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Set-Theoretic Estimation of Hybrid System
Configurations

Emmanuel Benazera and Louise Travé-Massuỳes

Abstract—Hybrid systems serve as a powerful modeling
paradigm for representing complex continuous controlled systems
that exhibit discrete switches in their dynamics. The system and
the models of the system are non deterministic due to operation
in uncertain environment. Bayesian belief update approaches to
stochastic hybrid system state estimation face a blow up in the
number of state estimates. Therefore most popular techniques
try to maintain an approximation of the true belief state either
by sampling or by maintaining a limited number of trajectories.
These limitations can be avoided by using bounded intervals to
represent the state uncertainty. This alternative leads to splitting
the continuous state space into a finite set of possibly overlapping
geometrical regions that together with the system modes form
configurations of the hybrid system. As a consequence, the true
system state can be captured by a finite number of hybrid
configurations. A set of dedicated algorithms is detailed that can
compute these configurations efficiently. Results are presentedon
two systems of the hybrid system literature.

Index Terms—Hybrid Systems, Estimation, Configurations,
Numerically bounded uncertainty

I. I NTRODUCTION

This paper is concerned with the state estimation of plants
modeled as hybrid systems with uncertainty. It is targeted
at the monitoring and diagnosis of these plants. Most of
modern controlled systems exhibit continuous dynamics with
abrupt switches. These systems can be modeled with a mixture
of discrete and continuous variables. The discrete dynamics
evolve according to the switches that are represented by
transitions among a set of discrete modes. The behavioral
continuous dynamics are modeled within each mode, often
by a set of discrete time equations. In general the full hybrid
state remains only partially observable. Depending on the
level of abstraction of the model, or because of physical
or design impediments, some switches cannot be directly
observed neither. The estimation of the hybrid state is the
operation that reconstructs the whole hybrid state based on
a stream of measurements and the knowledge of the hybrid
model. This is also known as hybrid state filtering, and
the module that performs this operation is called a filter.
Most plants operate in uncertain environments and are not
known accurately, due to the presence of sensor and process
uncertainties. As a consequence, transitions among modes
may be non deterministic, and continuous behavioral models
may embed a representation of instrumentation and process
uncertainties. It follows that modern filtering algorithmsmust
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cope with uncertainty. Probabilities and bounded sets are two
main representations of uncertainty.

State estimation of hybrid systems has received an increased
attention in the last decade or so. But while the systems are
hybrid in nature, a first set of methods and algorithms for
hybrid state estimation has remained close to continuous state
estimation techniques [1]–[3]. Another cluster of approaches
has mixed an heterogeneous set of techniques for continuous
state estimation with qualitative reasoning [4]–[8]. Another
set is formed of particle filtering methods whose focus is on
the sampling of discrete transitions [9]–[11]. This group of
filters has emerged as the set of most popular techniques.
Basically, they apply a Bayesian belief update to stochastic
hybrid systems [10]–[14]. The filter computes a posterior
probability distribution function (pdf) on the continuouspart
of the state, for each mode. Measurement likelihood w.r.t. the
pdfs is used with transition probabilities to rank the possible
hybrid state estimates. These methods all suffer from several
weaknesses.

The main drawback is an inevitable blowup of the number of
state estimates, which are also called hypotheses. It stemsfrom
the fact that the statistics that are maintained on hypotheses
with the same discrete states cannot be merged without loss.
The blowup is particularly intractable when the hybrid system
represents faults by discrete switches that may occur at any
time. Several works have explored methods for mitigating the
blowup; through better use of available information by looking
ahead [15] or by enumerating the first few best estimates [16];
by merging estimates [17], [18]; hierarchical filtering [19], risk
sensitive sampling [20], learning [21], forward heuristicsearch
[14] or mixed sampling and search [22]. However, the blowup
remains inevitable and some states with low probabilities must
be dropped. Unfortunately this can lead to the loss of the true
state [23].

A second problem lies in the infinite tails of the rep-
resentational pdfs. In practice, the Gaussian distribution is
widely used for representing the belief states due to its good
statistical properties. The distribution tails are the cause of
several problems by notably preventing unambiguous fault
detection [24] and elimination of hypotheses. Working with
truncated Gaussian pdfs [25] has been studied as an alternative,
but is unattractive due to the loss of the statistical properties,
e.g. Bayes rule does not yield a truncated Gaussian1.

Additionally, the stochastic modeling of faults is weak since

1Interestingly, whenever some data or signal is discarded from a Gaussian
distribution for falling below a threshold, the resulting data do obey a truncated
Gaussian. Applying Bayes rule and approximating the resulting belief state
with a new Gaussian increases the error recursively.
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for a good part the modeled faults have never been observed
and thus a priori numerical knowledge such as probability of
occurrence is indicative, at best. The reliability of the produced
results can therefore be questioned. Nevertheless, the literature
has produced a plethora of algorithms that run a recurrent
and rigorous Bayesian belief update on these values and that
require the computation of difficult integrands [26].

Finally, current modeling formalisms do not accept con-
straints that mix discrete and continuous variables. In general,
constraints over discrete variables apply to operational modes,
and a set of linear or non-linear equations link continuous
variables in each mode. But in case of software systems, or ab-
stracted continuous behavior systems, qualitative descriptions
are better suited [27], [28]. There is a need for constraintsthat
formally capture dependencies between variables of different
types. The absence of such constraints prevents a natural con-
nection between variables of different types, and consequently
decouples variables that are strongly coupled in nature.

Adding up the facts, it appears that pdfs are simply badly
suited to the state estimation of uncertain hybrid systems with
fault models. Such considerations are not new even for con-
tinuous systems [29]. Tackling the ambiguity that plagues the
stochastic filters recommends a bounded representation of un-
certainty as adopted in set-theoretic approaches. Set-theoretic
state estimation of linear and non-linear systems [30]–[33] has
been studied before, but not the case of hybrid systems. The
present paper fills this gap by developing a hybrid scheme that
supports bounded uncertainty with interval models. A special
look is given at the articulation of discrete and continuous
dynamics in that case. Doing so aims at circumventing most of
the drawbacks that have been mentioned. Bounded uncertainty
yields several advantages compared to pdfs. First, it provides
guaranteed results; an enclosure of the whole set of real
solutions. For this reason the use of bounded uncertainty has
been popular in applications to fault detection and diagnosis
since it avoids false positive detections [34]. Second, andmost
importantly, it prevents the exponential blowup in the number
of state estimates. The reason behind this key property is
that the estimates with identical discrete states can be merged
with no loss of information, i.e. preserving completeness.
Though this comes at a price. The recursive computation
of convex bounded trajectories suffers from the well-known
wrapping effectthat results from the convex enclosure at each
prediction step. This is because the convex bounds provide an
outer approximation of complex geometrical shapes and their
computation is thus plagued with a recursively growing error.
This problem calls for aggressive optimization techniquesto
mitigate the error growth. Another well-know problem related
to intervals is multiple incident parameters. Specific strategies
like optimization over a time sliding window may then be
required [35]. Summarizing, the computational burden of a
stochastic filter comes from the need of tracking a very high
number of belief states, whereas that of set-theoretic hybrid
state estimation lies in the computation of tight bounds. But
as this paper shows, switched systems sometimes offer a cheap
way of tightening the bounds as a side effect of their chopped
dynamics.

The alternative idea proposed in this paper leads to splitting

TABLE I
MAIN NOTATIONS.

H hybrid system.
xc,k continuous state vector at sampled time-stepk.
yc,k observable state vector at sampled time-stepk.
ỹc,k observed state vector at sampled time-stepk.
xm,l system mode at logical time-stepl.
xd,l discrete state vector at logical time-stepl.
πl = (xm,l,xd,l) full discrete state vector at logical time-stepl.
sl,k = (πl,xc,k) hybrid state vector at date(l, k).
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the continuous state space into a finite set of possibly overlap-
ping geometrical regions that together with the system modes
form configurations of the hybrid system. As a consequence,
the true system state can be captured by a finite number of hy-
brid configurations. The present work contrasts with the pure
prediction performed in reachability analysis of hybrid systems
[36]. First because our estimator reconstructs the hybrid state
for arbitrary continuous dynamics and switching conditions.
Second because it operates incrementally in sampled time:
discrete switches that occur between two sampled time-steps
are reconstructed by our estimator.

Overall the paper proposes a hybrid estimation method
that aims at computing an outer approximation of the hybrid
state. In section II, the paper formalizes a hybrid modeling
scheme that naturally embeds both bounded uncertainty and
mixed discrete/continuous constraints over the hybrid state.
Based on these two ingredients, it is shown that there existsa
special form of mixed constraints that fully capture a system
hybrid configuration under uncertainty. Here, aconfiguration
is a mixed continuous/discrete constraint that characterizes the
possible hybrid states of the system at a given point in time.
Configurations are detailed in section III. The hybrid state
estimation process is developed in section IV. It is a matured
version of the work initiated in [37]. Experimental resultsare
in section V.

II. H YBRID SYSTEM WITH UNKNOWN BUT BOUNDED

UNCERTAINTY

We represent a physical plant as a non deterministic and
uncertain hybrid discrete-time model. This representation has
several key features that significantly differ from the exist-
ing formalisms. First, all continuously valued variables are
assumed to be uncertain but numerically bounded. Second, the
formalism uses two timescales in parallel for the discrete and
continuous dynamics respectively. This permits an unknown
but finite number of instantaneous switches in the discrete
dynamics to occur in between two steps of the continuous
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dynamics. Third, the representation does not make any par-
ticular assumption on the conditions triggering the switches,
especially w.r.t. the continuous state of the system. Finally,
the model supports both qualitative and quantitative behavioral
representations. For this reason, our formalism is richer than
more traditional ones such as [38] and suitable for modeling
a wide-range of physical components and plants. To help
the reader throughout the paper, Table I sums up the main
notations.

Definition 1 (Hybrid System):A hybrid systemH is repre-
sented by a tuple:

H = (X,E,Q, T , L,Θ) (1)

whereX = {Xd,Xc} is the set of discrete and continuous
variables respectively,E a set of difference equations,Q a set
of propositional formulas,T a set of transitions,L a set of
continuous mapping functions associated to transitions, and Θ
the initial variable values.

A. Variables and States

A hybrid systemH abstracts the behavior of a physical
system through a set of functional modes. The systemmode
is xm that has domain{m1, · · · ,mnm

}. The full discrete state
is notedπ = (xm,xd) wherexd = [xd1, · · · , xdnd

]T is the
vector of other discretely valued variables used to describe
qualitatively abstracted continuous behavior within modes. So
Xd = {xm, xd1, · · · , xdnd

}. The system mode is assumed not
to be directly observable.yd denotes the observable subpart
of xd. The vector of actually observed discrete values is noted
ỹd. The discrete input vector is notedud.

The continuous dynamics of the system are captured by the
continuous state vectorxc = [xc1, · · · , xcnc

]T , observation
vectoryc, and continuously valued input vectoruc. The vector
of actually observed values is noted̃yc. Xc is the set of all
continuous variables. The continuous state is representedwith
uncertainty in a bounded form. Thusxc is an interval vector
(a box) in the continuous state space. That isxc is a closed
and connected rectangular subset ofℜnc or equivalently,xc ∈
IRnc whereIR is the set of real valued intervals. The hybrid
state of the system is noteds = (π,xc).

B. Time and Dynamics

1) Continuous dynamics:Every mode is associated to a
unique continuous evolution model. The continuous behavior
of the physical system is modeled by a finite set of difference
equations inE with uncertain but bounded parameters. To each
modexm corresponds a subset of discrete-time equations of
the following standard form, assuming sampling-periodTs:

xc,k = f(xc,k−1,uc,k−1,wc,k−1, xm) (2)

yc,k = h(xc,k,vc,k, xm) (3)

where (2) is the state equation and (3) is the measurement
equation,k is the discrete time index,wc = [wc1, · · · , wcnw

]T

and vc = [vc1, · · · , vcnv
]T represent the process and mea-

surement noise vectors respectively and are assumed to be
independent. This uncertainty as well as parameters defining

f andh are assumed to be unknown but numerically bounded.
In particular, this means that‖wc‖∞ ≤ ǫw and ‖vc‖∞ ≤ ǫv

whereǫw andǫv are known positive scalars.‖.‖∞ denotes the
∞-norm such that‖wc‖∞ = maxi |wci|, i = 1, · · · , nw.

What we denote thesampled timescaleis the timeline that
is explicit in equations (2) and (3). Sampled time-stepk thus
labels thek-th sampling-period between continuous instants
Ts(k − 1) and Tsk. xc,k and yc,k are the valuation of the
continuous state and output at sampled time-stepk.

2) Discrete dynamics:A need for abstracted qualitative
representation of behavior was discussed in the introduction.
Behaviors that naturally express by means of discrete variables
like those of embedded software also need to be repre-
sented. Thus at discrete level, these descriptions are written in
propositional logic by a set of time-independent propositional
formulasQ over discrete variables ofXd.

What we denote as thelogical timescalemarks the sequence
of the changes in the discrete dynamics of the system. With
πl = (xm,l,xd,l) we specify the discrete state at logical time-
stepl. The switches from one mode to another are represented
by transitions. Transition τ switches H from mode xm,l

to mode xm,l+1. T is the set of thenT transitions ofH.
Transitions are of different types:

• autonomoustransitions that are triggered by conditions
over the continuous state. These conditions are referred
to as guards, and notedφ : xc → {0, 1}. Section III
conducts an in-depth analysis of guards.

• commandedtransitions that are triggered by discrete
commandsud.

• unpredictabletransitions, that have no guards and can
trigger anytime, for instance fault transitions.

A transition is said to beenabled whenever its guard is
realized. Non determinism arises from the possibility of having
multiple transitions enabled simultaneously. When enabled, a
transition triggers a mode change. After a transitionτ has
triggered and switched the system mode fromxm,l to xm,l+1,
the continuous statexc,k becomeslτ (xc,k) wherelτ is denoted
the transitionmapping function.

Transitions are assumed to be instantaneous. However, when
abstracting certain behaviors using a hybrid model, it appears
that transitions may have non-negligible duration. The present
framework supports the triggering of a transition after a
certain delay has expired. Importantly, the transition triggering
remains instantaneous. Thus the duration of a transition is
really to be understood as a delay, that is a certain numberd of
sampled time-steps before an enabled transition does trigger
and does lead to a different mode. Assume transitionτ has
its autonomous guard enabled inxc,k, it triggers d sampled
time-steps later, and the continuous arrival state is givenby
lτ (xc,k+d). In the rest of the paper, we assume thatd = 0
with no loss of generality.

3) Discrete and continuous parallel timescales:As men-
tioned above, our representation uses two discretized
timescales in parallel on top of the continuous timescale:
the sampled and the logical timescales. As a consequence,
changes in the discrete dynamics are not assumed to take
place at a particular sampled time-step but can occur in
between two sampled time-steps. However, hybrid states need
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Fig. 1. Discrete and continuous parallel timescales. Transitions are instan-
taneous but are represented by arrows from the previous logical time-step to
the time-step at which they trigger (e.g.τ1 triggers atl). Dates synchronize
the timescales at every sampled time point.

to be synchronized in time. Because the sampled time evolves
according to a fixed sampling periodTs, the logical time is
synchronized with the sampled time, and not the opposite. In
consequence, the logical time is always associated to the first
sampled time-step that follows a switch, see Fig.1. Note that
for this reason, an instantaneous switch is always triggered
after its occurrence on the physical system. In this context,
(l, k) is adatefor the system, andsl,k denotes the hybrid state
at logical time-stepl, and sampled time-stepk. We assume a
finite but unknown number of switches can occur between two
sampled time-steps. In this case, hybrid states are indexedby
dates whose sampled indexes are the same, but with different
logical indexes, see time-stepk on Fig.1. In this formulation,
the execution (solution trajectory) of the proposed class of
hybrid systems is a succession of hybrid states at established
dates. The execution corresponding to the succession of dates

on Fig.1 is writtensl−1,k−2, sl−1,k−1
τ1

−→ sl,k
τ2

−→ sl+1,k
τ3

−→

sl+2,k
τ4

−→ sl+3,k+1.

C. Example

Example 1 (Thermostat System). The temperaturex of a
room is controlled by a thermostat that keeps it betweenxmin

andxmax degrees by switching a heater on and off. The system
is modeled as a hybrid systemH. Xd = {xm} with domain
{m1 = off,m2 = on,m3 = stuck on,m4 = stuck off}.
xc is reduced to the temperaturex of the room anduc

is reduced to the inputu. The continuous dynamics of the
system are modeled by the first order differential equation
ẋ = D(u − x), whereD is a multiplying factor. We model
E = {Em1

, Em2
, Em3

, Em4
} with Em1

= Em4
are such that

u = x̄ the temperature outside the room, andEm2
= Em3

are such thatu = h the heater constant whose value is
uncertain but bounded. In discretized form, the dynamics
are given by the following recurrent equation in standard
form (2): xk = axk−1 + buk−1, with a = 1 − DTs and
b = DTs, assuming a sampling periodTs. Q is empty, and

T = {τ1, τ2, τ3, τ4} where τ1 : m2
φ1=1 if (x≥xmax)
−−−−−−−−−−−→ m1,

τ2 : m1
φ2=1 if (x≤xmin)
−−−−−−−−−−−→ m2, τ3 : m2

φ3=1 if (x≥xmax)
−−−−−−−−−−−→ m3,

τ4 : m1
φ4=1 if (x≤xmin)
−−−−−−−−−−−→ m4. Notice thatφ1 = φ3 and

φ2 = φ4. L associates the identity function to every transition.

III. SET-THEORETICHYBRID CONFIGURATIONS

This section formalizes the concept of configuration of
a hybrid system. A canonical form of a transition guard
is given. It leads to the definition of a configuration as a
rectangular bounded region that enables a possibly empty set
of transitions. Another contribution is the logical abstraction of
a configuration, that articulates the discrete and the continuous
dynamics of the hybrid system. This formulation paves the
way for the estimation algorithms in section IV.

A. Transition guards

Commanded transition triggering is conditioned over the
discretely valued inputsud but these conditions are directly
expressed as constraints at the discrete level and do not
require specific processing. Autonomous transitions require
more attention.

Definition 2 (Autonomous transition guard):The guard of
an autonomous transitionτ j is noted φj : xc =
(xc1, · · · , xcn)T → {0, 1}. φj(xc) can be expressed as a set of
inequalities in the canonical form given in the if conditionof
equation (5). The inequalities referring to a given state variable
xci define the partial guardφj

i (xc) as follows:

φ
j
i (xc) =

^

α

φ
j
iα

(xc) (4)

φ
j
iα

(xc) =

(

1 if xci ≶ g
j
iα

(xc1, · · · , xci−1, xci+1, · · · , xcn)

0 otherwise
(5)

whereg
j
iα

: xc → ℜ is referred to as acondition functionand
≶ stands either for ’≤’ or ’≥’.
The indexiα identifies one specific condition function in the
set of condition functions referring to transitionτ j and variable
xci. Note that no assumption is made on the form of the
condition functions2. For sake of clarity, in the rest of the paper
we make two simplifying assumptions. First, we assume that
the set of condition functions is either empty or of cardinality
1 for everyxci and τ j . In other words, there is at most one
inequality referring to a variablexci associated to a partial
guardφ

j
i . Second, we assume thatφ

j
i (xc) = 1 whenever the

set of condition functions is empty (i.e.gj
i is not specified).

This allows us to writeφj(xc) =
∧nc

i=1 φ
j
i (xc).

Unpredictable transitions are modeled with guards such that
φj = 1, independently ofxc. When the model contains guards
as disjunctions of inequalities, these can be broken into guards
over several transitions and modes. Admittedly, the modeling
of a discrete switch as a transition whose guard is made ofe

disjunctions of inequalities necessitates a total of2e modes.
τ j is said to be enabled in the hybrid states = (π,xc)

wheneverφj(xc) = 1. When enabled, the triggering of the
transition is an instantaneous transfer of the hybrid stateto
another state (possibly identical) at the next logical time-step.

2The inequalities canonical form does not limit the expressiveness of the
framework. Complex inequalities can always be manipulated to be brought
back to this form, possibly by introducing new variables.



5

This operation is detailed in section IV along with the hybrid
state estimator. The rest of this section studies the structure
of the continuous space as constrained by the autonomous
transition guards.

B. Grid of Configurations

At sampled time-stepk, the evaluation of transition guards
against a continuous vectorxc,k is done through the evaluation
of the condition functionsgj

i (xc,k). Each inequality referring
to a condition function indeed splits the domain ofxc,k in two
sub-domains:

• x̃
j
c,k = {(xc1, · · · , xcnc

)T | φj(xc,k) = 1}, the region
that satisfies the inequalities, orpositivesub-domain.̃xj

c,k

denotes the region in which transitionτ j is enabled at
sampled time-stepk.

• the region that does not satisfy the inequality, or negative
sub-domain, noted¬x̃

j
c,k = ℜnc − x̃

j
c,k (complementary

set of x̃j
c,k).

As xc,k defines a box inℜnc , the values of thegj
i (xc,k) are

bounded intervals of the form[gj

i
(xc,k), gj

i (xc,k)]. Thus the
x̃

j
c,k and¬x̃

j
c,k are interval vectors of dimensionnc, the scalar

bounds of which take valuegj

i
(xc,k), g

j
i (xc,k), −∞ or +∞.

Considering all autonomous transitions, this formulationleads
to splitting the continuous space into several overlappingsub-
regions. The set of positive and negative sub-domains forxc,k

for all autonomous transitions are used to build what we refer
to as the conditional domain ofxc,k.

Definition 3 (Conditional domain):Given a hybrid system
H, the conditional domain ofxc,k at k is given by Xk =
[x̃0

c,k, x̃1
c,k, · · · , x̃nT

c,k] where

• x̃
j
c,k is the positive sub-domain for every transitionτ j ,

j = 1, · · · , nT of H;
• x̃

0
c,k =

⋂nT

j=1(¬x̃
j
c,k) is the region that satisfies no partial

guard.

Example 1 (continued). The model has two guards over four
transitions. Guards depend on temperaturexc = x only. Then
Xk = [x̃0

k, x̃1
k, x̃2

k, x̃3
k, x̃4

k] with x̃0
k =]xmin, xmax[, x̃1

k = x̃3
k =

] −∞, xmin], and x̃2
k = x̃4

k = [xmax,+∞[.

Example 2 Consider a hybrid systemH with xm taking its
value in domain{m1,m2,m3}, xc = [xc1, xc2]

T , and T =

{τ1, τ2} with τ1 : m1
φ1

−→ m2, τ2 : m1
φ2

−→ m3, and

φ1 = φ1
1 :

(

1 if xc1 ≤ g1
1(xc2)

0 otherwise
, φ2 = φ2

2 :

(

1 if xc2 ≥ g2
2(xc1)

0 otherwise
.

Initially, H is in mode m1. Fig.2 pictures the conditional
domain for this generic two-dimensional example, in two
situations: whenxc,k is real-valued and whenxc,k is a box.
In both cases the conditional domain is given by

Xk = [x̃0
c,k, x̃1

c,k, x̃2
c,k] =

[

x̃0
c1,k x̃1

c1,k x̃2
c1,k

x̃0
c2,k x̃1

c2,k x̃2
c2,k

]

=

[

]g1
1,k,+∞[ ] −∞, g1

1,k] ] −∞,+∞[
] −∞, g2

2,k
[ ] −∞,+∞[ [g2

2,k
,+∞[

]

wheregj

i,k
abbreviatesgj

i
(xc,k). Note that whenxc,k is real-

valued,gj

i,k
= g

j
i,k.

Xk concretizes the split3 of the continuous space defined by
the autonomous transition guards at time-stepk. Note that
Xk evolves and is reshaped according to the continuous state
vector at each time-step. Geometrically, the bounds of the
x̃

j
c,k define edges that split the continuous state-space into

overlapping volumes shaped by boxes. Later developments
require the definition of the bounds of these boxes. The lower
bound ofXk is written Xk and the upper boundXk.

Every combination of elements ofXk corresponds to a sub-
region of the continuous state-space in which some transitions
are enabled and some are not. These regions are in the form of
bounded boxes that support the concept ofconfigurationof the
hybrid systemH. A configuration corresponds to a possible
situation of the hybrid system in terms of simultaneously
enabled and non enabled transitions. Due to the boxed shape
of the regions, the set of all configurations is organized in a
grid that evolves with time, dubbed thegrid of configurations.

Definition 4 (Configuration):A configurationCk of the hy-
brid systemH at time-stepk is defined by:

• a configuration regionrCk
, that is a box in the continuous

state-space that confines a region that simultaneously
enables a possibly empty subset of transitions ofT ;

• a configuration functionδCk
that is a Boolean function

that tells whether there exist points of the continuous state
xc,k that belong to the configuration region or not.

• a configuration enabling setT e
Ck

that indicates which
transition(s) are enabled in the configuration region.

A configurationCk is hence defined by a tuple (rCk
, δCk

, T e
Ck

).
Definition 5 (Configuration region):At time-stepk and for

continuous vectorxc,k, consider for everyi = 1, · · · , nc, a
unit4 vector βi of size nT + 1. {β1, · · · ,βnc

} form a set
of projection vectors that extract a combination of transition
partial guards, one per continuous dimension. Then a config-
uration region is the volume defined by

rCk
= [Xk,[1,.]β1, · · · , Xk,[nc,.]βnc

]T (6)

whereXk,[i,.] yields theith line of matrixXk.
Using bounds of the conditional domain we write the con-
figuration region’s frontier as the lowermost and uppermost
vertices of the region’s hyper-rectangle. They are given by

rCk
= [Xk,[1,.]β1, · · ·Xk,[nc,.],βnc

]T

∪ [Xk,[1,.]β1, · · · , Xk,[nc,.]βnc
]T . (7)

Different configuration regions may overlap. A consequence
is that some configurations may be subsumed by some set of
other configurations, and then be left aside. In example 2, any
region obtained withβ1 =

[

0
0
1

]

and/orβ2 =
[

0
1
0

]

is subsumed
by regions obtained with other vectors. By extension, we say
that a configurationCi is subsumed by a configurationCj when
the enabling set ofCi is also enabled byCj , i.e T e

Ci
⊆ T e

Cj
and

the configuration region of the second is included in that of
the first, i.e.rCj

⊂ rCi
. But mostly, this is a by-product of the

3We enforce the term ’split’ over the term ’partition’ to acknowledge the
possibly overlapping regions of the conditional domain.

4Here a vector in which a single element is1 and all others are0.
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xc1

xc2

g2
2(xc1)

g1
1(xc2)

(a) Functional representation of the guards.

x̃
0
c,k

xc1

xc2

g2
2(xc1)

g1
1(xc2)

xc,k

g2
2,k

g1
1,k

xc2,k

xc1,k

x̃
2
c,k

¬x̃2
c,k

x̃
1
c,k

¬x̃1
c,k

(b) Real-valuedxc,k. (c) Uncertainxc,k is a hyper-rectangle.

Fig. 2. Example 2: generic two-dimensional situation with guards φ1
1 : xc1 ≤ g1

1(xc2) and φ2
2 : xc2 ≥ g2

2(xc1). The positive and negative sub-domains
are computed from conditional functionsg1

1 and g2
2 taken atxc,k, or at its corners when it is a box. The upper bounds to conditional domains,gj

i (xc,k),
are abbreviated asgj

i,k
. A similar abbreviation is used for lower bounds. They yieldXk = [x̃0

c,k
, x̃1

c,k
, x̃2

c,k
].

formulation. In practice such configurations are easily avoided,
see III-C.

Definition 6 (Configuration Function):At time-stepk and
for continuous vectorxc,k, the configuration functionδCk

of
the hybrid systemH is a Boolean function fromxc,k → {0, 1}
given by

δCk
=

{

1 if rCk
∩ xc,k 6= ∅

0 otherwise.
(8)

WhenδCk
= 1, the configuration regionrCk

(and by extension,
the configurationCk itself), is said to beenabled. Checking
xc,k against the configuration regions of the grid hence allows
one to determine which transition(s) are enabled at time-step
k.

Definition 7 (Configuration enabling set):The configura-
tion enabling setT e

Ck
is the set of transitionsτ j whose guards

are such thatφj(rCk
∩xc,k) = 1. It is empty wheneverδCk

= 0.

Example 2 (continued.) Assumexc,k is a box, see Fig.2(c).
This example has four not subsumed configurations,C

(p)
k , p =

1, · · · , 4. They are defined by:

• configuration regions:r
C
(1)
k

= [Xk,[1,.]β1, Xk,[2,.]β2]
T =

(x̃0
c,k)T obtained with β1 = β2 =

[

1
0
0

]

; r
C
(2)
k

=

(] − ∞, g1
1,k], ] − ∞, g2

2,k
[)T obtained withβ1 =

[

0
1
0

]

and β2 =
[

1
0
0

]

; r
C
(3)
k

= (]g1
1,k,+∞[, [g2

2,k
,+∞[)T

obtained with β1 =
[

1
0
0

]

and β2 =
[

0
0
1

]

;r
C
(4)
k

=

(]−∞, g1
1,k], [g2

2,k
,+∞[)T obtained withβ1 =

[

0
1
0

]

and

β2 =
[

0
0
1

]

.
• configuration functionsδ

C
(p)
k

, p = 1, · · · , 4 with δ
C
(1)
k

=

δ
C
(2)
k

= 0 andδ
C
(3)
k

= δ
C
(4)
k

= 1.
• configuration enabling sets:T e

C
(1)
k

= T e

C
(2)
k

= ∅; T e

C
(3)
k

=

{τ2}; T e

C
(4)
k

= {τ1, τ2}: the situation is non deterministic

sinceτ1 andτ2 are enabled simultaneously.

C. Condition Variables

Configurations relate sub-regions of the continuous space
to the enabling of transitions, which are discrete events.
Thus configurations are a natural articulation between the
continuous and the discrete dynamics. However at this stage
of the formulation, configurations have not yet been directly
related to the modes.

The difficulty is that one mode may be consistent with
several configurations of the hybrid system. Thus in the
thermostat example, theon mode is consistent with bothx ∈
] −∞, xmin] andx ∈]xmin, xmax[. The opposite is also true
since one configuration may be consistent with several modes.
In the same example, modeson and off are both consistent
with x ∈]xmin, xmax[. In the following we show how to relate
the configurations to the modes. The final aim is to give a
formal basis for the estimation algorithm to circumvent the
full enumeration of all possible combinations of modes and
configurations. What is sought is thus an articulation of the
configurations with the modes.

The solution comes quite naturally. The idea is to reflect
the enabled configurations at the discrete level. The enabled
configurations can be expressed within the discrete state
through a set of projection unit vectors: theβi that define the
configuration regions (6). But relation (8) considers only those
regions that intersectxc,k. The solution becomes to find the
subset of vectorsβi that define those configuration regions that
satisfy (8) and to include them into the discrete representation
of the state.

To differentiate them from other vectors, these unit solution
vectors are notedκi

d = [κi
d0, κ

i
d1, · · · , κi

dnT
]T , for every i =

1, · · · , nc. Every κi
dj has domain{0, 1} and we refer to it as

a conditional variablesince it refers to which portion of the
conditional domain does enable a configuration.κi

d is dubbed
a conditional vector.

Definition 8 (Conditional Vectors):Given H and its con-
tinuous statexc,k, the conditional vectorsκ1

d, · · · ,κnc

d are unit
vectors such that[Xk,[1,.]κ

1
d, · · · , Xk,[nc,.]κ

nc

d ]T ∩ xc,k 6= ∅,
i = 1, · · · , nc.
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Given xc,k as a box, there exist many different combina-
tions of conditional vectors. Every combination extracts an
enabled configuration fromXk. Finally, we permit additional
constraints among theκi

d and other discrete variables ofXd

to be specified inQ. This allows discrete variables other than
modes to depend on the continuous state values. Additionally,
configurations that are subsumed can be avoided. These con-
figurations arise from conditional vectors that extract dimen-
sions that are unconstrained by the condition functions of some
transitions. Constraining the Boolean values of the associated
condition variables eliminates these solution vectors. See the
example below.

Example 2 (continued). ConsiderXk = [x̃0
c,k, x̃1

c,k, x̃2
c,k]

defined earlier.x̃2
c1,k = x̃1

c2,k =] − ∞,+∞[. Thus any

configuration region obtained with solution vectorsκ1
d =

[

0
0
1

]

and/orκ2
d =

[

0
1
0

]

is subsumed. Constraints to exclude these
solution vectors are inQ.

Example 1 (continued). Givenxc = x and henceXk =
[x̃0

k, x̃1
k, x̃2

k, x̃3
k, x̃4

k] defined earlier, the thermostat system
uses one vectorκd = [κd0, κd1, κd2, κd3, κd4]

T . Assume

]xmin, xmax[⊆ xk, thenκd =

[

1
0
0
0
0

]

,

[

0
1
0
0
0

]

,

[

0
0
1
0
0

]

,

[

0
0
0
1
0

]

and

[

0
0
0
0
1

]

are the five conditional solution vectors such thatXkκd∩xk 6=
∅.

Conditional variables pave the way for the definition of
a logical configuration that articulates the continuous and
discrete states and dynamics.

D. Logical Configuration

What is referred to as alogical configuration is simply
the expression of a configuration at the discrete level. The
useful feature is that logical configurations directly relate to
the hybrid system modes.

Definition 9 (Logical Configuration):Given a hybrid sys-
tem H and its continuous statexc,k at time-stepk, a logical
configuration ofH is noted as the logical conjunction

∇δk = xm ∧





nc
∧

i=1

[

nT
∧

j=0

(κi
dj = ξj)]





where

ξj =

{

1 if κi
d is the j-th unit vector,

0 otherwise.

Example 2 (continued). On Fig.2(c) the system is in mode
m1. We have seen thatC(3)

k and C
(4)
k are enabled. The

conditional vectors of interest are thusκ1
d =

[

1
0
0

]

and

κ2
d =

[

0
0
1

]

; κ1
d =

[

0
1
0

]

and κ2
d =

[

0
0
1

]

, respectively. This

leads to two logical configurations,∇δ
(3)
k , ∇δ

(4)
k , of the form

∇δ
(p)
k = (xm = m1) ∧

[

∧2
i=1[

∧2
j=0(κ

i
dj = ξj)]

]

.

IV. H YBRID STATE ESTIMATION

Given a set of commands and observations at every time-
step, the set-theoretic estimation of hybrid states consists in
predicting a set of hybrid state candidates, and rejecting those
that do not predict the observations. In consequence, most
operations are concerned with prediction. The problem of pre-
diction is its cost since many predicted states may end up being
rejected. It is thus essential to eliminate impossible candidates
as early as possible. Prediction consists in a loop at each
sampled time-step: continuous prediction, then discrete state
prediction and continuous state transfer, til there are no more
enabled changes in the discrete dynamics. It follows that early
elimination of state candidates is possible at every of the loop’s
steps. While continuous state elimination simply requires an
inclusion test of the observations, discrete state elimination
requires a full consistency check that is more demanding. But
this task has connections with a set of techniques referred to
as the consistency-based approach to diagnosis [39]. These
techniques use the constraints in the models to limit the state
candidates to be considered [23], [40]. They can prune out
candidates at each step that standard filters would keep in their
set of estimates. In consequence, our algorithms rely on these
techniques to manage discrete state consistency. To further
mitigate the number of candidates, our estimation scheme
shows how the modeling of uncertainty in a bounded form
allows us to merge estimates with identical discrete state.This
proves to be a decisive advantage of state estimation based on
uncertain but bounded models over state estimation based on
stochastic models. Also, our estimator includes a procedure
that estimates several fast successive switches in the discrete
dynamics, in between two sampled time-steps. Here again,
bounded uncertainty is key in allowing this feature.

A. Hybrid state prediction in sampled time

1) Forward time prediction:A prediction of the hybrid state
is obtained with a forward predictive operator [41].

Definition 10 (Forward time prediction):The forward time
prediction〈Sl,k−1〉

ր

γ of a setSl,k−1 of hybrid states at logical
time-stepl and sampled time-stepk − 1 is the set of hybrid
states that are reachable fromSl,k−1 by letting the sampled
time progress overγ sampled steps. For a single hybrid state
sl,k−1 = (πl,xc,k−1), πl = (xm,l,xd,l),

〈sl,k−1〉
ր

1 = {sl,k = (πl,xc,k)|xc,k

= f(xc,k−1,uc,k−1,wc,k−1, xm,l)} (9)

and〈Sl,k−1〉
ր

γ is the repetition of〈Sl,k−1〉
ր

1 , γ times, over all
sl,k−1 ∈ Sl,k−1.
There are many ways for relation (9) to be efficiently com-
puted. The difficulty is that the boxxc,k keeps growing
with the number of stepsγ. This is because the rectangular
approximation at each step introduces an error that is re-
approximated by successive steps, and thus rapidly amplified.
This phenomenon is known as thewrapping effect. In general,
convex optimization techniques help mitigating this explosion
of the uncertainty. In the current implementation, interval
numerical methods similar to those in [36] are used.
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While the mechanics of transition triggering are described
later, here it is enough to mention that two cases arise:
i/ whenever no transition is enabled by the forward time
prediction, then the observations̃yc,k can be used to prune
impossible candidates; ii/ when a transition is enabled, obser-
vations cannot be used immediately since they may have been
produced by a behavior that is different from that of the current
mode and model. Case i/ corresponds to applying set-theoretic
filtering techniques to the forward time prediction. Linearand
non-linear filters have been described [30]–[33]. In the case
of non-linear systems, the produced bounded estimates can be
approximated by a variety of geometrical shapes, ellipsoids
[33], rectangles [30], [32], polytopes [42]. These filters can be
utilized to control the quality of the forward time prediction.
In the following it is assumed that the produced shapes are
rectangular boxes, but the approach can be extended to other
shapes as well5.

2) Forward transition prediction:A prediction of the dis-
crete switches is obtained with a second forward predictive
operator.

Definition 11 (Forward transition prediction):Given tran-
sition τ and a set of hybrid statesSl,k, the forward transition
prediction〈Sl,k〉

τ is the set of hybrid states that are reachable
from some statesl,k ∈ Sl,k by executing a transitionτ . For
sl,k = (πl,xc,k), with πl = (xm,l,xd,l), if τ is enabled,

〈sl,k〉
τ = {sl+1,k = (πl+1,x

′
c,k)|xm,l

τ
−→ xm,l+1

andx
′
c,k = lτ (xc,k)} (10)

where πl+1 = (xm,l+1,xd,l+1) is such thatQ ∪ πl+1 is
consistent.
By consistent, we mean thatxm,l+1 andxd,l+1 together satisfy
all formulas inQ.

3) Hybrid state prediction:The hybrid system prediction
over time alternates both forward operators. As seen earlier,
multiple transitions can be enabled simultaneously. This is due
to the fact that the boxxc,k can span over several configuration
regions. A consequence is that different points ofxc,k happen
to enable and trigger different transitions, thus leading the
system from its current state to different modes and states.
Given a forward time prediction, the aim of the estimation
process is to transfer each point of the continuous state at date
(l, k) to the possibly multiple mode(s) it belongs to at date
(l + 1, k). The solution is to produce a split ofxc,k such that
the produced fragments fit the grid of configurations. Enabled
transitions can then trigger from such state fragments and the
forward transition prediction yields the new set of modes of
the system along with the set of continuous estimates.

B. Hybrid consistency problems

Given a set of hybrid statesSl,k−1 at date(l, k − 1) and
the forward time predictionSl,k = 〈Sl,k−1〉

ր

1 , the problem
of intersectingxc,k with the grid of configurations comes to
the finding of a splitPl,k = {s

(1)
l,k , · · · , s

(np)
l,k } such that for

everyp = 1, · · · , np, C(p)
k is a configuration, withx(p)

c,k ⊆ rCp

5With the limitation that intersection with the grid of configurations may
not conserve certain shapes.

and π
(p)
l ∪ Q ∪ ∇δ

(p)
k is consistent. This is done in two

steps. Given a predicted hybrid statesl,k, xc,k is used to
find Xk and the conditional vectorsκi

d. Those vectors yield
the logical configurations∇δ

(p)
k that are consistent withsl,k.

An initial set of conditional vectors is easily obtained by
iterating the continuous dimensions, and checking whether
Xk intersectsxc,k. Further checking againstQ yields the
reduced set of logical configurations that are possible under
the set of qualitative constraints. Impossible configurations
are eliminated. The second step takes the remaining logical
configurations and computes the configuration regions out of
the predictedxc,k. Recall that every configuration region is
shaped by a system of inequalities over the condition functions
g

j
i in (5). These inequalities form a constraint network among

continuous variables. Therefore the change of one variable
bounded value often affects the range of other variables.
By iterating a constraint filtering process over all continuous
variables, the focus narrows down onto the only possible
continuous states. The double logical/continuous formulation
of configurations from section III is key as it permits the
pruning of impossible estimates at both levels. Basically,the
first pruning step takes place at discrete level, and the second
at continuous level. Information is passed through the logical
configurations.

1) Discrete State Consistency:Given a hybrid systemH
and a predictionsl,k = (πl,xc,k), the {(π

(p)
l ,∇δ

(p)
k )}, p =

1, · · · , np are such that
• they are consistent withQ:

π
(p)
l ∪ Q ∪∇δ

(p)
k is consistent. (11)

• π
(p)
l = (xm,l,x

(p)
d,l ), so that the mode estimatexm,l is

that of sl,k since no transition has triggered yet.
The conditional vectorsκi

d determine a set of logical con-
figurations. A subset of those is selected by solving rela-
tion (11). This can be done with a constraint satisfaction
engine. Solutions to (11) are logical configurations along
with discrete state estimatesπ(p)

l . This operation is noted
{(π

(p)
l ,∇δ

(p)
k )}p=1,··· ,np

= sat(sl,k, Q) where sat denotes
the constraint satisfaction engine. In the present implementa-
tion the Boolean satisfaction engine described in [43] is used.
A wide-range of other techniques are applicable.

2) Continuous State Consistency:Given a configuration
C

(p)
k , at continuous level, the sub-regionx(p)

c,k of xc,k that is
consistent with the configuration region is given by

x
(p)
c,k = xc,k ∩ r

C
(p)
k

(12)

Computingx
(p)
c,k is more difficult than it seems. Recall that

r
C
(p)
k

is equal to[Xk,[1,.]κ
1
d, · · · , Xk,[nc,.]κ

nc

d ]T , where theκi
d

are given by∇δ
(p)
k . Every unit vectorκi

d extracts a positive
or negative subdomain fromXk. Every subdomain is obtained
by evaluating a condition functiongj

i wherej is given by the
entry equal to 1 of unit vectorκi

d. To satisfy (12), the points
of the boxx(p)

c,k must satisfy all of the condition functions that
determiner

C
(p)
k

.
However, a variablexci can be coupled with some other

variablesxci′ through theg
j
i . This means that tightening the
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TABLE II
FINDING CONSISTENT CONTINUOUS STATES: filter(∇δ

(p)
k

,xc,k)

Require: ∇δ
(p)
k

, xc,k.
1: Agenda ={gj

i | κ
i
d

is the j-th unit vector,i = 1, · · · , nc}.

2: x
(p)
c,k

= xc,k.
3: while Agenda not emptydo
4: Select agj

i in Agenda.
5: Recompute positive subdomaiñxj

c,k
, i.e. find the x′

ci,k
≶

g
j
i (x

(p)
c1,k

, ., x
(p)
ci−1,k

, x
(p)
ci+1,k

, ., x
(p)
cn,k

) such that φj
i (x

(p)
c,k

) = 1.
Whenj = 0, the negative subdomain is recomputed instead.

6: Int = x′
ci,k
∩ x

(p)
ci,k

.
7: if Int = ∅ then
8: g

j
i is inadmissible forx(p)

c,k
.

9: Reject∇δ
(p)
k

.
10: return ∅.
11: if x

(p)
ci,k
⊆ x′

ci,k
then

12: Removegj
i from Agenda.

13: else
14: Add {gj

i′
| κi′

d
is the j-th unit vector,i′ 6= i} to the Agenda.

15: x
(p)
c,k
← Int.

16: return x
(p)
c,k

.

bounds ofxci has an effect onxci′ ’s bounds. This problem
can be seen as the task of filtering a set of bounded variables
xci with a set of inequalities over those same variables. Such
a problem can be solved with a slightly revised version of
standard filtering or branch-and-bound techniques. Indeed, in
general these techniques do not handle inequalities but only
equality constraints [44]. The algorithmic solution in Table
II is a variant of the constraint propagation system in [44]
that handles inequalities. Prior to detailing the algorithm,
admissibility and consistency are to be distinguished:

• A condition functiong
j
i is said to be admissible forxc,k

iff there exists at least a point ofxc,k such that the
inequality based ongj

i (xc,k) is satisfied;
• xc,k is said to be consistent withgj

i (xc,k) when the
inequality based ongj

i is satisfied for all points inxc,k.

Algorithm in Table II findsx(p)
c,k such that it is consistent with

all of the condition functionsgj
i that determiner

C
(p)
k

. The al-
gorithm constrains all the variables that appear in the condition
functionsg

j
i drawn from an input logical configuration∇δ

(p)
k .

It does so until each condition function is either satisfied
or inadmissible. The operator described by the algorithm is
dubbedfilter(∇δ

(p)
k ,xc,k). Its result is a continuous state

fragmentx(p)
c,k.

C. Splitting the hybrid state with configurations

The operator that articulatessat andfilter, the discrete and
continuous consistency operators respectively, is referred to as
split. split applies to a setSl,k of hybrid states and returns
another setPl,k, see Table III. The algorithm takes a predicted
hybrid statesl,k as input.

Example 2 (continued). Starting from the configurations ob-
tained in Fig.2(c), Fig.3(a) and 3(b) picture the split of the
continuous space for enabled configurationsC

(3)
k and C

(4)
k ,

respectively. The logical configurations are∇δ
(3)
k and∇δ

(4)
k

TABLE III
SPLITTING THE CONTINUOUS SPACE: split(sl,k).

Require: sl,k.
1: Pl,k = {}.

2: Find the combinations ofκi
d

for all i = 1, · · · , nc that define the∇δ
(q)
k

,
q = 1, · · · , nq .

3: Compute{(π(p)
l

,∇δ
(p)
k

)}p=1,··· ,np = sat(sl,k, Q), np ≤ nq .

4: for all ∇δ
(p)
k

do

5: x
(p)
c,k

= filter(∇δ
(p)
k

,xc,k).

6: if x
(p)
c,k
6= ∅ then

7: s
(p)
l,k

= (π
(p)
l

,x
(p)
c,k

).

8: Pl,k ← Pl,k ∪ s
(p)
l,k

.
9: return Pl,k.

defined earlier. Thefilter operator applied to each configu-
ration reducesxc,k by using partial guardg1

1 (step 5, Table
II). In both cases, evaluatingg2

2(xc,k) does not further reduce
xc,k. Results are thenx(3)

c,k andx
(4)
c,k.

In all cases, remark that the union of the continuous state
fragments yields the originally predicted state. That is, the
x

(p)
c,k, p = 1, · · · , np, that result from the split of a statexc,k

are such that
⋃np

p=1 x
(p)
c,k = xc,k. Formally, this is because

the conditional domainXk of xc,k contains the positive
and negative sub-domains̃xj

c,k and ¬x̃
j
c,k for all transitions

τ j . Therefore, the entire continuous state-space is covered
by configuration regions and bothxc,k ⊆

⋃np

p=1 r
C
(p)
k

and
⋃np

p=1 x
(p)
c,k =

⋃np

p=1(rC(p)
k

) ∩ xc,k (from relation (12)) hold.
However, the hybrid states produced by a split are rarely

optimal: some hybrid states are in fact not reachable by the
system. This is due to a lack of constraints between modes
and conditional variables in logical configuration equations.
In example 1, hybrid statesk = (xm = on ∧ xk) with
xk ≥ xmax is unreachable but predicted at some point:
the thermostat cannot be turned on and the temperature be
over the upper thresholdxmax. The problem is complex as
these configurations represent the so-calledmythical states
[28], [45]–[47], i.e.instantaneousstates between normal states
when a discontinuous change takes place. In a mythical state,
the variables do not satisfy all of the system constraints. This
happens to be the case of the statesk above since a transition
to the modeoff is enabled but has not triggered yet. The
problem is that it is not clear whether these states represent
very short but real instances, or whether they are artifactsof
the representation and reasoning procedures. For this reason,
the split operator is said to be complete but unsound.

D. Switching in sampled time

When the split is completed, some of the configuration en-
abling sets are not empty. The two final steps of the estimation
process are thus the triggering of the enabled transitions and
the use of available observations. The triggering of transitions
at sampled time raises two problems:

• A transition triggering is always considered a small
period of time after the real switch has occurred. A
consequence is thatxc,k computed at time-stepk is not
guaranteed to capture the real behavior of the system.
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(a) Split with configurationC(3)
k

. (b) Split with configurationC(4)
k

. (c) Triggering ofτ2 from C(3)
k

.

(d) Triggering ofτ1 from C(4)
k

. (e) Triggering ofτ2 from C(4)
k

. (f) Merging of c) & e).

Fig. 3. Example 2. a) & b): continuous state split. On b), note that the configuration domain has changed: the split withg1
1,k

affects the value ofg2
2,k

.

The dotted line shows the previous boundary. c), d) & e): enclosure and switches, according toT e

C
(3)
k

= {τ2} andT e

C
(4)
k

= {τ1, τ2}. Only the late switch

is represented.s(3)
l+1,k

= enclose(τ2, s
(3)
l,k

), s
(4)
l+1,k

= enclose(τ1, s
(4)
l,k

) ands
(5)
l+1,k

= enclose(τ2, s
(4)
l,k

). f): merging step. Estimates obtained in c) & e)
have identical modem3. In consequence, their continuous estimates can be merged.

• Multiple successive switches may occur during a single
sampled time interval.

1) Guaranteed enclosure at switching points:The problem
arises from the triggering of a transition in between two
sampled time-steps. At time-stepk−1, no transition is enabled.
Prediction produces a set of hybrid states at time-stepk.
The split operator applies and splits the continuous state
according to candidate configurations. As a result, assume
some configurations are found to enable transitions at time-
stepk and consider an enabled transitionτ . On the physical
system,τ has triggered somewhere between sampled time-
stepsk − 1 and k. But prediction proceeds by computing a
late switch at time-stepk. Let xc,k′ , k − 1 < k′ ≤ k be the
continuous state at the unknown continuous time instantk′Ts

at which the transition has triggered on the physical system,
and wherek′ ∈ ℜ. In general,xc,k′ 6⊆ xc,k, so switching atk
misses the transfer of some continuous regions.

A solution is proposed to transfer the continuous state from
one mode to another which guarantees to capture the true
behavior of the system. It computes an early switch atk − 1,
in addition to the late switch atk. Under the assumption
that the continuous evolution of the system is monotonous
between two sampled time-steps, unionizing the continuous
vectors obtained from both switches yields an enclosure of

TABLE IV
APPLIES TRANSITIONτ , ENABLED AT TIME -STEP(l, k): enclose(τ, s

(p)
l,k

).

Require: s
(p)
l,k

= (π
(p)
l

,x
(p)
c,k

), enabled transitionτ .

1: Late switch:s′
l+1,k

= (π
(p)
l+1,x′

c,k
) = 〈s

(p)
l,k
〉τ .

2: Early switch:s∗
l+1,k−1 = (π

(p)
l+1,x∗

c,k−1) with x
∗
c,k−1 = lτ (x̄c,k−1)

and x̄c,k−1 = x
(p)
c,k−1 ∪ r̄

C
(p)
k−1

.

3: Prediction after the early switch:s∗
l+1,k

= 〈s∗
l+1,k−1〉

ր

1 .

4: update:x(p)
c,k

= [min(x∗
c,k

,x′
c,k

), max(x∗
c,k

,x′
c,k

)].

5: return s
(p)
l+1,k

= (π
(p)
l+1,x

(p)
c,k

).

the true physical state of the system. In practice, due to high
sampling rates, the assumption above is realistic and found
in another body of works [36]. Table IV details the operator
enclose(τ, s

(p)
l,k ) that applies a transitionτ to a state fragment

s
(p)
l,k and transfers the continuous state froms(p)

l,k to s
(p)
l+1,k.

The algorithm returnss(p)
l+1,k that is guaranteed to capture the

true state of the system under the assumption above. The sole
subtle operation of the algorithm is step 2 thatvirtually enables
a switch at time-stepk − 1. This is required sinceτ cannot
be enabled at time-stepk − 1, as if it were, it would have
triggered at that time-step. Soτ has to be virtually enabled
at k − 1. This is achieved by triggeringτ from the union
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TABLE V
switch(Sl,k) OPERATOR.

Require: Sl,k, ξ = 0.
1: while ∃τ enabled insl,k do
2: sl+ξ+1,k = enclose(τ, sl+ξ,k),
3: ξ ← ξ + 1.
4: Sl+ξ,k = split(sl+ξ,k).
5: Sl+ξ,k = split(Sl+ξ,k)
6: clear(Sl+ξ,k, ỹd,k, ỹc,k).
7: merge(Sl+ξ,k).
8: return prunedSl+ξ,k.

of x
(p)
c,k−1 and the frontierr

C
(p)
k−1

of the configuration region

that enablesτ . Note that the algorithm requires working on a
temporal window of at least two sampled time-steps, and that
both r

C
(p)
k−1

andx
(p)
c,k−1 must remain accessible in memory.

Example 2 (continued). Fig.3(c), 3(d), 3(e) picture the trig-
gering of the enabled transitionsτ1 and τ2. On these fig-
ures, only the late switch is represented. We haves

(3)
l+1,k =

enclose(τ2, s
(3)
l,k ), s

(4)
l+1,k = enclose(τ1, s

(4)
l,k ) and s

(5)
l+1,k =

enclose(τ2, s
(4)
l,k ).

2) Multiple successive switches:When more than one
switch occurs between two sampled time-steps, each switch
is predicted successively with theenclose operator. Operator
switch in Table V handles multiple switches in between two
sampled time-steps. The number of successive switches is
noted ξ. At step 6, clear is the operator that prunes out
the states that do not intersect the observations. At step 7,
the operatormerge optimizes the final partition by merging
hybrid states whenever this is possible. These two operators
are detailed in the two next paragraphs. A condition forswitch

to terminate is that the hybrid system’s behaviorexcludes
infinitely many switches occurring in between two sampled
time-steps. Whenever this condition is fulfilled, the algorithm
in theory always terminates. In practice however, theenclose

operator yields conservative bounds, and adds up to the natural
non convergence of numerical uncertainty. In consequence,the
occurrence of infinitely many switches cannot be ruled out, but
a theoretical analysis is beyond the scope of the present paper.

3) Recursive estimation:Finally, the estimation of the
states of a hybrid systemH is captured by a sequence
ρ : S0 · · ·Sl,k · · · , that verifies:

S0 = switch
(

split(〈Θ〉ր0 )
)

(13)

Sl+ξ,k+γ = switch
(

split(〈Sl,k〉
ր

γ )
)

(14)

Relation (13) initializes the hybrid states starting from the
system initial conditionsΘ. The computation of the recursive
relation (14) alternates forward time and transition predictions
throughsplits andswitches, and results into an updated set of
hybrid states everyγ 6= 0 sampled time-steps.

E. Hybrid state estimation

Theclear operator prunes out all state estimatessl,k that are
such that the predictionyc,k does not enclose the observations
ỹc,k, or that do not predict observations̃yd,k. Note that the
measurement noise is already taken into account in (3), so that
ỹc,k is a real-valued vector ofℜny .

TABLE VI
clear(Sl,k) OPERATOR

Require: Sl,k, ỹc,k, ỹd,k.
1: for all sl,k ∈ Sl,k do
2: if ỹc,k 6⊆ yc,k or ỹd,k ∧ xd,k is inconsistentthen
3: Removesl,k from Sl,k.
4: return Sl,k.

TABLE VII
Merge(Sl,k) OPERATOR.

Require: Sl,k.

1: Group thesl,k ∈ Sl,k into {S(1)
l,k

, · · · , S
(nq)

l,k
} such that alls(i,j)

l,k
∈ S

(i)
l,k

have the same discrete state estimateπ
(i)
l

.
2: for i = 1, · · · , q do
3: s

i,1
l,k

= (πi
l
,
Snq

j=1 x
(i,j)
c,k

).

4: For all j > 1, remove alls(i,j)
l,k

from Sl,k.
5: return Sl,k.

F. Merging identical discrete estimates

Most approaches to the estimation of the hybrid states
apply Bayesian belief update to a stochastic hybrid system.
These techniques have to deal with an exponential blowup
in the number of possible hybrid states. We can witness a
similar effect in our case since theswitch operator generates
a growing number of states at each time-step. Adding up to
the growing uncertainty that is due to the box approximation
of the forward prediction operator, the growth rate of new
state estimates increases rapidly. In general this is the reason
why modern estimators track several hybrid state hypotheses
simultaneously. But inevitably, the number of states grows
exponentially with time as more hypotheses become likely.

The main advantage of our approach is that it permits the
merging of similar trajectories without loss. Consider merging
the uncertainty on two statess(1)

l,k ands
(2)
l,k : the question is how

to merge the two continuous vector estimatesx
(1)
c,k andx

(2)
c,k. It

is easily achieved by unionizing the variable estimated bounds.
The sole condition for the merging is that the discrete states
π

(1)
l,k andπ

(2)
l,k are identical. TheMerge operator is given by

Table VII. When splits and switches augment the number of
hybrid state estimates at each time-step, the merging step does
reduce this number substantially. In general this allows the
estimation procedure to mitigate the explosion of modes andto
maintain a finite, almost constant number of hybrid estimates.

Example 2 (continued). There are three estimates, repre-
sented on Fig.3(c), 3(d), 3(e). On Fig.3(c),τ2 has transferred
the system state tos(3)

l+1,k = (m3,x
(3)
c,k). On Fig.3(d), τ1

has transferred the system state tos
(4)
l+1,k = (m2,x

(4)
c,k). On

Fig.3(e), τ2 has transferred the system state tos
(5)
l+1,k =

(m3,x
(5)
c,k). s

(3)
l+1,k and s

(5)
l+1,k can then be merged. This is

pictured on Fig.3(f).

Merging the uncertainty is particularly efficient to counter
the effects of the occurrence of multiple similar splits and
switches that are a consequence of the temporal uncertainty
due to the variable bounds. In general the uncertainty on the
continuous state translates into the occurrence of the same
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Fig. 4. Set-theoretic estimation of the hybrid state of a thermostat system
(Example 1). Top figure: Mode estimation. Middle figure: temperature (C).
Bottom figure: temperature variation. All figures: X-axis is time.

transition switch over several time-steps. Such situations are
common and lead to the production of many estimates with an
identical discrete state within just a few time-steps. Using a
merge operator, it takes just a few more time-steps to produce
a single estimate instead. However, the actual implementation
behind the

⋃

operation on line 3 of Table VII yields a
conservative outer approximation of the merged estimates in
the shape of a hypercube. This operation introduces an error
because in general the union of hypercubes does not yield a
hypercube. In our example, the error is visible on Fig.3(f).

Thus in practice, the merging process enlarges the estimated
bounds and reduces the number of estimates. But the bounds
remain guaranteed to enclose the true behavior of the system.
However, the additional error carried by the bounds does affect
the soundness of the estimator, that produces estimates that
would not be reachable otherwise. A consequence is that
in practice, our hybrid estimation process is complete but
unsound.

V. RESULTS

A preliminary version of the presented filter was imple-
mented in C++ as part of a hybrid system diagnosis platform.

A. Case-studies

Fig.4 pictures the result of a run on our thermostat example.
In addition to the thermostat example, the state estimation
scheme presented in this paper has been applied to the bi-
tanks water regulation system in [48]. This system maintains
an outflow of water to a virtual consumer. It models two water
tanks, three valves and a pump. As such, the model totals 1350
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Fig. 5. Number of estimates before and after the merging step. Left:
thermostat. Right: Bi-tanks. Top curve: hybrid estimates before merging;
middle curve: continuous estimates before merging; lower curve: hybrid
estimates after merging.
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Fig. 6. Computation time per sampled time-step, in seconds. Left: thermostat.
Right: Bi-tanks.

possible modes, each of which represents a combination of
functional modes for all components in the system. Results
on running our estimator on these two systems follow.

B. General performances

We have studied the computation time of the estimate as
well as the number of state estimates maintained by our filter.
Results are reported on Fig.5 and Fig.6. Fig.5 illustrates the
double advantage of state estimation based on models with
bounded uncertainty over Bayesian filtering. First, the highest
number of estimated hybrid states is before the merging step
and remains low. For the bi-tanks, this number is around
70, that is at worst 5% of all possible states. Second, the
merging step drastically reduces the total number of hybrid
estimates, down to 5 estimates in the worst case for the
bi-tanks. It appears the computation time is best correlated
with the number of state estimates before the merging step is
applied, see Fig.6. Note that comparison with stochastic filters
is not directly feasible.

C. Uncertainty

The discrete switches in a system’s dynamics have an
effect on the number of state estimates. Based on the same
runs as before, we aimed to elucidate the effect of bounded
uncertainty on state estimation. Since bounds do not converge,
uncertainty is expected to grow unconditionally with time.
Fig.7 reports that the uncertainty is growing steadily, butis
mitigated by the switches in the continuous dynamics. This
property is explained by the switching mechanism presented
in this paper. Each switch can help decrease uncertainty in
the continuous state vector: by splitting the continuous state,
a switch discards a sub-region of the continuous state-space.
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Fig. 7. Relative growth of the bounded uncertainty
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However, the uncertainty grows again invariably, til the next
switch occurs.

This behavior again contrasts with stochastic hybrid filters
that can shift and focus a probability distribution around sub-
regions of the continuous state-space but cannot scale their
number of estimates accordingly.

VI. CONCLUSION

This paper has presented a set-theoretic alternative to the
estimation of hybrid systems. It has highlighted the benefits
of the approach compared to the dominant estimation scheme
that utilizes continuous probability distributions to represent
uncertainty. At the core of this work are the configurations
and logical configurations that articulate the discrete and
continuous knowledge levels and permit dedicated algorithms
to prune impossible estimates at each level. Because boundsdo
not converge, and due to a conservative merging of estimates,
the outer approximation of the continuous state is expectedto
grow unconditionally with time. Potential solutions include the
application of aggressive optimization techniques that produce
tighter bounds, and the use of more expressive geometrical
shapes. In application to large systems, the computational
burden of the next state expansion can prove prohibitive. As
a solution, transition selection through sampling or forward
search can be implemented as for stochastic hybrid filters,
at the cost of losing completeness. More research should
concentrate on bridging stochastic model based estimators
and their set-theoretic counterpart. In general a probability
distribution function badly mixes with bounded spaces. Thus
the uniform distributions proves unproductive because not
closed under standard operations. However some pieces of
work have been produced [49] and a comparison of stochastic
and set-theoretic estimation procedures for continuous systems
can be found in [50]. This issue is undoubtedly a promising
research direction for the future.
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