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Abstract—Hybrid systems serve as a powerful modeling cope with uncertainty. Probabilities and bounded setsvaoe t
paradigm for representing complex continuous controlled systems main representations of uncertainty.
that exhibit discrete switches in their dynamics. The system and State estimation of hybrid systems has received an inalease
the models of the system are non deterministic due to operation L .
in uncertain environment. Bayesian belief update approaches to atténtion in the last decade or so. But while the systems are
stochastic hybrid system state estimation face a blow up in the hybrid in nature, a first set of methods and algorithms for
number of state estimates. Therefore most popular techniques hybrid state estimation has remained close to continuaie st
try to maintain an approximation of the true belief state either estimation techniques [1]-[3]. Another cluster of apptoes

by sampling or by maintaining a limited number of trajectories. 5 mived an heterogeneous set of techniques for continuous
These limitations can be avoided by using bounded intervals to

represent the state uncertainty. This alternative leads to splitng  Stat€ estimation with qualitative reasoning [4]-{8]. Amert
the continuous state space into a finite set of possibly overlapping Set is formed of particle filtering methods whose focus is on
geometrical regions that together with the system modes form the sampling of discrete transitions [9]-[11]. This grouip o
contfigurattiotns of th% hybfiﬂi Syztel;n- Asfg.;:onseqléence}tﬂebtrlze filters has emerged as the set of most popular techniques.
oitem, siie can be capurd by s e number f VG Basicaly, they apply 2 Bayesian bele updte o stochast
compute these configurations efficiently. Results are presenteh  NYPrid systems [10]-[14]. The filter computes a posterior
two systems of the hybrid system literature. probability distribution function (pdf) on the continuopsrt
of the state, for each mode. Measurement likelihood wir. t
pdfs is used with transition probabilities to rank the pblssi
hybrid state estimates. These methods all suffer from akver
weaknesses.

[. INTRODUCTION The main drawback is an inevitable blowup of the number of
This paper is concerned with the state estimation of plan%ate estimates, which are also called hypotheses. It $tems
modeled as hybrid systems with uncertainty. It is targetdd€ fact that the statistics that are maintained on hypethes

th the same discrete states cannot be merged without loss.

at the monitoring and diagnosis of these plants. Most e bl ) ularly le when the hvbri
modern controlled systems exhibit continuous dynamicé wit ne blowup is particularly intractable when the hybrid syst

abrupt switches. These systems can be modeled with a mixt[fBreSents faults by discrete switches that may occur at any

of discrete and continuous variables. The discrete dyrem[t"®: Sfevr(]aral V\rllotr)ks have ex:colore_(lj Eet_h?ds for- mitti)ga}Firug th
evolve according to the switches that are represented ByWUP; through better use of available information by gk

transitions among a set of discrete modes. The behavio ead [1,5] or b,y enumerating the. first feyv bgst e;timates [16]
continuous dynamics are modeled within each mode, oftQM merging estlmates [17], [18]; hierarchical fllterlng I_;Lﬂsk
by a set of discrete time equations. In general the full lybrPENSitive sampling [20], learning [21], forward heuristéarch

state remains only partially observable. Depending on tl[ﬂaA'] or m.ixed_ sampling and search [2.2]' However, tr.ula.blowup
level of abstraction of the model, or because of physic mains inevitable and some_states with low probabilitiestm
or design impediments, some switches cannot be direc gdropped. Unfortunately this can lead to the loss of the tru
observed neither. The estimation of the hybrid state is tREate [23]- o . )

operation that reconstructs the whole hybrid state based od* S€cond problem lies in the infinite tails of the rep-
a stream of measurements and the knowledge of the hybrﬁ&entanonal pdfs. In prqcuce, the_Gaussmn dlstrlbyim
model. This is also known as hybrid state filtering, antyidely used for representing the belief states due to itsigoo

the module that performs this operation is called a filtestatistical properties. The distribution tails are the seawf

Most plants operate in uncertain environments and are msi/eral problems by notably preventing unambiguous fault

known accurately, due to the presence of sensor and procd&iection [24] and elimination of hypotheses. Working with
uncertainties. As a consequence, transitions among mof&gicated Gaussian pdfs [25] has been studied as an aiveqnat
may be non deterministic, and continuous behavioral moddidt 1S unattractive due to the loss of the statistical priwger
may embed a representation of instrumentation and procEs& Bayes rule does not yield a truncated Gau'é5|an ,
uncertainties. It follows that modern filtering algorithmmst ~ Additionally, the stochastic modeling of faults is weakcgn
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for a good part the modeled faults have never been observed
and thus a priori numerical knowledge such as probability of
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occurrence is indicative, at best. The reliability of thequwced

results can therefore be questioned. Nevertheless, énatlire  ,°*

has produced a plethora of algorithms that run a recurrerst:k

and rigorous Bayesian belief update on these values and thét.

require the computation of difficult integrands [26]. i‘l“: (Xm 1,%a.1)
Finally, current modeling formalisms do not accept con-s ; = (/,x.x)

straints that mix discrete and continuous variables. Ireggn s = (=", x"))

constraints over discrete variables apply to operatiorades, ¢’

and a set of linear or non-linear equations link continuousj

variables in each mode. But in case of software systems,-or af:

stracted continuous behavior systems, qualitative desmns

are better suited [27], [28]. There is a need for constrahds ok

formally capture dependencies between variables of differ x,

types. The absence of such constraints prevents a natural cdx

nection between variables of different types, and consgtue ffﬁ

decouples variables that are strongly coupled in nature. V5,

hybrid system.
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Adding up the facts, it appears that pdfs are simply badly
suited to the state estimation of uncertain hybrid systeiitts w

fault models. Such considerations are not new even for cafe continuous state space into a finite set of possibly aper!
tinuous systems [29]. Tackling the ambiguity that plagies tping geometrical regions that together with the system mode
stochastic filters recommends a bounded representation-of form configurations of the hybrid system. As a consequence,
certainty as adopted in set-theoretic approaches. Setethe the true system state can be captured by a finite number of hy-
state estimation of linear and non-linear systems [30[Hi83 brid configurations. The present work contrasts with thespur
been studied before, but not the case of hybrid systems. Tgrediction performed in reachability analysis of hybridtgms
present paper fills this gap by developing a hybrid schente thi@6]. First because our estimator reconstructs the hyhste s
supports bounded uncertainty with interval models. A sglecifor arbitrary continuous dynamics and switching condision
look is given at the articulation of discrete and continuouSecond because it operates incrementally in sampled time:
dynamics in that case. Doing so aims at circumventing mostdiscrete switches that occur between two sampled timesstep
the drawbacks that have been mentioned. Bounded uncgrtaiie reconstructed by our estimator.

yields several advantages compared to pdfs. First, it desvi

Overall the paper proposes a hybrid estimation method

guaranteed results; an enclosure of the whole set of re@t aims at computing an outer approximation of the hybrid
solutions. For this reason the use of bounded uncertairty Raate. In section II, the paper formalizes a hybrid modeling
been popular in applications to fault detection and diagnogcheme that naturally embeds both bounded uncertainty and

since it avoids false positive detections [34]. Second, randt

mixed discrete/continuous constraints over the hybridesta

importantly, it prevents the exponential blowup in the nemb Based on these two ingredients, it is shown that there eaists
of state estimates. The reason behind this key propertysisecial form of mixed constraints that fully capture a syste
that the estimates with identical discrete states can bgederhybrid configuration under uncertainty. Herecanfiguration
with no loss of information, i.e. preserving completenesg a mixed continuous/discrete constraint that charaerihe
Though this comes at a price. The recursive computatigssible hybrid states of the system at a given point in time.
of convex bounded trajectories suffers from the well-knowgonfigurations are detailed in section Ill. The hybrid state
wrapping effecthat results from the convex enclosure at eagkstimation process is developed in section IV. It is a mature
prediction step. This is because the convex bounds provide\@rsion of the work initiated in [37]. Experimental resuse

outer approximation of complex geometrical shapes and thgj section V.
computation is thus plagued with a recursively growing erro
This problem calls for aggressive optimization techniqtees
mitigate the error growth. Another well-know problem relat
to intervals is multiple incident parameters. Specifictsgges

II. HYBRID SYSTEM WITH UNKNOWN BUT BOUNDED

UNCERTAINTY

like optimization over a time sliding window may then be We represent a physical plant as a non deterministic and
required [35]. Summarizing, the computational burden of @ncertain hybrid discrete-time model. This representatias
stochastic filter comes from the need of tracking a very higleveral key features that significantly differ from the &xis
number of belief states, whereas that of set-theoreticithybmng formalisms. First, all continuously valued variable® a
state estimation lies in the computation of tight boundst Bassumed to be uncertain but numerically bounded. Secoad, th
as this paper shows, switched systems sometimes offer p chigamalism uses two timescales in parallel for the discretg a
way of tightening the bounds as a side effect of their choppedntinuous dynamics respectively. This permits an unknown

dynamics.

but finite number of instantaneous switches in the discrete

The alternative idea proposed in this paper leads to syittidynamics to occur in between two steps of the continuous



dynamics. Third, the representation does not make any p@randh are assumed to be unknown but numerically bounded.
ticular assumption on the conditions triggering the swetsh In particular, this means thdiw. | < €, and||v¢||c < €
especially w.r.t. the continuous state of the system. Kinalwheree,, ande, are known positive scalarg.||., denotes the
the model supports both qualitative and quantitative bieina oo-norm such that|w.|| oo = max; |we|, i =1, .
representations. For this reason, our formalism is richant What we denote theampled timescales the timeline that
more traditional ones such as [38] and suitable for modeling explicit in equations (2) and (3). Sampled time-skethus

a wide-range of physical components and plants. To hdibels thek-th sampling-period between continuous instants

the reader throughout the paper, Table | sums up the mdink — 1) and T;k. x.; andy.; are the valuation of the

notations. continuous state and output at sampled time-étep
Definition 1 (Hybrid System)A hybrid systemH is repre- 2) Discrete dynamics:A need for abstracted qualitative
sented by a tuple: representation of behavior was discussed in the introolucti
Behaviors that naturally express by means of discreteblasa
H:(X7E7Q7T?L7®) (1)

like those of embedded software also need to be repre-

where X = {X,, X.} is the set of discrete and continuousented. Thus at discrete level, these descriptions artewiit
variables respectivelyZ a set of difference equation), a set Propositional logic by a set of time-independent proposii
of propositional formulasZ a set of transitions. a set of formulas@ over discrete variables oXg.

continuous mapping functions associated to transitiond@a _Vhat we denote as tHegical timescalenarks the sequence
the initial variable values. of the changes in the discrete dynamics of the system. With

7 = (zm,1,Xq,) We specify the discrete state at logical time-
stepl. The switches from one mode to another are represented
by transitions Transition 7 switches H from mode z,, ;

A hybrid systemH abstracts the behavior of a physicato modex,, ;1. 7 is the set of theny transitions of H.
system through a set of functional modes. The systemde Transitions are of different types:
is x,,, that has domaifmy, - - - ,m,,, }. The full discrete state  + autonomousransitions that are triggered by conditions
is notedw = (z,,xq) Wherexy = [za1,- -+, Zan,]” i the over the continuous state. These conditions are referred
vector of other discretely valued variables used to describ  to asguards and noted¢ : x. — {0,1}. Section Il
qualitatively abstracted continuous behavior within modgo conducts an in-depth analysis of guards.

Xa =A{Zm, %41, -+ ,%an, }- The system mode is assumed not , commandedtransitions that are triggered by discrete
to be directly observabley; denotes the observable subpart commandsa,.

of x4. The vector of actually observed discrete values is noted, unpredictabletransitions, that have no guards and can
ya4. The discrete input vector is noted. trigger anytime, for instance fault transitions.

The continuous dynamics of the system are captured by {Retransition is said to beenabled whenever its guard is
continuous state vectat, = [zc1, -, e, ]|", Observation realized. Non determinism arises from the possibility ofihg
vectory., and continuously valued input vectar. The vector muyltiple transitions enabled simultaneously. When enatded
of actually observed values is notgd. X, is the set of all transition triggers a mode change. After a transition has
continuous variables. The continuous state is represewitbd triggered and switched the System mode fr@ml to Tim, 141
uncertainty in a bounded form. Thus is an interval vector the continuous state, , becomes (x. i) wherel, is denoted
(a box) in the continuous state space. Thakisis a closed the transitionmapping function
and connected rectangular subseff or equivalentlyx.. € Transitions are assumed to be instantaneous. However, when
IR" wherelR is the set of real valued intervals. The hybrichpstracting certain behaviors using a hybrid model, it appe

A. Variables and States

state of the system is noted= (m,x.). that transitions may have non-negligible duration. Thesené
framework supports the triggering of a transition after a
B. Time and Dynamics certain delay has expired. Importantly, the transitioggering

. . . . remains instantaneous. Thus the duration of a transition is
1) Continuous dynamicsEvery mode is associated to a : .
. . ) : really to be understood as a delay, that is a certain nuahbér
unique continuous evolution model. The continuous behavig : o .
) . L . sampled time-steps before an enabled transition doesetrigg
of the physical system is modeled by a finite set of difference . L
. . ; : nd does lead to a different mode. Assume transitiomas

equations inF with uncertain but bounded parameters. To eac . L
; ! . it§ autonomous guard enabled in x, it triggers d sampled

mode x.,,, corresponds a subset of discrete-time equations .0 X

. . . time-steps later, and the continuous arrival state is glwen
the following standard form, assuming sampling-periad I (41q). In the rest of the paper, we assume tHat 0

Xek = f(Xek—1,Uek—1,Wek—1,Tm) (2) with no loss of generality. _
Ver = h(Xek, Ver Tm) @) . 3) Discrete and continuous parallel timescaleAs men--

@ @R T T tioned above, our representation uses two discretized
where (2) is the state equation and (3) is the measureménmiescales in parallel on top of the continuous timescale:
equation/ is the discrete time indexy. = [w.1,- - ,w.n,]T the sampled and the logical timescales. As a consequence,
and v, = [ve1,- - ,fum,,“]T represent the process and meachanges in the discrete dynamics are not assumed to take
surement noise vectors respectively and are assumed toplaee at a particular sampled time-step but can occur in
independent. This uncertainty as well as parameters dgfinimetween two sampled time-steps. However, hybrid stated nee



(142, k) =1 if (x<a™

(+1,8) ™ m; ————=—% my. Notice that¢! = ¢> and

G-1,k=1) (k) (@+3k+1 dates ¢* = ¢*. L associates the identity function to every transition.
7'1 2 7'4
T 7’ 1. SET-THEORETICHYBRID CONFIGURATIONS
! 1 ! logical This section formalizes the concept of configuration of
-1 l l+1‘ I+3 a hybrid system. A canonical form of a transition guard
L+2 is given. It leads to the definition of a configuration as a
sampled

rectangular bounded region that enables a possibly empty se
k—2 k—1 k k+1 of transitions. Another contribution is the logical abstian of

a configuration, that articulates the discrete and the coatis
dynamics of the hybrid system. This formulation paves the
way for the estimation algorithms in section IV.

' continuous
(k—2)Ts (k—1)Ts kT (k4 1)Ts

Fig. 1. Discrete and continuous parallel timescales. Ttiansi are instan-
taneous but are represented by arrows from the previousdbtime-step to >
the time-step at which they trigger (e} triggers atl). Dates synchronize A. Transition guards

the timescales at every sampled time point. Commanded transition triggering is conditioned over the
discretely valued inputs; but these conditions are directly

expressed as constraints at the discrete level and do not

to be synchronized in time. Because the sampled time evolygy jire specific processing. Autonomous transitions requi
according to a fixed sampling peridtl, the logical time is ore attention.

synchronized with the sampled time, and not the opposite. InDefinition 2 (Autonomous transition guardfhe guard of
consequence, the logical time is always associated to tte fan autonomous transitionr’ is noted ¢ : x., =
sampled time-step that follows a switch, see Fig.1. Noté thaci, - ; )’ — {0,1}. ¢7(x.) can be expressed as a set of
for this reason, an instantaneous switch is always trigher®€gualities in the canonical form given in the if conditioh
after its occurrence on the physical system. In this conte>?tquat'0n (5). The inequalities referring to a given statéatie

g . ] :
(1, k) is adatefor the system, and, ;, denotes the hybrid state ™ define the partial guarg; (x.) as follows:

at logical time-sted, and sampled time-steja We assume a ¢ (xc) = /\qgga (xc) (4)
finite but unknown number of switches can occur between two o

sampled time-steps. In this case, hybrid states are indexed Lif @i S ¢ (Ters v s Teim1y Teir1s -+ 5 Ten)
dates whose sampled indexes are the same, but with differefft. (%) = 0 otherwise

logical indexes, see time-stépon Fig.1. In this formulation, (5)

the execution (solution trajectory) of the proposed claks o i ] N ]
hybrid systems is a succession of hybrid states at estatllisihereg; :x. — R is referred to as aondition functionand

dates. The execution corresponding to the succession ef dat stands either for<’ or ">,
1 2 3

o . ™ ™ ™ The indexi, identifies one specific condition function in the
on Fig.1 is writtens;_1 2, 81—1,k—1 — Si,k — Si4+1,k —

L4 set of condition functions referring to transitief and variable
Si142,k — S143,k+1- Z.. Note that no assumption is made on the form of the
condition function$. For sake of clarity, in the rest of the paper
C. Example we make two simplifying assumptions. First, we assume that

the set of condition functions is either empty or of cardiyal
1 for everyz.; and 7. In other words, there is at most one
inequality referring to a variable; associated to a partial
“Nard ¢]. Second, we assume that(x.) = 1 whenever the
set of condition functions is empty (i.@; is not specified).
This allows us to writep’ (x.) = A5, &7 (xc).

Example 1 (Thermostat System). The temperatureof a
room is controlled by a thermostat that keeps it betwegft
andz"* degrees by switching a heater on and off. The syst
is modeled as a hybrid systefd. X; = {z,,} with domain
{my = off,my = onmg = stuck opmy = stuck off}.
x. IS reduced to the temperatute of the room andu, : - 4
is reduced to the input. The continuous dynamics of the jUnpredlctabIe transitions are modeled with guards such tha

) : . -@) = 1, independently ok.. When the model contains guards
system are modeled by the first order differential equati 43 disjunctions of inequalities, these can be broken intodgl
& = D(u — z), where D is a multiplying factor. We model ) d '

E = {Ep.. Emy, Evp,, Em,} With B, — E,,. are such that over s_everal transitions and mpdes. Admittedly, the madeli
N 2 3 4 ! 5 of a discrete switch as a transition whose guard is made of
u = 7 the temperature outside the room, ahg,, = E,,,

are such thatu — h the heater constant whose value igisjunctions of inequalities necessitates a tota‘ofmodes.
N 77 is said to be enabled in the hybrid state= (m,x.)

uncertain but bounded. In discretized form, the dynamicsnenevergbj(x) — 1. When enabled, the triggering of the

are glve'n by the following recurre nt equation in Standaecéﬁansition is an instantaneous transfer of the hybrid state
form (2): 2 = axp_1 + bug_1, with a = 1 — DT, and

b — DT,, assuming a sampling peridfL. Q is empty, and another state (possibly identical) at the next logical tstep.

T = {r', 7%, 3,74} lwhere Tt my G=1it @2e™) mi, “The inequalities canonical form does not limit the expressiss of the
) =1 if (x<a™) 3 P3=1if (z>a™") framework. Complex inequalities can always be manipulatedetdiought

T :my ———————— Mo, T° : My ——— Mg, back to this form, possibly by introducing new variables.



This operation is detailed in section IV along with the hgbriX; concretizes the spfitof the continuous space defined by
state estimator. The rest of this section studies the streictthe autonomous transition guards at time-skepNote that
of the continuous space as constrained by the autonomdé{sevolves and is reshaped according to the continuous state

transition guards.

B. Grid of Configurations

vector at each time-step. Geometrically, the bounds of the
x’ . define edges that split the continuous state-space into

overlapping volumes shaped by boxes. Later developments

against a continuous vect&g % is done through the evaluatlonbounOI of X}, is written X, and the upper boung.

of the condition functlonsgz (xc,x). Each inequality referring
to a condition function indeed splits the domainxgf;, in two
sub-domains:

o &, = {1, @en,)” | ¢ (xek) = 1}, the reglon
that satisfies the inequalities, positivesub-domainx? ,
denotes the region in which transitiari is enabled at
sampled time-step.

« the region that does not satisfy the inequality, or negative

sub-domain, noteehx’ e = R — x/ ..x (complementary
set ofxc’k).
As x. ;. defines a box ifit"<, the values of thej(xc,k) are
bounded intervals of the forr{pﬂ (Xe,k), 97 (X)) Thus the
X) 0 and-x’ .., are interval vectors of dimension, the scalar

bounds of which take valugl? (Xe,k)s G0 (Xek), —00 OF +00.
Considering all autonomous transitions, this formulatieeds
to splitting the continuous space into several overlapgimg-
regions. The set of positive and negative sub-domains fqr

for all autonomous transitions are used to build what werrefe

to as the conditional domain of, ;.
Definition 3 (Conditional domain)Given a hybrid system
H, the conditional domain ok at k is given by Xj

[ (c)lw Xekr " ~nT] where
. xﬁ . is the positive sub-domain for every transition,
j=1,--- ,np of H;
° ick
guard.

Example 1 (continued). The model has two guards over four

transitions. Guards depend on temperatgre= x only. Then
Xy = [20, %4, 33, T3, T3] Wlth Z) =Jgmin gmer[ gl = 73 =
] — 00, 2™™], andz3 = 7} = [xm‘” +ool.

Example 2 Consider a hybrid systery with z,, taking its
value in domain{my,ma,m3}, X, = [e1,7e2]’, and T =

1 2
{71, 72} with 71 : my °, ma, T2 1 My LN ms, and

11 1if 2e1 < g (ze2) 2 1if zc2 > g2(zc1)
¢ =91 {O otherwise #* =95 {0 otherwise
Initially, H is in mode m;.
domain for this generic two-dimensional example,
situations: wherx, ; is real-valued and wher, ;, is a box.
In both cases the conditional domain is given by

~0 ~1 ~2
120 31 g2 1_ |Terk Teak Lok
Kie = oo Koo Kol = [igz,k Ty, f%zlj
|91 +ool ] —00,G14 ] - 00, o0
= 1= b0.g2, 1 - o0, 40| g2, oo

abbrewates;ﬂ (%¢,k). Note that wherx, ;, is real-
= gi,k'

wheregﬂ
J
valued,gm

Every combination of elements &F;, corresponds to a sub-
region of the continuous state-space in which some transiti
are enabled and some are not. These regions are in the form of
bounded boxes that support the conceptaffigurationof the
hybrid systemH. A configuration corresponds to a possible
situation of the hybrid system in terms of simultaneously
enabled and non enabled transitions. Due to the boxed shape
of the regions, the set of all configurations is organized in a
grid that evolves with time, dubbed tlgeid of configurations
Definition 4 (Configuration):A configurationCy, of the hy-
brid systemH at time-stepk is defined by:

« aconfiguration regiorre, , that is a box in the continuous
state-space that confines a region that simultaneously
enables a possibly empty subset of transitiong of

« a configuration functiond¢, that is a Boolean function
that tells whether there exist points of the continuousestat
X,k that belong to the configuration region or not.

- a configuration enabling se?, that indicates which
transition(s) are enabled in the configuration region.

A configurationCy, is hence defined by a tupled,, dc, , 77, ).
Definition 5 (Configuration region)At time-stepk and for

continuous vecto, 5, consider for everyi = 1,--- ,n., a

unit* vector 8; of size ny + 1. {B,,---,3, } form a set

of projection vectors that extract a combination of traosit

partial guards, one per continuous dimension. Then a config-

= ﬂ;?zl(ﬂxcyk) is the region that satisfies no partialuration region is the volume defined by

re, = X80 Xk ne, 180" (6)

whereX;, ; 1 yields theith line of matrix X;,.

Using bounds of the conditional domain we write the con-
figuration region’s frontier as the lowermost and uppermost
vertices of the region’s hyper-rectangle. They are given by

o, = X181 Xy 1 Bl
UKy m,81 X, 180" (7)

Different configuration regions may overlap. A consequence

Fig.2 pictures the conditional is that some configurations may be subsumed by some set of
in twother configurations, and then be left aside. In example 2, an

region obtained withg, = [%l and/org3, = [(g is subsumed

by regions obtained with other vectors. By éxtension, we say
that a configuratio’; is subsumed by a configuratidh when

the enabling set of; is also enabled by;, i.e 77 C TC@J and

the configuration region of the second is included in that of
the first, i.erc, C rg,. But mostly, this is a by-product of the

SWe enforce the term 'split’ over the term 'partition’ to adwledge the
possibly overlapping regions of the conditional domain.
4Here a vector in which a single elementlisand all others aré.
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(a) Functional representation of the guards. (b) Real-valuedx.. ;. (c) Uncertainx, ;; is a hyper-rectangle.

Fig. 2. Example 2: generic two-dimensional situation withrgsap! : zc1 < g1 (zc2) and 3 : zc2 > g3(zc1). The positive and negative sub-domains
are computed from conditional functiory% and g% taken atx, , or at its corners when it is a box. The upper bounds to canditi domainsgj (Xe, k)
are abbreviated &g , . A similar abbreviation is used for lower bounds. They yigld = [x2, %!, %2 ].

formulation. In practice such configurations are easilyided, C. Condition Variables
see |lI-C.

Definition 6 (Configuration Function)At time-stepk and
for continuous vecto. 5, the configuration functiod¢, of
the hybrid systenH is a Boolean function fronx. ; — {0,1}

Configurations relate sub-regions of the continuous space
to the enabling of transitions, which are discrete events.
Thus configurations are a natural articulation between the
continuous and the discrete dynamics. However at this stage

given by of the formulation, configurations have not yet been diyectl
1if re, Nxe e #0 related to the modes.
¢ = 30 otherwise. (8)  The difficulty is that one mode may be consistent with

several configurations of the hybrid system. Thus in the
thermostat example, then mode is consistent with both
] — 0o, ™) and x €]z™™, ™[, The opposite is also true

the conf!guratlorck |Fself),. IS Sa'd. to beenable.d Checking since one configuration may be consistent with several modes
X,k against the configuration regions of the grid hence allo S the same example, modes and off are both consistent

one to determine which transition(s) are enabled at tirep—si'with 2 €]a™in zmax ] |n the following we show how to relate

k. the configurations to the modes. The final aim is to give a

Definition 7 (Configuration enabling setlthe configura- formal basis for the estimation algorithm to circumvent the
tion enabling sef;, is the set of transitions’ whose guards fy|| enumeration of all possible combinations of modes and
are such thap (r¢, Nx.x) = 1. Itis empty whenevesc, = 0. configurations. What is sought is thus an articulation of the
configurations with the modes.

The solution comes quite naturally. The idea is to reflect
the enabled configurations at the discrete level. The edable
configurations can be expressed within the discrete state
« configuration regionsrcin = [Xh[l’v],@l,xk’[gr],@z]jﬂ = through a set of projection unit vectors: tfe that define the

Whendé¢, = 1, the configuration regionc, (and by extension,

Example 2 (continued.) Assume. j, is a box, see Fig.2(c).
This example has four not subsumed configuratidﬁé),, p=
1,---,4. They are defined by:

- . . 1 configuration regions (6). But relation (8) considers ohlgse
(%c4)" obtained with B, = 8, = [8} fe = regio%s that intgrseot(cy,z. The solution( gecomes to ftif:% the
(] — 00, g1ls] — oo,gg k[)T obtained with3, = {g} subset of vectorg, that define those configuration regions that
and B, — [é}; rew = (]gik,'f'oo[, [g;k,JrOO[)T i?ttlrslgys(?;t:nd to include them into the discrete represiemta
. . 1 0 . . . .
obtained with 3, = |0| and B, = |0|ircw =  To differentiate them from other vectors, these unit sohuti
1 2 T - - _ o vectors are noted’, = k%, Ky, -+, K5, |7, for everyi =
( 00’091”“}’ [927k’+OOD obtained with3, [(1)} and 1,---,n.. Everysl, has domain{0,1} and we refer to it as
By = {(ﬂ- a conditional variablesince it refers to which portion of the
« configuration function356<p), p=1,---,4 with S = conditional domain does enable a configuratief.is dubbed
6C<2> =0 and 5C<3> = 5C(4)k =1. * a conditional vector
« configuration eﬁablingksetsfc‘il) =Ty = 0; TS, = Definition 8 (Conditional Vectors)Given H and its con-
k

tinuous statex, ;, the conditional vectors, - - - , k);° are unit
vectors such thafXy ;1 j<d, -+, Xk pn. 80T N X # 0,

- k . . ¢ k . . .
{2} T = {71, 72}: the situation is non deterministic
. k .
sincer! andr? are enabled simultaneously. i=1, ., ng.



Given x.;, as a box, there exist many different combina- IV. HYBRID STATE ESTIMATION

tlonil O; con?_lltlona_l vefctors. E\_/er3|1| combmatpn Z)é’grgctsla Given a set of commands and observations at every time-
enabled configuration fror;. Finally, we permit additiona step, the set-theoretic estimation of hybrid states ctmais

constraints. among tha,fi and othgr discrete.variables Bl redicting a set of hybrid state candidates, and rejectinge
to be specified irQ). This allows discrete variables other tha hat do not predict the observations. In consequence, most

mo?c'es to Fjeper;]d on the continuous state valges. Adﬂ'twnauperations are concerned with prediction. The problem ef pr
configurations that are subsumed can be avoided. These Ggfifiqn, is its cost since many predicted states may end umbei

flguratlr(])ns arise from C(_)nd(;nt())narl] vectodr_s_ thaft extract ffm rejected. It is thus essential to eliminate impossible atds
sions that are unconstrained by the condition function®ules o o1y a5 possible. Prediction consists in a loop at each

transitions. Constraining the Boolean values of the aasedi sampled time-step: continuous prediction, then discrétte s

condition variables eliminates these solution vectore ®e prediction and continuous state transfer, til there are poem

example below. enabled changes in the discrete dynamics. It follows thdy ea
Example 2 (continued). ConsidefS, = [x0,,%,,%2,] elimination of state candidates is possible at every ofdbe’s

defined earlier.#?,, = &l,, =] — oo, +ool. Thus any steps. While continuous state'elimingtion simply reqqi_res a
! . ) o , 0 inclusion test of the observations, discrete state elitiina
configuration region obtained with solution vectass — {(ﬂ requires a full consistency check that is more demanding. Bu
and/ork? = 21 is subsumed. Constraints to exclude thedbis task has connections with a set of techniques refemred t
solution vectoros are Q. as the consistency-based approach to diagnosis [39]. These
techniques use the constraints in the models to limit thie sta
Example 1 (continued). Givenx. = x and henceX, = candidates to be considered [23], [40]. They can prune out
73, T}, 7%, T3, 73] defined earlier, the thermostat systergandidates at each step that standard filters would keegiin th
uses one vecCtoky = [Hdo,flﬁd1,f<&g2,l@d%7ﬁd4}T- Assuome set of estimates. In consequence, our algorithms rely aethe

. 0 techniques to manage discrete state consistency. To furthe
]mmln, xmax[g Tk, thenl‘(;d =10/, 0 . . . .

0 0 mitigate the number Qf candldates,.our_esumatlon scheme
are the five conditional solution vectors such tHak,Nz;, # Shows how the modeling of uncertainty in a bounded form
0. allows us to merge estimates with identical discrete sttes

- ) o proves to be a decisive advantage of state estimation based o
Conditional variables pave the way for the definition ofincertain but bounded models over state estimation based on
a logical configuration that. articulates the continuous andygchastic models. Also, our estimator includes a proeedur
discrete states and dynamics. that estimates several fast successive switches in thestiisc
dynamics, in between two sampled time-steps. Here again,
bounded uncertainty is key in allowing this feature.
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D. Logical Configuration

What is referred to as #ogical configurationis simply A, Hybrid state prediction in sampled time
the expression of a configuration at the discrete level. The
useful feature is that logical configurations directly teléo
the hybrid system modes.

Definition 9 (Logical Configuration):Given a hybrid sys-
tem H and its continuous state, ;, at time-stepk, a logical
configuration ofH is noted as the logical conjunction

1) Forward time prediction:A prediction of the hybrid state
is obtained with a forward predictive operator [41].
Definition 10 (Forward time prediction)The forward time
prediction(Sl,k,Q{ of a setS; ;1 of hybrid states at logical
time-stepl and sampled time-step — 1 is the set of hybrid
states that are reachable frosh,_, by letting the sampled
time progress ovety sampled steps. For a single hybrid state

Ne NT

vé‘k =2m A /\[/\ (’%fij — gj)] Sjk—1 = (7TI7XC,]€—1)1 T = (Im,lyxd,l)n
=1a=0 (sih—1)1 = {s1p = (71, Xc )| Xe k
where = f(Xeo—15Uc k-1, We k-1, Tm,1)}  (9)
£ = 1 if s} is the j-th unit vector, and (S, x—1)7 is the repetition of S, x_1){", v times, over all
/ 0 otherwise. Siko1 € Sip1-

There are many ways for relation (9) to be efficiently com-
Example 2 (continued). On Fig.2(c) the system is in mod@uted. The difficulty is that the box.; keeps growing
m1. We have seen thaﬂ,(:’) and c/(c“) are enabled. The with the number of steps. This is because the rectangular
conditional vectors of interest are thus) = [(1)} and approximation at each step introduces an error that is re-
0 0 0 Lo ~ approximated by successive steps, and thus rapidly anaplifie
Ky = h}? Ky = [(1)} and k3 = [?J respectively. This This phenomenon is known as theapping effectin general,
leads to two logical configurations;s\*), Vs{*), of the form convex optimization techniques help mitigating this exjo
v — (@ = m1) A {/\g [/\2_ (i, :5-)]}. of the_ uncertainty. Ip _the current !mplementatlon, intérva
k " ! =1 =01 T 5 numerical methods similar to those in [36] are used.



While the mechanics of transition triggering are describexhd Tl'l(p) UQu V(S,(f) is consistent. This is done in two
later, here it is enough to mention that two cases arissieps. Given a predicted hybrid statgy, x., is used to
i/ whenever no transition is enabled by the forward timénd X, and the conditional vectorsfi. Those vectors yield
prediction, then the observatiojs. » can be used to prunethe logical configurations7s\”) that are consistent with; .
impossible candidates; ii/ when a transition is enabledeob An initial set of conditional vectors is easily obtained by
vations cannot be used immediately since they may have bewating the continuous dimensions, and checking whether
produced by a behavior that is different from that of theentr X, intersectsx, ;. Further checking againsf) yields the
mode and model. Case i/ corresponds to applying set-theoreéduced set of logical configurations that are possible unde
filtering techniques to the forward time prediction. Line®d the set of qualitative constraints. Impossible configorati
non-linear filters have been described [30]-[33]. In theecaare eliminated. The second step takes the remaining logical
of non-linear systems, the produced bounded estimatesecarcbnfigurations and computes the configuration regions out of
approximated by a variety of geometrical shapes, elligsoithe predictedx, ;. Recall that every configuration region is
[33], rectangles [30], [32], polytopes [42]. These filteende shaped by a system of inequalities over the condition fonsti
utilized to control the quality of the forward time predami. 7 in (5). These inequalities form a constraint network among
In the following it is assumed that the produced shapes aséntinuous variables. Therefore the change of one variable
rectangular boxes, but the approach can be extended to oti&linded value often affects the range of other variables.
shapes as wéll By iterating a constraint filtering process over all conting

2) Forward transition prediction:A prediction of the dis- variables, the focus narrows down onto the only possible
crete switches is obtained with a second forward predicti¢@ntinuous states. The double logical/continuous fortiana
operator. of configurations from section Ill is key as it permits the

Definition 11 (Forward transition prediction)Given tran- pruning of impossible estimates at both levels. Basicélg,
sition 7 and a set of hybrid states, ;, the forward transition first pruning step takes place at discrete level, and thenseco
prediction (S; )" is the set of hybrid states that are reachablg continuous level. Information is passed through thechigi
from some state,; ;, € S by executing a transition. For configurations.
ik = (1, Xc ), With 1 = (2,1, %4,1), if 7 is enabled, 1) Discrete State Consistencyaiven a hybrid systenH

. , . and a predictions, , = (m;,x04), the {(x", V6")}, p =
(s1,6)” = {s141,6 = (7?1+17Xc,k)|xm,z — Tm 41

1,---,n, are such that
andx; , = l-(xc.x)} (10)  , they are consistent witk:
where ;11 = (xm,Hhxd,lH) is such thatQ U w1 is ﬂ.l(l’) UQU V(Sl(cp) is consistent. (11)
consistent. ) ) . '
By consistent, we mean that, ;+; andx, ;. together satisfy o m" = (a:m,l,xd{’l), so that the mode estimatg,, ; is
all formulas inQ. that of s; ;, since no transition has triggered yet.

3) Hybrid state prediction:The hybrid system prediction The conditional vectorss’, determine a set of logical con-
over time alternates both forward operators. As seen earlifigurations. A subset of those is selected by solving rela-
multiple transitions can be enabled simultaneously. Thiduie tion (11). This can be done with a constraint satisfaction
to the fact that the box. ; can span over several configuratiorengine. Solutions to (11) are logical configurations along
regions. A consequence is that different pointscpf, happen with discrete state estimatesl(p). This operation is noted
to enable and trigger different transitions, thus leadihg t{(7,1(1’)7V5](€P))}p:17__7np = sat(s;x, Q) where sat denotes

system from its current state to different modes and stat@ge constraint satisfaction engine. In the present impfeane
Given a forward time prediction, the aim of the estimatiofion the Boolean satisfaction engine described in [43] &dus
process is to transfer each point of the continuous statetat da, wide-range of other techniques are applicable.

(,k) to the possibly multiple mode(s) it belongs to at date 2) Continuous State Consistencyiven a configuration
(I+1,k). The solution is to produce a split of. x such that ¢(») at continuous level, the sub-regiod)’) of x. . that is

)

the produced fragments fit the grid of configurations. Erbl@nsistent with the configuration region is given by
transitions can then trigger from such state fragments hed t )

forward transition prediction yields the new set of modes of Xk = Xek N (12)

the system along with the set of continuous estimates. ) . )
Computingx,”, is more difficult than it seems. Recall that

B. Hybrid consistency problems re is equal tofXy 1 kg, -, Xi n,, 155°]", where thes,

Given a set of hybrid stateS; ,_, at date(l,k — 1) and are given byV(S,(f). Every unit vectorng extracts a positive
the forward time predictiorS, ; = (S, x_1){, the problem ©F negative subdomain froik;. Every subdomain is obtained

of intersectingx.., with the grid of configurations comes toPY evaluating a condition functioy, where; is given by the
1
the finding of a splitP,, — {51(71;37"' ’Sl(zp)} such that for €Nty equal(;c)) 1 of umt_vecto:r;d. To sat|sf.y. (12), thg points
®) , : L (D) of the boxx,", must satisfy all of the condition functions that
everyp=1,---,np, C; is a configuration, withx ", C rc . <
¢ 4 determmerc(p) .
k . .
5With the limitation that intersection with the grid of configtions may However, a variabler.; can t_)e coupled W'th some other
not conserve certain shapes. variablesz.;; through theg!. This means that tightening the



TABLE I TABLE Il

FINDING CONSISTENT CONTINUOUS STATEsfilter(Vél(f), Xe k) SPLITTING THE CONTINUOUS SPACE split(s; 1,).
Require: V(S,(Cm,'xc’k. Rle_q;ire: Sik-
1: Agenda ={g] | k¢, is the j-th unit vectori =1,--- ,n.}. CobE = 82 o ) _ @
2 x(P) _ ) 2: Find the combinations o}, forall i = 1,--- ,n. that define theVékq ,
3 while Agenda not tyl g=1",ng.
: while Agenda not emptylo )
4:  Select g in Agenda. 3 CompUte{((T;'lm:V5;(Cp>)}p:1,-»- np = 8at(sy k, Q), np < ng.
5:  Recompute positive subdomai? ,, i.e. find the z/, , < 4: for a(II )V5k do »
) ) ) ’ . P) _ - p
Do 200 S thatg B = 1. 5 XU = filter (5, xe )
When; = 0, the negative subdomain is recomputed instead. 6: if xf}l # () then
Int = al; N wif k- 7: sl@k) = (ﬂ‘l(p),x(plz )
if Int =0 then _ ’ o
g! is inadmissible forxip,i. g Py — P rUs; .

6
7
8 () Lreturn P .
9 Rejectvs,”.
10: I’(etl).ll’l"l 0.
11 if =2 Ca’. , then

ci,k = “cik . . . . . _
12 Removeg! from Agenda. defined earlier. Thefilter operator applied to each configu
13
14

else o, ration reducesx.; by using partial guardj} (step 5, Table
A(df; {g], | K is the j-th unit vector;’ # i} to the Agenda. I1). In both cases, evaluating? (x. ;) does not further reduce
15: x ") — Int.

(‘k( : X. . Results are thelstf’,l and x((f,z.
16: return x'7). ’ ’
k

C,

In all cases, remark that the union of the continuous state
fragments yields the originally predicted state. That e t

P H—1... i
bounds ofz. has an effect orx.;;’s bounds. This problem Xep P =1, , Np, that result from the split of a state;

can be seen as the task of filtering a set of bounded variab#§ such thaUZi1 xi’il = X.. Formally, this is because
z.; with a set of inequalities over those same variables. Sulii¢ conditional domainX;, of x., contains the positive

a problem can be solved with a slightly revised version &nd negative sub-domains, , and —x,, for all transitions
standard filtering or branch-and-bound techniques. Indiged 7/. Therefore, the entire continuous state-space is covered
general these techniques do not handle inequalities byt oy configuration regions and botk., < U2, rew and
equality constraints [44]. The algorithmic solution in Tab | »» (P _ U (ro) N Xe, (from relation (12)) hold.

H H : . . p=1“*c,k — Up=1
Ilis a vanant_of the_gonstral_nt propaga_tl_on system |n_[44 However, the hybﬁd states produced by a split are rarely
that handles inequalities. Prior to detailing the algonith

o ; o h optimal: some hybrid states are in fact not reachable by the
admissibility and consistency are to be distinguished: system. This is due to a lack of constraints between modes

« A condition functiong; is said to be admissible fot. . and conditional variables in logical configuration equasio
iff there exists at least a point aot.; such that the In example 1, hybrid stata, = (z,, = on A x;) with
inequality based om (x. ) is satisfied; xr > ™% is unreachable but predicted at some point:
« X, IS said to be consistent with! (x. ) when the the thermostat cannot be turned on and the temperature be
inequality based org{ is satisfied for all points ix. ;. over the upper threshold™®*. The problem is complex as
Algorithm in Table Il findsx'") such that it is consistent with these configurations represent the so-calfeythical states
all of the condition functiona}]{ that determiner,,(,,. The al- [28], [45]-[47], i.e.instantaneoustates between normal states

. : i K g when a discontinuous change takes place. In a mythical, state
gorithm constrains all the variables that appear in the itimmd the variables do not satisfy all of the system constraintss T

functionsg] drawn from an input logical configuratio‘ﬁé,ip). appens to be the case of the stateabove since a transition
It QOes S0 _until each condition funption s either sa_tisfie?& the modeoff is enabled but has not triggered yet. The
or |nadm|’SS|bIe. H;e operator desc“?ed by the algorithm b?oblem is that it is not clear whether these states reptesen
dubbed filter(Vo,™, xc.r). Its result is a continuous statéyery short but real instances, or whether they are artifatts
fragmentx”;. the representation and reasoning procedures. For thisrreas
the split operator is said to be complete but unsound.

C. Splitting the hybrid state with configurations o )
D. Switching in sampled time

When the split is completed, some of the configuration en-
abling sets are not empty. The two final steps of the estimatio
q:ocess are thus the triggering of the enabled transitiods a
the use of available observations. The triggering of ttéors
at sampled time raises two problems:
Example 2 (continued). Starting from the configurations ob- , A transition triggering is always considered a small
tained in Fig.2(c), Fig.3(a) and 3(b) picture the split otth  period of time after the real switch has occurred. A
continuous space for enabled configurati §> and C,(f), consequence is that., computed at time-step is not
respectively. The logical configurations aw,f) and Vé,(f) guaranteed to capture the real behavior of the system.

The operator that articulatest and filter, the discrete and
continuous consistency operators respectively, is redelo as
split. split applies to a seb; , of hybrid states and returns
another sef, ;,, see Table Ill. The algorithm takes a predicte
hybrid states; ;, as input.
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(3)

S =
—1 -1 I+1,k —
Te2 91,k Te2 91,k Te2 enclose('rz,sl(gk)) g},k
(., (o, 1
~ g3(za) 91 (@e2) ~ g3(za) 91 (@e2) 91(wc2)
gg(l’cl)
x) X N
2 2
gZ,k g2,k
2
9ok AN
< Zel } Lcl Tl
(a) Split with configuratiorC,(c?’). (b) Split with configuratiorCff). (c) Triggering of72 from C,(f’).
Teo @  _ =1 Teo gt Te2 (3) (5)
¢ LK T 91k ¢ ) 91,k ¢ merge(s“rl’k,s”l’k)
enclose(T ,s“c) Sk = ,
92(ze1) enclose(T2, Sl(k))
,1
L 1
@ 2
xc,k X<4)
2 2 ek
EbEA 92,k
1 g%(xc2) gg(xcl) 9%(Ic2) 95(1(‘,1)
91 (xc2)
Tel Tl L1
(d) Triggering of 7! from C](f). (e) Triggering ofr2 from C,(f). (f) Merging of c) & e).

Fig. 3. Example 2. a) & b): continuous state split. On b), ndi@ the configuration domain has changed: the split \ym affects the value ogg x
The dotted line shows the previous boundary. c), d) & e): @l and switches, according T(CF(S) = {r2} and 7;5(4) = {71, 72}. Only the late switch
k k

is representedsﬁ’_)1 p = enclose(r2, 51(313)' 51(-45-)1 e = enclose('rl,s§4k)) and sgf_)l » = enclose(7?, s§4,3). f): merging step. Estimates obtained in ¢) & €)

have identical modens. In consequence, their continuous estimates can be merged.

. . . . . TABLE IV ’
« Multiple successive switches may occur during a singl&ppyies TraNSITIONT, ENABLED AT TIME-STER (I, k): enclose(r, s\7))

. . ke
sampled time interval.

1) Guaranteed enclosure at switching poinfEhe problem Reauire: s{) = (m{”’,x(?)), enabled transition-.
arises from the triggering of a transition in between twgl: Late switchis; , , :(ﬂfi)l,x;k) = <Sff§3>f-
sampled time-steps. At time-stép-1, no transition is enabled. 2: Early switch:sf, , , ;| = (ﬂfi)pXi,k_l) with x7 ) = Ir(Xek—1)
Prediction produces a set of hybrid states at time-step  andx.,_; :xf,z_lul*c(p) .
The split operator applies and splits the continuous statg. prediction after the early awitch
according to candidate configurations. As a result, assume
some configurations are found to enable transitions at timg:-
stepk and consider an enabled transitionOn the physical
system, T has triggered somewhere between sampled time-

stepsk — 1 and k. But prediction proceeds by computing a ) ) _
late switch at time-step. Let x. 1, k — 1 < k' < k be the the true physical state of the system. In practice, due tb hig

continuous state at the unknown continuous time instafig  Sampling rates, the assumption above s realistic and found
at which the transition has triggered on the physical systelfi @nother t()c;dy of works [36]. Table IV details the operator
and wherek’ € R. In generalx, »» Z X1, SO switching at: enclose(T, slf"k) that applies a transition to a state fragment

* — (S* )/
141,k 1+1,k—1/1 °
update:xi{),z = [min(xz!k,x/c’k), max(x:k, x’Ck)}

c,k/*

misses the transfer of some continuous regions. sl“;j and transfers the continuous state fr@rfﬁc) to Sl(i)l,k'
A solution is proposed to transfer the continuous state frofhe algorithm returnsfﬁ)1 . that is guaranteed to capture the

one mode to another which guarantees to capture the ttuge state of the system under the assumption above. The sole
behavior of the system. It computes an early switclk at1, subtle operation of the algorithm is step 2 thtually enables

in addition to the late switch ak. Under the assumption a switch at time-ste — 1. This is required since- cannot

that the continuous evolution of the system is monotonobg enabled at time-step — 1, as if it were, it would have
between two sampled time-steps, unionizing the continuouiggered at that time-step. So has to be virtually enabled
vectors obtained from both switches yields an enclosure aif ¥ — 1. This is achieved by triggering from the union
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TABLE V TABLE VI
switch (S ;) OPERATOR clear(S; ;) OPERATOR

Require: S; , £ = 0. Require: S; i, Ve k» Yd,k-

while 37 enabled ins; ;, do 1: for all s;, € Sp, do
Si4e+1,k = enclose(T,Si4¢ k), 2 if Yoo €Yo,k OF Ya,k A Xq,k iS inconsistenthen
E— £+ 1. 3: Removes; ;, from S ;.
Sl+§,k = S'plit(sl+£7k). 4: return Sl,k-

: Sl+$,k¢ = Spllt’l(sl-kﬁik’)

 clear(Siye ks Yk Veok)- TABLE VI

- merge(Site,k)-
retum  prunedsSy ¢ . Merge(S; ;) OPERATOR

Require: Sj j.
o . . . . , (1) (ng) () - o)
of xﬁp,z,_l and the frontierr,,,, of the configuration region I Group thes; j, € Sy p into {5y .-+, 5, "} such thatals; i € .5 ¢

that enables-. Note that the ‘algorithm requires working on a,. PO"’;V‘;E‘? ??Weqd(;zcrete state estimafe.
temporal window of at least two sampled time-steps, and that sl _ (ﬂfU’.‘% x(0:0))

(p) . . . : , Uj=1%cr )0
both Tew) andx.; , must remain accessible in memory. 4. o ai; > 1, remove alls(’;?) from S, .
. . . . Sireturn S .
Example 2 (continued). Fig.3(c), 3(d), 3(e) picture the trig-~ " ~"*
gering of the enabled transitions' and 72. On these fig-

ures, only the late switch is represented. We hsﬁéik =

enclose(rQ,sl(?k)), Sl(j-)l,k = 6nclose(7'1,sl(jlk)) and Sl(i)l,k =

enclose(72, 51(412)

F. Merging identical discrete estimates

Most approaches to the estimation of the hybrid states
apply Bayesian belief update to a stochastic hybrid system.

2) Multiple successive switchesWhen more than one These techniques have to deal with an exponential blowup
switch occurs between two sampled time-steps, each swiinhthe number of possible hybrid states. We can witness a
is predicted successively with thewclose operator. Operator similar effect in our case since thevitch operator generates
switch in Table V handles multiple switches in between twa growing number of states at each time-step. Adding up to
sampled time-steps. The number of successive switchesthis growing uncertainty that is due to the box approximation
noted £. At step 6, clear is the operator that prunes outof the forward prediction operator, the growth rate of new
the states that do not intersect the observations. At stepsfate estimates increases rapidly. In general this is thsore
the operatomerge optimizes the final partition by mergingwhy modern estimators track several hybrid state hypothese
hybrid states whenever this is possible. These two operateimultaneously. But inevitably, the number of states grows
are detailed in the two next paragraphs. A conditionsfoitch  exponentially with time as more hypotheses become likely.
to terminate is that the hybrid system’s behavicludes  The main advantage of our approach is that it permits the
infinitely many switches occurring in between two sampleterging of similar trajectories without loss. Consider gieg

time-stepsWhenever this condition is fulfilled, the algorithmthe uncertainty on two Stat@%c) andsﬁ): the gquestion is how

in theory always terminates. In practice however, ¢helose ; ; (2)
operator yields conservative bounds, and adds up to theahat-to merde thg two contm_uogs. vector est_lma:tég a-mdxc’k' t
' % easily achieved by unionizing the variable estimatechiisu

non convergence of numerical uncertainty. In consequehee, thq gole condition for the merging is that the discrete state

occurrence of infinitely many switches cannot be ruled outt, bﬂ_(l) and ﬂ_l(zk) are identical. Thellerge operator is given by

a theoretical analysis is beyond the scope of the preseRt.pag e vii. When splits and switches augment the number of

3) Recursive e.stimation:Fin.aIIy, the estimation of the hybrid state estimates at each time-step, the merging d
Stéfgs ofSa hybrtlﬁ tsysti_mH_ is captured by a SEqUENCEaguce this number substantially. In general this allowss th
p o0 ok, AL VerTes: estimation procedure to mitigate the explosion of modestand

So = switch(split((©)g)) (13) maintain a finite, almost constant number of hybrid estisate

Sivekty = SW'tCh(SPM“SMH/)) (14) Example 2 (continued). There are three estimates, repre-
Relation (13) initializes the hybrid states starting frohe t sented on Fig.3(c), 3(d), 3(e). On Fig.3(c}, has transferred
system initial condition®. The computation of the recursivethe system state telim = (mg,xf’,i). On Fig.3(d), !
relation (14) alternates forward time and transition prédhs has transferred the system Statesfé)m - (mz,xfg)- On

throughsplits and switches and results into an updated set Of:ig.3(e) 72 has transferred the system state ﬁ)l . =

hybrid states ever 0 sampled time-steps.
Y %7 P P (m3,x{). s{7),, ands{?, , can then be merged. This is

E. Hybrid state estimation pictured on Fig.3(f).

Theclear operator prunes out all state estimatgs that are Merging the uncertainty is particularly efficient to counte
such that the predictiop, ;, does not enclose the observationthe effects of the occurrence of multiple similar splits and
Yek, Or that do not predict observatioys; .. Note that the switches that are a consequence of the temporal uncertainty
measurement noise is already taken into account in (3),a0 tbue to the variable bounds. In general the uncertainty on the
Yer is a real-valued vector dR™v. continuous state translates into the occurrence of the same
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%683: ] thermostat. Right: Bi-tanks. Top curve: hybrid estimatesotefmerging;
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Fig. 6. Computation time per sampled time-step, in seconds. theftmostat.

) . L ) Right: Bi-tanks.
Fig. 4. Set-theoretic estimation of the hybrid state of arnfwstat system

(Example 1). Top figure: Mode estimation. Middle figure: tempee (C).
Bottom figure: temperature variation. All figures: X-axis isi¢. ) ) ) )
possible modes, each of which represents a combination of

functional modes for all components in the system. Results

transition switch over several time-steps. Such situatiare on running our estimator on these two systems follow.
common and lead to the production of many estimates with an
identical discrete_ state vyithin just a few _time-steps. gsh g General performances
merge operator, it takes just a few more time-steps to p@duc h ) h ) . f th )
a single estimate instead. However, the actual implemientat & have studied the computation time of the estimate as
behind the|J operation on line 3 of Table VII yields awell as the number of state estimates maintained by our. filter
conservative outer approximation of the merged estimatesl:fesgllts adre reportedf on Fig.5 and F'g'% F|g.5 |Ilustrdam|m t o
the shape of a hypercube. This operation introduces an er%l” € a vantagg of state estlmaucf)_? ased on rr;]o els wit
because in general the union of hypercubes does not yiel@@/nded uncertainty over Bayesian filtering. First, thehbig
hypercube. In our example, the error is visible on Fig.3(f). number of_ estimated hybrid s;_tates is be_:fore the merging step

Thus in practice, the merging process enlarges the estiina"f‘@d rr]emf_;uns low. Fog(ythef b|;|tanks,_kt):1|s numbeé IS a:jour;]d
bounds and reduces the number of estimates. But the bouzgst_ at IS at (;/vors.t ”0 oda pOShSI € sltates.b ec?nh,bt.(;a
remain guaranteed to enclose the true behavior of the systéhf'9'"9 stedp rastically reduces the Lota number o k y r;]
However, the additional error carried by the bounds doecaff e;tlmites, own to 5h estimates n t.e WPrStt) case :;I the
the soundness of the estimator, that produces estimates 9{' anks. It appears the computaﬂon time Is best cor ate'
would not be reachable otherwise. A consequence is thaf the number of state estimates before the merging step is

in practice, our hybrid estimation process is complete bapplled,_ see F|g.6._Note that comparison with stochasterdil
unsound. Is not directly feasible.

V. RESULTS C. Uncertainty

A preliminary version of the presented filter was imple- The discrete switches in a system's dynamics have an

mented in C++ as part of a hybrid system diagnosis platfor@ffect on the number of state estimates. Based on the same
runs as before, we aimed to elucidate the effect of bounded

i uncertainty on state estimation. Since bounds do not cgayer
A. Case-studies uncertainty is expected to grow unconditionally with time.
Fig.4 pictures the result of a run on our thermostat exampleg.7 reports that the uncertainty is growing steadily, isut
In addition to the thermostat example, the state estimatiamitigated by the switches in the continuous dynamics. This
scheme presented in this paper has been applied to thepieperty is explained by the switching mechanism presented
tanks water regulation system in [48]. This system maistaiin this paper. Each switch can help decrease uncertainty in
an outflow of water to a virtual consumer. It models two watdghe continuous state vector: by splitting the continuoasest
tanks, three valves and a pump. As such, the model totals 1268witch discards a sub-region of the continuous stateespac
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