)
 - *input diodes*: when \(v \leq 0 \) the upper capacitor is reset and the lower one integrates (and viceversa) \([R_d \ll 1]\)
 - As a consequence \(\Rightarrow v \) and \(x_c \) **never** have opposite signs
Stabilization using hybrid jumps to zero

First Order Reset Element Nešić et al. [2011], Loquen et al. [2007]:

\[\dot{x}_c = a_c x_c + b_c v, \quad x_c v \geq 0, \]
\[x_c^+ = 0, \quad x_c v \leq 0, \]

Theorem If \(\mathcal{P} \) is linear, minimum phase and relative degree one, then \(a_c, b_c \) or \((a_c, b_c)\) large enough \(\Rightarrow \) global exponential stability

Theorem In the planar case, \(\gamma_{dy} \) shrinks to zero as parameters grow

Simulation

uses:
\[\mathcal{P} = \frac{1}{s} \]
\[b_c = 1 \]

Interpretation: Resets remove overshoots, instability improves transient
Piecewise quadratic Lyapunov function construction

- Proposed in Zaccarian et al. [2011], Loquen [2010], Aangenent et al. [2010]
- Given $N \geq 2$ (number of sectors)
- Patching angles:
 \[-\theta_\varepsilon = \theta_0 < \theta_1 < \cdots < \theta_N = \frac{\pi}{2} + \theta_\varepsilon\]
- Patching hyperplanes ($C_p = [0 \cdots 0 1]$)
 \[\Theta_i = \begin{bmatrix} 0_{1 \times (n-2)} & \sin(\theta_i) & \cos(\theta_i) \end{bmatrix}^T\]
- Sector matrices:
 \[S_0 := \Theta_0 \Theta_N^T + \Theta_N \Theta_0^T\]
 \[S_i := -(\Theta_i \Theta_{i-1}^T + \Theta_{i-1} \Theta_i^T), \quad i = 1, \ldots, N,\]
 \[S_{\varepsilon 1} := \begin{bmatrix} 0_{(n-2) \times (n-2)} & 0 & 0 \\ 0 & 0 & \sin(\theta_\varepsilon) \\ 0 & \sin(\theta_\varepsilon) & -2 \cos(\theta_\varepsilon) \end{bmatrix}\]
 \[S_{\varepsilon 2} := \begin{bmatrix} 0_{(n-2) \times (n-2)} & 0 & 0 \\ 0 & -2 \cos(\theta_\varepsilon) & \sin(\theta_\varepsilon) \\ 0 & \sin(\theta_\varepsilon) & 0 \end{bmatrix}\]

Hybrid closed-loop:
\[
\dot{x} = A_F x + B_d d, \quad x \in \mathcal{C} \\
x^+ = A_J x, \quad x \in \mathcal{D}
\]
Piecewise quadratic Lyapunov theorem

Theorem Zaccarian et al. [2011], Loquen [2010]: If the following LMIs in the green unknowns (where $Z = [I_{n-2} \ 0_{(n-2) \times 2}]$) are feasible:

\[
(Flow) \quad \begin{bmatrix}
A_F^T P_i + P_i A_F + \tau F_i S_i & P_i B_d & C^T \\
* & -\gamma_{dy} I & 0 \\
* & * & -\gamma_{dy} I
\end{bmatrix} < 0, \ i = 1, \ldots, N,
\]

\[
(Jump) \quad A_J^T P_1 A_J - P_0 + \tau J S_0 \leq 0
\]

\[
(Cont’ty) \quad \Theta_{i \perp}^T (P_i - P_{i+1}) \Theta_{i \perp} = 0, \quad i = 0, \ldots, N - 1,
\]

\[
(Cont’ty) \quad \Theta_{N \perp}^T (P_N - P_0) \Theta_{N \perp} = 0
\]

\[
(Overlap) \quad A_J^T P_1 A_J - P_1 + \tau_{\epsilon_1} S_{\epsilon_1} \leq 0
\]

\[
(Overlap) \quad A_J^T P_1 A_J - P_N + \tau_{\epsilon_2} S_{\epsilon_2} \leq 0
\]

\[
(Origin) \quad \begin{bmatrix}
Z(A_F^T P_0 + P_0 A_F) Z^T & ZP_0 B_d & ZC^T \\
* & -\gamma_{dy} I & 0 \\
* & * & -\gamma_{dy} I
\end{bmatrix} < 0,
\]

then global exponential stability + finite \mathcal{L}_2 gain γ_{dy} from d to y.

Clegg and FORE are hybrid

Exponential Stability

Set-point Regulation

Reference Tracking

Conclusions

References
Example 1: Clegg \((a_c = 0)\) connected to an integrator

- **Block diagram:**

- **Output response (overcomes linear systems limitations)**

- **Gain \(\gamma_{dy}\) estimates \((N = \# \text{ of sectors})\)**

- **A lower bound:** \(\sqrt{\frac{\pi}{8}} \approx 0.626\)

- **Lyapunov func’n level sets for \(N = 4\)**

- **Quadratic Lyapunov functions are unsuitable**

- **\(P_1, \ldots, P_4\) cover 2nd/4th quadrants**

- **\(P_0\) covers 1st/3rd quadrants**
Example 2: FORE (any a_c) and linear plant (Hollot et al.)

- Block diagram ($P = \frac{s+1}{s(s+0.2)}$)

- $a_c = 1$: level set with $N = 50$

- Gain γ_{dy} estimates

- Time responses
Stabilization using hybrid jumps to zero (recall)

First Order Reset Element Nešić et al. [2011], Loquen et al. [2007]:

\[
\dot{x}_c = a_c x_c + b_c v, \quad x_c v \geq 0, \\
x_c^+ = 0, \quad x_c v \leq 0,
\]

Theorem If \(\mathcal{P} \) is linear, minimum phase and relative degree one, then
\(a_c, b_c \) or \((a_c, b_c) \) large enough \(\Rightarrow \) global exponential stability

Theorem In the planar case, \(\gamma_{dy} \) shrinks to zero as parameters grow

Simulation

uses:
\[
\mathcal{P} = \frac{1}{s} \\
b_c = 1
\]

Interpretation: Resets remove overshoots, instability improves transient
Set point adaptive regulation using hybrid jumps to zero

- Relevant works Panni et al. [2014], Loquen et al. [2008]

- Parametric feedforward $u_{ff} = \Psi(r)^T \alpha$

$$\begin{align*}
\dot{x}_c &= a_c x_c + b_c v, \\
\dot{\alpha} &= 0, \\
x_c v &\geq 0, \\
\begin{cases}
 x_c^+ = 0, \\
 \alpha^+ = \alpha + \lambda \frac{\Psi(r)}{|\Psi(r)|^2} x_c,
\end{cases} \\
x_c v &\leq 0,
\end{align*}$$

Theorem: If FORE stabilizes with $r = 0$, then for constant r, $y \to r$

Lemma: Tuning of λ using discrete-time rules (Ziegler-Nichols)

Example: EGR Experiment (next slide)
Fast regulation of EGR valve position in Diesel engines

- Reported in Panni et al. [2014]
- EGR: Recirculates Exhaust Gas in Diesel engines
- Subject to strong disturbances ⇒ need aggressive controllers (recall exp. unstable transients)

Identified valve transfer function:

\[P(s) = \frac{2200}{(s + 164.4)(s + 10.69)}. \]
Feedforward: α converges to suitable parametrization

- \star: steady-state input/output pairs (stiction!!)
- Red Solid: $u_{ff} = \Psi^T(r)\alpha^*$, with α^* steady-state for α
- Black dashed: $u_{ff} = \Psi^T(r)\bar{\alpha}^*$ when pulling the valve with an elastic band
Experimental adaptation of feedforward in lab setup

- **Random sequence** of position reference steps
- Adaptation gain λ intentionally selected small and α initialized at zero to appreciate transient
- Initial transient shows **typical oscillations** arising with inaccurate feedforward
- As $\alpha \to \alpha^*$, the step responses become increasingly desirable
Laboratory experiments close to time-optimal

- **Time-optimal**: unrobust, obtained via trial and error
- **PI**: Tuned using standard MATLAB tools
- **Adaptive FORE**: Response after \(\alpha \to \alpha^* = (0.128, 0.087, 0.115) \)

- Note the exponentially diverging voltage: aggressive action for disturbance rejection on the real engine
Experiments on Diesel engine testbench (JKU)

Experimental testbench at the Johannes Kepler Universitet (Linz, Austria)

- **Specs**: 2 liter, 4 cylinder passenger car turbocharged Diesel engine

- **Compared**: to factory EGR valve controller coded in ECU (gain scheduled PI with feedforward)

- **Test cycle**: Urban part of New European Driving Cycle

- **Relevance**: Faster EGR positioning \Rightarrow Reduced NO_x emissions
Adaptive FORE provides substantial performance increase

- Mean squared error: ECU = 6.68 (100%), FORE = 1.53 (23 %)
- Improvement most important with EGR almost closed ($t \approx 117, 124$)
- Recent results promise time-varying reference tracking
Set-point Regulation using hybrid jumps to zero (recall)

- Parametric feedforward $u_{ff} = \Psi(r)^T \alpha$

\[
\begin{align*}
\dot{x}_c &= a_c x_c + b_c v, \\
\dot{\alpha} &= 0, \\
x_c^+ &= 0, \\
\alpha^+ &= \alpha + \lambda \frac{\Psi(r)}{|\Psi(r)|^2} x_c,
\end{align*}
\]

$x_c v \geq 0$, $x_c v \leq 0$,

Theorem: If FORE stabilizes with $r = 0$, then for constant r, $y \to r$

Lemma: Tuning of λ using discrete-time rules (Ziegler-Nichols)

Example: EGR Experiment (next slide)
Adaptive Reference tracking using hybrid jumps to zero

- **NEW Parametric feedforward:**
 \[u_{ff} = \Psi(r)^T \alpha \Rightarrow \Psi(r, \dot{r})^T \alpha \]
- **Proposed in** Cordioli et al. [2015]
- **Feedback/Feedforward equations:**

\[
\begin{align*}
\dot{x}_c &= a_c x_c + b_c v, \\
\dot{\alpha} &= 0, \quad \dot{\tau} = 1 \\
\dot{\Xi} &= e^{-A_f \tau} B \Psi^T (r, \dot{r}), \\
\end{align*}
\]

\[
\begin{cases}
 x_c^+ = 0, \\
 \alpha^+ = \alpha + \lambda \frac{(C \exp(A_f \tau) \Xi)^T}{\max\{1, |C \exp(A_f \tau) \Xi|^2\}} x_c, \\
 \tau^+ = 0, \quad \Xi^+ = [0 \ 0 \ 0], \\
 x_c v \leq 0, \\
\end{cases}
\]

Theorem: If FORE stabilizes, then for any \(\lambda \in (0, 1) \) the parameter estimation error \(|\alpha - \alpha^*| \) is non-increasing.

If \(\alpha(0, 0) = \alpha^* \), then any reference \(r \in C^1 \) is tracked.

Under *persistence of excitation* property, \(|\alpha - \alpha^*| \) converges to zero and **asymptotic tracking** of any \(r \in C^1 \) holds.

Note: this is a simplified exposition without temporal regularization
Reference tracking with approximate adaptation

- NEW Parametric feedforward:
 \[u_{ff} = \Psi(r)^T \alpha \Rightarrow \Psi(r, \dot{r})^T \alpha \]
- Proposed in Cordioli et al. [2015]
- Feedback/Feedforward equations:

\[
\begin{align*}
\dot{x}_c &= a_c x_c + b_c v, \\
\dot{\alpha} &= 0, \quad \dot{\tau} = 1 \\
\end{align*}
\]
\[
\begin{align*}
x_c^+ &= 0, \\
\alpha^+ &= \alpha + \lambda \frac{\varphi(\tau)}{\max\{1, |\varphi(\tau)|^2\}} \Psi(r, \dot{r}) x_c \\
\tau^+ &= 0, \\
x_c v &\leq 0,
\end{align*}
\]

Theorem: If FORE stabilizes, then for any \(\lambda \in (0, 1) \) the parameter estimation error \(|\alpha - \alpha^*| \) is **non-increasing**.
If \(\alpha(0, 0) = \alpha^* \), then any reference \(r \in C^1 \) is tracked.
Under *persistence of excitation* property, \(|\alpha - \alpha^*| \) converges to zero and **asymptotic tracking** of any \(r \in C^1 \) holds.

Note: this is a simplified exposition without temporal regularization
Continuous-time simulations predict desirable behavior

- Hybrid dynamics simulated in MATLAB using dedicated Toolbox (HyEQ from R. Sanfelice)
- Reference is repeated multiple times
- Parameters show desirable convergence (lower plot)
Discretized simulation with PWM \Rightarrow slight deterioration

- Sampled-data controller and PWM voltage: *simulation is not* hybrid
- Intrinsic robustness of scheme leads to slightly deteriorated behavior
- Slower convergence to zero of estimation error $|\alpha - \alpha^*|^2$
Software in the loop simulation requires accuracy

- **SIL**: control law is flashed into ECU and simulated against MATLAB model.
- To prevent freezing of parameter estimates α, a **32 bit accuracy** was necessary in some variables.
- Arising results essentially coincide with discrete-time simulation.
Experiments on the real valve are satisfactory

- Expected results from SIL confirmed by the experiment
- Small spike during the zero current phase could be removed by suitable logic
- Convergence of parameters is perturbed during some phases (disturbances?)
Clegg and FORE are hybrid

Exponential Stability Set-point Regulation Reference Tracking Conclusions References

Experiment: a different (richer) sinusoidal reference

- A close look reveals anticipatory action of the dependence on \dot{r}
- Feedback correction action reveals presence of exponentially diverging control bursts
- Homogeneous hybrid dynamics with unstable continuous-time component
Conclusions and future work

Conclusions

- Recent hybrid systems techniques allow to understand better Clegg integrators and FOREs (after 50 years)
- Reset control allows for aggressive control action (exponentially diverging input bursts)
- Resets destroy internal model property: special feedforward is needed
- The proposed feedforward provides convenient adaptation (memory of past transients)
- Experimental results keep confirming technological advantages

Future work

- Use alternative adaptation laws with weaker assumptions
- Extend to higher order plants (but still FOREs)
- Validate on additional experimental challenges

