Nonlinear control perspectives in Tokamak plasmas: applications to FTU and JET

Luca Zaccarian

University of Rome, Tor Vergata (Italy)

With FTU plasma control team, CREATE group, JET plasma operation group

EFDA FEEDBACK CONTROL GROUP KICK-OFF MEETING – July 29-30 2009
Advantages of nonlinear control solutions

- May overcome intrinsic limitations of linear control (e.g., overshoots, disturbance rejection, etc).
- Can handle soft and hard constraints more efficiently.
- Can directly address nonlinearities in a plant (saturations, quantization, general nonlinearities).
- Allows bumpless switching between different controllers.
- Often small extensions and modifications of substantially linear control schemes lead to large stability and performance improvement.
Handling input nonlinearities

- Anti-windup: address plant input distortion during transients

- Dynamic allocation: address steady-state input specs
Anti-windup application: FTU

- Small signal nonlinearity in current control of F coils
- Circulating current in thyristor bridges causes nonlinear response and destabilizes the closed-loop
- Anti-windup solution recovers closed-loop stability
Dynamic allocation application: JET

- Coil current saturation may cause experiment loss
Dynamic allocation application: JET

- Trade in some shape performance to move coils out of sat
Dynamic allocation application: JET

Similar tools allow to achieve elongation control at FTU
FTU: NL extremum seeking application

Framework:
Additional RadioFrequency heating injected in the plasma by way of Lower Hybrid (LH) antennas: plasma reflects some power

Goal:
Optimize coupling between the Lower Hybrid antenna and the plasma, during the LH pulse
Nonlinear extremum seeking for RH heating

Luca ZACCARIAN
Nonlinear Control Perspectives in Tokamak Plasmas
EFDA FCG MEETING- July 29-30 2009
Additional promising NL techniques

- Reset control systems: overcome limitations of linear sols

- Quantized actuation via (quasi) time-optimal control
Noise suppression via nonlinear filtering

Luca ZACCARIAN
Nonlinear Control Perspectives in Tokamak Plasmas
EFDA FCG MEETING- July 29-30 2009
Nonlinear filtering: zoom
Summary

• Nonlinear control solutions have been illustrated on examples
 • with input nonlinearities causing transient problems
 • with input nonlinearities causing steady-state problems
 • in the extremum seeking context maximizing RFH efficiency

• More generally several tools are available and can be used to improve upon what is achieved by linear tools

• Typically, interaction between control theorists and applied control people uncovers directions where nonlinear control can help