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Abstract—In the automotive domain, the use of
complex electronic control unit (ECU) in order to
monitor functions such as the injection or the ABS has
been widely developed during these last years. When
such a function fails, the concerned ECU is able to
reliably detect the faulty electronic circuit. Then, the
task of the garage mechanic consists in localizing and
This

work is done by traversing a diagnosis tree composed

replacing the faulty component of this circuit.

of test sequences and whose leaves represent the dif-
ferent possible repairs to operate. Nowadays, these di-
agnosis trees are hand-made by experts and, because
of the increasing complexity of these circuits, errors
are not unusual in them.

The software application AGENDA (for Automatic
GENeration of DiAgnosis trees) uses algorithms that
allow to generate automatically these diagnosis trees
from the design data supplied by the automotive man-
ufacturer.

Different models of the circuit to diagnose are built
from these data and the specific knowledge given by
First,
this paper details how the different possible faults of

the expert by means of a dedicated interface.

this circuit as the different possible tests that can be
performed are anticipated. Then, the way the values
corresponding to the tests with occurrence of one of
the faults of the circuit are computed is presented.

I. INTRODUCTION

In the automotive domain, the use of electronic systems
to control several functions is widely spread. These func-
tions span diverse automotive areas such as engine control
(fuel injection or ignition), breaking and driving (ABS,
suspensions), security (air-bags, seat-belt), or comfort (air
conditioning, heating system). As shown schematically
in figure 1, these electronic systems are composed of a
voltage supply (battery, fuses and relays), sensors (po-
tentiometer, temperature sensor) and actuators (electric
valves) linked to electronic control units (ECUs for short)
by a wire harness.

The main task of the ECU is to elaborate and send
control signals to the actuators, taking into account the
signals received by the sensors. Moreover, an ECU is
equipped with an self-diagnosis function which reliably
detects which of the functional electric circuits that it
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Fig. 1. Electronic systems for function control

controls are failing. The failed electric circuits are asso-
ciated with fault codes memorized in the ECU. However,
the ECU is not able to localize precisely the faulty com-
ponents within the functional circuit.

Due to the increased use of such electronic systems, the
garage diagnosis task is not limited to mechanical repairs,
but also involve electronic ones. Therefore, car manufac-
turers have developed diagnostic tools for fault detection
and isolation to help garage mechanics in the diagnostic
task of electronic systems.

First, the diagnostic tools are able to read the fault
codes stored in the memory of the ECU to identify the
corresponding failed electric circuit. Then, in order to
accurately localize the faulty components, diagnostic tests
are proposed. The sequencing of these tests and their
descriptions are displayed by the diagnostic tools in the
form of decision trees (also called diagnosis trees,test trees
or troubleshooting trees).

Currently, diagnosis trees are built by human experts.
This task is time consuming and laborious as the com-
plexity of electric circuits and mechatronic components
increases. Consequently, errors are not unusual in the re-
sulting diagnosis trees. Hence, it is imperative to reduce
human intervention in the generation of diagnosis trees to
reduce the cost of maintenance.

The method that we propose fully automate the deci-
sion tree generation process(see [1] and [2]) in two steps:

1. A behavioral model of the circuit is obtained from
the design knowledge. Then, a set of possible sys-
tem faults and a set of tests are anticipated from this



model. The possible outcomes of a given test when
the circuit is in a given faulty state are obtained us-
ing a prediction algorithm that makes use of symbolic
and interval computations. A “cross-table” is gener-
ated from the results of the prediction algorithm.

2. The use of a search algorithm coupled with an origi-
nal heuristic evaluation function allows us to generate
the optimal diagnosis tree from the “cross-table” and
a topological model of the circuit. The topological
model is used during the search algorithm to evalu-
ate the dynamic test costs, which take into account
the current topology of the mechanical system.

This paper focuses on the first step of the method and
presents the prediction procedure which allows us to build
the ”cross-table” from the optimization of the symbolic
expressions relative to the possible (fault/test) pairs.

Given the frequent use of such circuits in the auto-
motive domain, the procedure has been devised for Re-
sistive Network circuits supplied by One Voltage Source
(RNOVS).

The paper is organized as follows. Section 2 presents
respectively the single faults set and the tests set that are
anticipated for a given RNOVS. The behavioral model
corresponding to this type of electric circuits is built ac-
cording to a classical component-oriented approach based
on a structural model and a library of basic components
behavioral models. The considered faults impact on the
model parameters and they are represented by bounded
uncertain values,i.e. interval values.

Section 3 explains how the formal matrix expression of
the system corresponding to a (fault/test) pair is built and
how the symbolic expressions of the test is then obtained.
Mathematical characteristics of these test symbolic ex-
pressions are also presented in this section. A prediction
algorithm which organizes the way the (fault/test) pairs
have to be evaluated and which minimizes the number of
matrix constructions and test formal expression evalua-
tions is proposed.

Given a (fault/test) pair, section 4 details the way the
corresponding symbolic expression is optimized on the do-
main defined by the parameter bounded uncertain values
relative to the given fault. The min and max values define
the interval domain values.

Finally, section 5 discusses the general method and out-
lines several interesting directions for future investigation.

II. EXAMPLE

The example that has been chosen to illustrate the dif-
ferent steps of the prediction procedure throughout the
paper is the throttle valve potentiometer electric circuit
(see [3] and [4]). This electric circuit provides informa-
tion to the injection ECU about the position of a valve,
called throttle valve, which controls the air flow into the
carburettor. The throttle valve is directly activated by
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Fig. 2. Throttle valve potentiometer

the car driver with the accelerator pedal. Then, a poten-
tiometer connected to the injection ECU transforms the
valve position into an intensity signal Iy from the cursor
pin of the potentiometer to the corresponding pin of the
injection calculator.

This circuit is hence composed of a potentiometer linked
by a wire harness to the injection ECU. During a diagnosis
session, only two positions of the accelerator pedal are
used : foot fully up or foot fully down. Consequently,
the throttle valve potentiometer is represented as a two
positions switch corresponding to these two accelerator
pedal positions as shown in figure 2.

The potentiometer resistors Cy, C3 and C4 are asso-
ciated with parameter values, respectively, R», Rz and
R4 representing their resistance. These parameters have
the same nominal value interval [350,650] Ohms. The
nominal value interval [960, 1440] Ohms is assigned to the
parameter Rs of resistor C'5. The resistor C is asso-
ciated with R; and its nominal values interval [3.999 x
10%,4.001 x 10%] Ohms. The electromotive power param-
eter Uy of the voltage supply (component, Cy is associated
with the nominal values interval [4.9,5.1] Volts. All the
wires C7, Cg, Cy, Cio and C7; have the same nominal
values interval [0.001,0.001] Ohms of their parameters,
respetively, R7, Rs, Rg, Rm and R11.

A connector represents the available pins of a compo-
nent for connection, i.e. those where you can plug. By
instance, for the component potentiometer, V3, Vs and Vj
belong to the Connector3 whereas Vs, V7 and V3 do not.
A connection is a virtual component composed by two
components connector. This kind of component is used
to deal with structure faults.

III. DIAGNOSIS PROBLEM FORMULATION

This section describes how the set F' of system faults
and the set S of tests that can be performed on the system
are anticipated from the behavioral model of the system
to diagnose.

These two sets F' and S are ground elements of the
Test Sequencing Problem instance whose solution is the
optimal diagnosis tree of the system.

The generation of these two sets F' and S is more specif-
ically detailed for electric circuits and illustrated on the



throttle valve potentiometer example.

A. System fault set

This subsection presents the general definitions con-
cerning the set of the possible faults within a classical
component-oriented modeling approach (see [5]).

Let ¥ be the system to diagnose, defined as the set
of its ny individual components ¢;, i € {1,...,ny}. For
each component v, let ®¢ be the set of the n§ possible
component fault modes ¢§, je{l,..,nk}. Let also ® , 5
and &% 5 be the set of the n’ ,5 fault-free modes and
the set of the n’ 5 faulty modes, respectively, such that
P!,z UPY =" and L, NBY L = 0.

A.1. Definitions: A fault mode of the system ¥, also
called system fault, is defined as an ny component vector
which associates with each component 1; one of its n
fault modes ¢%, j € {1,...,n%,}. Consequently, the set F
of the faults which may occur in the system ¥ is composed
of np = [[1¥, n§ elements, called fi, k € {1,...,nF}.

According to the number of the component fault modes
which are faulty among the ny ones that define a fault,
these np faults are classified into the two following fault
classes.

e Pure Single Faults
The Pure Single Faults (PSF) are defined as faults
whose origin is at most one faulty component. They
include the possible corresponding cascaded multiple
faults. They also include the []1¥, n’ ,p fault-free
system modes, called empty faults.

o Pure Multiple Faults
The Pure Multiple Faults (PMF) denote the faults
whose independent origins (i.e. not cascaded multiple
faults) refer to a set of at least two faulty components.

A.2. Fault set in a resistive network: Adopting the sin-
gle fault hypothesis, the proposed diagnosis method se-
lects a fault set F' composed of the possible PSFs of the
system. Then, the following five types of faults are dis-
tinguished according to their initial faulty component.

o Empty fault
The elementary entities, connectors and connections
of the system are all in one of theirs fault-free modes.

e Parameter fault
A parameter of a component of the system is in one
of its faulty modes. This mode corresponds to a non-
nominal interval value assigned to one of the param-
eters of this elementary component.

o Switch fault
One switch of the system is in one of its faulty modes.
This mode given for one position corresponds to nor-
mal mode of another position (i.e. the switch is stuck
at one of its possible positions).

e Connector fault
One connector of the system is in one of its faulty
modes. This mode corresponds to a short circuit be-
tween two neighboring pins of this connector.

e Connection fault
One connection of the system is in one of its faulty
modes. This mode corresponds to an open circuit
between two opposite pins of this connection.

The uncertainties of the values that can take the sys-
tem parameters are represented by value intervals (see [6],
[7], [8], [9] and [10] for more about diagnosis of uncertain
systems).

A.8. Ezample: In the throttle valve potentiometer ex-
ample, at most 34 faults f;, ¢ € {0, ...,33} may be consid-
ered where the fault fy corresponds to the empty fault.

For some of these 34 faults f; such that i € {0,...,33},
figure 3 gives the concerned faulty elementary entity and
its precise faulty mode.

B. Test set

This section presents the general definitions concerning
the set of tests that can be anticipated from a classical
component-oriented model of the system.

Let ¥ be the system to diagnose, defined as the set of
its ng individual components v¢;, i € {1,...,ny}. Let also
X be the set of the nx system variable states z;, i €
{1,...,nx} defined by the structural model of the system
v,

For each component 1;, let U? be the set of the n%
possible component normal behavioral modes u;, Jj €
{1,...,n}}.

B.1. Definitions: The configuration of the system ¥ is
defined as an ny component vector which associates with
each component t;, one of its n¢, corresponding possi-
ble normal modes u’, j € {1,..,n}, }. Consequently,
the set E of the possible configurations of the system
¥ is composed of ng = [[.¥, ni, elements, called ey,
ke {]., ,nE}

A test is defined as a pair composed of a measurement
description based on a subset of the system state variable
set X and a subset of the possible system configuration
set E£. The test then consists of measuring each system
state variables of X for any of the system configurations
of E. These are all equivalent, i.e. give the same test
outcome.

B.2. Test set in a resistive network: For an electric cir-
cuit, the system configuration is defined by the switches
configuration and the connections configuration.

Let ¥ the electric circuit to diagnose, composed of ncy
connections Cz;, i € {1,...,nc;} and of ng,, switches Sw;,
1€ {1, ...,nsw}.



fi || Faulty elementary component |

Faulty mode

fo 0 0

fi Co Short-Circuit

fo Co Open-Circuit

fis Switch Cg Stuck at position 1
fio Switch Cyg Stuck at position 2
foa Connector 2 Short-Circuit (Vi3 — Vi2)
fos Connector 2 Short-circuit (Via — Vig)
fas CONNECTION 0 Open-circuit (Vi — Vi1)
foo CONNECTION 0 Open-circuit (Vo — Vo)
f30 CONNECTION 0 Open—circuit (V() - Vg)

Fig. 3. Fault description

For each switch Sw;, let W* be the set of its niy
possible normal mode,i.e. the different positions wj,
jed{l,..,nyt.

Then, a switch configuration of the system ¥ is defined
as a ng, component vector which associates with each
switch Sw; one of its ny, normal mode wj, j € {1,...,ny, }.
Consequently, the set G of the possible switch configura-

nsw

tions of the system ¥ is composed of ng = [[;5) ni,
elements, called g, k € {1,...,ng}.

Each connection C'z; of the system ¥ may be in con-
nected or disconnected mode. Then, a connection config-
uration of the system ¥ is defined as a nc, component
vector which associates with each connection C'z;, its con-
nected mode or its disconnected mode.

Consequently, the considered set () of the connection
configurations of the system ¥ is composed of ng =
1 + 2n¢=—1 elements, called g, k € {0,...,ng — 1}. By
convention, gy denotes the system connection configura-
tion such that all the system connections are connected.

For electric circuits from the automotive domain, the
three following kinds of tests are considered.

e Potential test
A potential test Uy, y, has to be performed be-
tween an accessible system potential point V4 and
Vb, the ground of the system in its connection con-
figuration go and one of its switch configurations g;,

JjE {1, ...,ng}.

e Fquivalent resistance test
An equivalent resistance test Ry, _y, has to be
performed between two accessible system potential
points V4 and Vg of the system in one of its connec-
tion configurations ¢;, i € {1,...,ng} and one of its
switch configurations g;, j € {1,...,ng}.

o Perceptible test
These tests do not require a measurement tool. The
test output is perceptible to the eye or to the ear. A

perceptible test Sx is concerned with a perceptible
state variable Xg of the system in its connection con-
figuration go and one of its switch configurations g;,

je{l,..,ng}.

Among all the possible tests, some are redundant or
not relevant and are filtered away. The remaining tests
are called ”useful tests”.

B.3. Example: Consider the throttle valve potentiome-
ter circuit example, Figure 4 describes the set G of 2 pos-
sible switch configurations, called g;, ¢ € {1,2}.

| gi || Switches | Switch position |
| 91 || Switch Cs |
| 92 || Switch C |

Position 1 |

Position 2|

Fig. 4. Switch configuration description

Figure 5 describes the set @ of 3 possible connection
configurations, called ¢;, i € {0, 1,2}, of the throttle valve
potentiometer circuit.

| qi || Connections | Mode |
qo || CONNECTION 0 Connected
CONNECTION 1 Connected
q1 || CONNECTION 0 | Disconnected
CONNECTION 1 Connected
q> || CONNECTION 0 | Disconnected
CONNECTION 1 | Disconnected

Fig. 5. Connection configuration description

With regard to the 34 considered faults of the fault set
F, at most 36 useful tests s;, i € {0,...,35} are considered.
For some of the 36 tests s; such that i € {0,...,35},
figure 6 gives the system state variables subset that have
to be measured, the subset of equivalent possible system



switch configurations for this measurement and the subset
of equivalent possible system connection configurations
for this measurement.

IV. PREDICTION PROCEDURE

Consider a RNOVS. For this system, let F' be the set
of the ng considered faults f;, i € {1,...,np} and S the
set of the ng considered tests s;, j € {1,...,ns}.

The aim of the prediction procedure is to provide the
symbolic expressions corresponding to the outcome of any
test of the test set S in the occurrence of any fault of the
fault set F'.

A. Symbolic matriz expression of the system

First of all, the prediction elaborates the symbolic ma-
trix expression of the system behavioral model corre-
sponding to a given pair (f;,s;) for any i € {1,...,nr}
and j € {1,...,TL5’}.

This subsection details how this is achieved. The sym-
bolic matrix construction algorithm is illustrated with dif-
ferent pairs (f;,s;) on the throttle valve potentiometer
example.

A.1. Matriz construction algorithm: First, the equa-
tions corresponding to the voltage supply behavior are
written. If the considered test s; has to be performed
in connection configuration gy then the algorithm starts
from the voltage source of the system; otherwise, it starts
from the pins where the equivalent resistance measure-
ment tool has to be placed according to s;.

The matrix construction algorithm follows recursively
the elementary entities linked by the system structural
model. Their respective behavior, described by Ohm’s
law equations, is selected from the elementary entity be-
havioral model library according to the considered pair
(fi,s;) and reported in the symbolic matrix. If a circuit
node (i.e., a potential point having more than two neigh-
bors) is crossed, then the Kirchhoff’s law equation relative
to this potential point is written in the symbolic matrix.

During its construction, the symbolic matrix expression
keeps the same structure A x X = B as shown in figure

A | A | Ars X B,
Ay | Ao | Ass | x| Xo | =| B
Az | Az | Az X3 B;

Fig. 7. Symbolic matrix expression model

The square matrix A is decomposed into 9 blocks, de-
noted Ai7j7 1€ {1,2,3} andj S {1,2,3} A172, A173, A371
and As o are null matrices and A; 1, an identity (2 x 2)
matrix.

The vector X is decomposed into 3 sub-vectors, X; with
i € {1,2,3}. X1 is a 2 component vector such that the

first component corresponds to the ground of the system
and the second one to the supply pin. X5 corresponds to
the other system potential points that are circuit nodes
or involved in test s;. X3 corresponds to the different
intensities of the system.

The vector B is decomposed into 3 sub-vectors, called
B; with i € {1,2,3}. B is a 2 components vector such
that the first component is 0 and the second one Ugyppiy
(i-e., electromotive power value of the system voltage sup-
ply). By and Bj are null sub-vectors.

According to this decomposition of the symbolic matrix
expression, the Kirchhoff’s law equations are identified in
the last lines of the matrix expression (As 3 in A, X5in X
and Bz in B). In the same way, the Ohm’s law equations
(A271, A272 and A273 in A, Xl, X2 and X3 in X and B2 in
B) are identified between the first lines which describe the
voltage supply behavior (4;; in 4, X; in X and B; in
B) and the last lines which correspond to the Kirchhoff’s
law equations as seen just before. This recursive traverse
of the system stops when the supplied circuit is totally
described.

In order to reduce the complexity of the matrix ex-
pression corresponding to the pair (f;,s;), branches (i.e.,
serial resistors) of the circuit are automatically identified
and reduced by the matrix construction algorithm. Ac-
tually, for each identified circuit branch, only one inten-
sity and one equivalent resistive parameter are considered
rather than the set of equivalent intensities and the set of
resistive parameters corresponding to the serial resistors
which constitute this circuit branch, respectively.

The set of performed circuit branch reductions must be
such that only the ground and supply pins of the volt-
age supply, circuit nodes and potential points that are
involved in s; appear in the final symbolic matrix corre-
sponding to the pair (f;,s;).

A.2. Ezample: For the throttle valve potentiometer ex-
ample, the symbolic matrices corresponding to the three
following pairs (f;,s;) are presented.

o Test sy and fault fy
Figure 8 represents the symbolic matrix expression
of the circuit corresponding to the test ss defined by
the measurement Uy, v, for the system connection
configuration go and the system switch configuration
g1, when the system is normal.

According to the branch reductions, the symbolic ma-
trix is simplified by considering the equivalent resis-
tive parameters R,, Ry, R. and Ry for the serial re-
sistive parameters Ry + Rg + Ry9, R3, R; + Rsg and
Ry + R; + R7 + Ry, respectively.

Then, the four corresponding branch intensities Iy
from V; to Vg, I; from Vg to Via, Iy from Vis to Vjp
and I» from V5 to V4 via Vi4 are defined.

It follows that only the potential points Vg, Vi, Vg
and Vi» appear in the resulting symbolic matrix ex-
pression.



| | Measurements | Switch configuration | Connection configuration

S2 Uvio v g1 9o

S26 Uvi, v, 92 o

56 Ry, v, g1,92 g1, 92

s7 Ry, vio g1 qQ

S11 By, vi, 91,92 q2

Fig. 6. Test description

1 0 0 0 0 0 0 0 Vo 0
0 1 0 0 0 0 0 0 i Uy
0 —-1] 1 0 |R, O 0 0 Vs 0
0 0 |-1 1 0 R O 0 o Via _ 0
1 0 0 —-1|0 0 R. O I 0
1 0 |-1 0 0 0 0 Ry I 0
0o 0l0 O]1 -1 0 -1 I 0
0 0 0 0 0 1 -1 0 I3 0

Fig. 8. Test s3 and fault fy

o Test s11 and fault fy

Figure 9 represents the symbolic matrix expression of
the circuit corresponding to the test s1; defined by
the measurement Ry, v,,, for the system connection
configuration ¢, and the system switch configuration
g1 or go, when the system is normal.

According to the branch reductions, the symbolic ma-
trix is simplified by considering the equivalent resis-
tive parameter R, rather than the serial resistive pa-
rameters Ry + Rip.

Then, the corresponding branch intensity Iy from Vi3
to Vi1 is defined.

It follows that only the potential points V7, and Vi3
appear in the resulting symbolic matrix expression
where Uy, represents the voltage source supplied by
the measurement tool used to perform an equivalent
resistance measurement.

1 0 0 Vi1 0
0 11]0 x| Vis | = | Utool
1 —-1|R, Iy 0

Fig. 9. Test s11 and fault fo

Test so and fault foy

Figure 10 represents the symbolic matrix expression
of the circuit corresponding to the test so defined by
the measurement Uy, v, for the system connection
configuration go and the system switch configuration
g1, with occurrence of the connector fault foq.

According to the branch reductions, the symbolic
matrix is simplified by considering the equivalent

resistive parameters R,, Ry, R., R4, R. and Rj
for the serial resistive parameters Ry + Rio, Ra,
Rconnector (1.€., resistive parameter of the short cir-
cuit between the pins Vi5 and Vi3), Rs, R1 + Rg and
R4 + Rs + R7 + Ry, respectively.

Then, the six corresponding branch intensities I
from Vi to Vi3, Iy from Vi3 to Vg, Ir from Vi3 to
Vs, I3 from Vi3 to Vg, Iy from Vi3 to Vs, and I5 from
Vs to V are defined.

It follows that only the potential points Vg, Vi, Vg,
V12 and Vi3 appear in the resulting symbolic matrix
expression.

B. Symbolic expression of the test

Once the symbolic matrix expression is obtained, the
prediction algorithm applies a sequence of matrix reso-
lutions in order to obtain the symbolic expression corre-
sponding to the test s; when fault f; occurs.

The matrix resolution method used by the method is
the Cramer’s rule. Actually, Gaussian elimination, LU de-
composition or Crout elimination both have an excellent
0(n?) performance. However, problems arise when these
are applied to symbolic systems for which the elimination
approach is among the worst possible algorithms. Firstly,
the result is calculated as a rational, requiring costly sym-
bolic division and GCD (Greatest Common Denominator)
operations. Secondly, a large amount of unnecessary cal-
culations are performed for factors which cancel exactly
afterwards. This phenomenon is called intermediate ex-
pression swell and must be considered the primary cost
factor in solving symbolic systems (see [11]). Moreover,
the matrix obtained from Ohm’s law and Kirchhoff’s rules
are always sparse; this reduces the large complexity of the
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o 1/0 0 O]0O 0O O O 0 O Vi U
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0 0|1 -1 0|0 R O O 0 O Vig 0
0o 0|0 -1 110 0 R O 0 0 Via 0
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o 0lo 0O O]1 -1 -1 0 0 O I 0
o 0olo 0o O]O 0 1 1 -1 0 I 0

Fig. 10. Test s2 and fault fos

R..R;.Uy

S2 = UV12,V0 =

s11 = Ry, vy =

R,.Ry+ Ry.R. + Rq.Rg + Ry.Rqg + Rc..Ry
Utoot _

R..(R4-Ry + Ry.Ry + R..Ry + Ry.Ra).Us

_ (g_l) —R, (2)

a

s2 = Uy, vy =

R..(Rq.-R; + Ry.R; + Re.Ry + Ry.Rg + Ro-Ry + Ry R + Ro-Ry + Ry.R.)+

R,.Ry.R; + Ry.R..Ry + R,.Ry.Ry + R..Rq.Ry+
R..R..Ry + R,.Ry.Rg + Ry.R..Rg + R,.R..Ryq

Cramer’s resolution method. Finally, as it will be seen
later, a particular symbolic expression form is expected
from this resolution process. This particular symbolic
expression form is directly obtained from the Cramer’s
method whereas the result obtained from an elimination
method would require simplification algorithms (which
have a large complexity) to be changed into the expected
specific symbolic expression form.

B.1. Symbolic matriz resolution: This subsection
briefly presents the Cramer’s matrix resolution method.
As previously seen, let A x X = B be the matrix sys-
tem to be solved. Let n be the number of columns of
A (A is a square matrix) composed of elements a; ; with
i,j € {1,...,n}. Consequently, n represents also the num-
ber of components of the vectors X and B, called z; and
bi, i € {1,...,n}, respectively.

According to the Cramer’s matrix resolution method,
any component z; can be computed as shown in Figure 11
where det denotes the determinant operator of a matrix.

1,1 @1,i—1 by a1,i+1 a1,n
det :
Qn,1 An,i—1 bn An,it+1 Qn,n
Tr; =
ai,1 a1,n
det
An,1 Qn,n

Fig. 11. Cramer’s matrix resolution method

B.2. Ezample: For the throttle valve potentiometer ex-
ample, the three test symbolic expressions corresponding
to the three pairs (f;, s;) studied in the previous section
are given by equation (1), (2), (3), respectively.

V. GLOBAL OPTIMIZATION

In this section, the main results that the symbolic ex-
pressions obtained in section IV. have the specific form
of multi-variable homographic functions are presented.
Their mathematical properties are outlined and an opti-
mization algorithm (see [12] for a theoretical background
about optimization methods) is used to find the minimum
and the maximum of this type of function on a strictly
positive multi-variable domain (each parameter may take
only strictly positive values in the actual problem) (see
[13] and more recently [14] for a theoretical background
about interval arithmetic).

A. Description of the specific symbolic expression

This subsection characterizes the test symbolic expres-
sion specific form as multi-variable homographic symbolic
functions.

Definition 1 (Form 1 function) Let X be a set of n
variables {x1,....,xz,}. A form 1 function F on X is a
sum of m products of variables x; of degree d;; equal to
zero or one.



m n

F(X)=3 e x [}
i=1 j=1 (4)
ci€R Vi e {l..m}
{ dij € {0,1} Vie {l..m} Vje {l..n}

Definition 2 (Form 2 function) Let X be a set of n
variables {x1,...,xn}. A form 2 function F on X is a
sum of m products of a same number L € N* of variables

x; of degree d;;j equal to one. Moreover, the c; coefficients
belong to {—1,0,+1}.

m n
F(X) =3 e x [] 25"
i=1 j=1

ci € {-1,0,+1} Vie {l..m}
d;; € {0,1} Vie{l..m} Vje{l.n}
Z?:l di]’ =L Vi € {1m} L eN*

Proposition 1 (Form 1 function) Let ¥ be a linear
matriz system defined by A x X = B composed of n linear
equations. X is the set of the n variables {z1,...,xp} in-
volved in ¥ and P the set of the m parameters {p1, ..., pm}
involved in Y such that one parameter has one and only
one occurrence in A. Then, the expression of any variable
x; of the system as a function of the elements of P is a
fraction of form 1 functions on P.

Proposition 2 (Form 2 function) Let ¥ be a linear
matriz system defined by Ax X = B composed of n linear
equations obtained from the Ohm’s laws and the Kirch-
hoff’s laws of a resistive net supplied by one voltage sup-
ply. X is the set of the n variables {x1,...,x,} involved
in ¥ and P the set of the m parameters {p1,...,pm} in-
volved in ¥ such that one parameter has one and only one
occurrence in A. Then, the expression of any variable x;
of the system X as a function of the elements of P is a
fraction of form 2 functions on P.

The determinant of any matrix A representing a resis-
tive net composed of k nodes and b branches supplied by
one voltage source, is a sum of positive or negative terms
[T, p¥, 3% d; = L and L = b — k among the C% pos-
sible ones. The terms which appear in the determinant
expression depend on the structure of the resistive net.

B. Mathematical properties of fractions of form 2 func-
tions

Since the possible system parameter values are repre-
sented by value intervals, this section studies the mathe-
matical properties of fractions of form 2 functions on the
parallelotop defined by the intervals corresponding to each
of the system parameters.

Theorem 1 (Optimum) Let X € (RT*)™ be a n inde-
pendent components vector (z1,...,2,)T, A be a parallelo-
top defined by

A={X=(z, e n) T30 < ay <z < by, Vi= {1, yn}}
Y € R* and F be a fraction of form 2 functions on A
such that

F:A — R*
{7

The minimum Y ~ and the mazimum YT values of F on
A are respectively obtained for the vectors X~ and X of
A such that X~ = (z] ,...,x;))T and X+ = (2 ,...,z)T

where x} € {a;,b;} Vs € {—,+} and Vi € {1,...,n}.

Proof 1 (Optimum) On the domain A, for each vari-
able z; such that i € {1,...,n}, the function F restricted
to the variable x; such that the fized value associated with
each variable x), with k # i belongs to [ay,by], can be
written as the homographic function shown in equation 6
where A,B,C,D € R.

Ax;+ B
n Cx;+ D (6)

Then, the partial derivative of F according to the vari-
able x; is written as shown in equation 7.

=Rl = M
0x; (C.z; + D)?

The sign of the denominator expression (C.z; + D)?
is always strictly positive and the sign of the numerator
A.D — B.C' is always constant.

Consequently, the sign of g—fi is always constant on the
domain A. So, the mazimum value YT, respectively the
minimum value Y, of F is necessarily obtained for a
vector X1, respectively X —, composed of extreme values
a; or b;, for each variable x;.

C. Algorithms

C.1. Presentation: Starting from a (fault/test) pair
(f,s), let F' be the formal expression relative to the (f,s)
pair, function of n parameters z;, i € {1,...,n}. Let A
be the domain defined by the set of [a;,b;], i € {1,...,n}
values intervals affected respectively to the z; variables
according to the fault f. Then, the optimization algo-
rithm allows to find the interval values corresponding to
the possible results of the test s, knowing that the system
is in fault f.

Let F~ and F'* be the current functions corresponding
respectively to the minimum and the maximum of F on
the A domain. At the beginning of the algorithm, F~ =
F and F* = F. At end of the algorithm, F~ = Y~
and It = Y. This algorithm has a recursive structure



such that, at each iteration of the algorithm, F'* has to
be maximized and F'~ has to be minimized.

According to the theorem 1, one can easily imagine a
simple algorithm which consists in enumerating all the
combinations generated by the 2" vectors X = (z1,...,x,)
such that only extreme values a; or b; of the corresponding
value interval are affected to each component x;. Conse-
quently, this O(2") complexity is the worst one can expect
for this optimization problem.

C.2. Recursive partial derivative study algorithm: By
studying the partial derivative, one can easily reduce this
combinational method and, so, the algorithm complexity.
Actually, knowing that the values belonging to [a;, b;] that
can take the variables x; are always strictly positive, it is
often possible to find some components xj;, such that the
partial derivative according to one of these variables has
a constant sign whatever the possible values affected to
the n — 1 other variables.

If the partial derivative according to the zj variable is
shown to be always positive (i.e. 88—;; > 0) then :

CU]: =ar and F~ = F(wl, vy L1, Ay Tt 15 ,Cﬂn)
T+ _ _
z) =by and F* = F(z1, ..., %61, bk, Thg1, ..o, Tn)

If the partial derivative according to the zj variable is
shown to be always negative (i.e. g—i < 0) then :

z, =byand F~ = F(x1,...,Tk—1,bk, Thi1, ..., Tn)
£ _ _
) =ap and FT = F(z1, ..., 01, Gk, Tpg1, ooy Tn)

While F~ or F'* are modified during the current iter-
ation the study of partial derivative algorithm continues
else it stops.

C.3. Branch and bound-like algorithm: For this algo-
rithm, only the F'* maximization problem is studied, con-
sidering that the F~ minimization treatment is similar.

The main idea of this algorithm is to build a binary tree
where the root is F't.

The branch and bound-like algorithm consists in mak-
ing two assumptions at each node of the binary tree al-
lowing to obtain the two children of this node. These two
assumptions are xp = ar and x; = by such that x; is one
of the not already evaluated components. A node is said
to be non consistent if one of the assumptions z; = aj, or
xj, = by, that have been made on the path from the root
to this node is not consistent with the evaluated gradi-
ent value for the z; component respectively % > 0 or

i <o
If a node is proven non consistent, it is pruned. If a
node is consistent and if it remains components that have
not been evaluated, then, the signs of each gradient com-
ponents are evaluated according to the previous recursive
partial derivative study algorithm.
This branch and bound-like algorithm allows to obtain

all the local maxima of F' on the A domain. Then, by

L s (V) [ s (@) |
To [4.9,5.1] 0
fio || [4.8997966, 5.0999774] | [1660, 2740]

Fig. 12. Prediction table

comparing these local maximum values during the previ-
ous algorithm, it is easy to deduce the Yt value and its
relative X+ vector corresponding to the global maximum
of F' on the A domain.

C.4. Conclusion: Let nt, respectively n~, be the cur-
rent numbers of variables which are not already evalu-
ated in F'* maximization, respectively F'~ minimization,
problem. At the beginning, n™, respectively n™, is ini-
tialized at n. First, the recursive partial derivative study
algorithm is applied on F'T, respectively F—. If n* # 0,
respectively n~ # 0, the branch and bound-like algorithm
is executed.

It has been proven that the average complexity of the
branch and bound-like algorithm on n € NT* variables is
always lower than O(2") (see [15]).

For the throttle valve potentiometer example, a sample
of the resulting prediction table is given in figure 12 for
the 4 (fault/test) pairs previously proposed.

VI. CONCLUSION

This paper presents a prediction method whose input
consists of a set of behavioral models, nominal as well as
faulty, of the electric circuit to diagnose and a topological
model of the mechanical system in which the electric cir-
cuit is embedded. The system behavioral model is directly
built from first principles and cabling diagrams supplied
by the automotive manufacturer and a library of basic lin-
ear electric components. The parameter ranges in nominal
and faulty conditions are represented by interval values,
which calls for a dedicated optimization method. Actu-
ally, only electric circuits that are equivalent to resistive
networks supplied by one voltage source are considered
in this work. The topological model is built from the as-
sembly tree of the concerned mechanical system assuming
that the way to disassemble this mechanical system is the
opposite of the way to assemble it.

From the system behavioral model, a set of possible
tests and a set of available faults are generated (see section
III.). In the set of faults, only pure single faults (PSF)
are considered. In the set of available tests, potential and
equivalent resistance measurement tests and perceptible
tests (i.e., light or noise) are considered.

This work proves that the symbolic expression of any of
the considered tests in the occurrence of any of the con-
sidered faults is a function of the parameters of the sys-
tem of a specific form (see section IV.). The uncertainty
of the parameter values being expressed as intervals, an



optimization process for this specific symbolic expression
form is proposed. It is then possible to predict the exact
resulting interval value of a given test when a given fault
occurs (see section V.). The obtained predictions summa-
rized in a ”cross-table” are the input of an algorithm to
determine the optimal diagnosis tree [2] [15].

To perform on more complex electric circuit, the pro-
posed method has to be able to take into account more
than one voltage supply and non linear electric compo-
nents. At the moment, non linear components are approx-
imated by piecewise linear models, which is not always
satisfactory. The consideration of dynamic components is
also an issue for further work. Basic concepts and ideas
can be taken from [16].

Another important issue is the automatic test antici-
pation step. The current procedure does not succeed in
producing a reasonable sized test set, which impacts sig-
nificantly on the algorithm complexity. Ideas from sys-
tem diagnosability analysis [17] could be a basis for an
improved method.
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VII. APPENDIX

Proof of Proposition 1 [Form 1 function] Considering
the Cramer’s matrix resolution method (see Figure 11)
to solve the system ¥ according to the z; variable, if each
of the m parameters implied in S has one and only one
occurrence in ¥. Then, the determinant of any square
sub-matrix only includes c; x H?zl p;.i“ terms, ¢; € R and
d;; € {0,1}. Consequently, the expression of any variable
x; of the system ¥ as a function of the elements of P is a
fraction of form 1 functions on P.

a

Proof of Proposition 2 [Form 2 function] In a Ohm’s
laws equation, potential identifiers are associated with to
—1 or +1 coefficients whereas the intensity identifier is as-
sociated with a parameter identifier. In Kirchhoff’s laws
equation, intensity identifiers are also associated with a
—1 or +1 coefficients. Consequently, the matrix represen-
tation of the system ¥ is only constituted by —1, 0 or +1
coefficients and the parameter identifiers.

Let us consider the block decomposition of the matrix
A proposed in figure 7 defined by k nodes (i.e., poten-
tial points that have more than two neighbors) and b
branches (i.e., serial resistors from one node to another).
For each branch, one intensity and one resistive param-
eter are characterized. The branch resistive parameters,
called pj, i € {1, ...,b}, are equivalent to sums of resistive
parameters from the set {p1,...,pm }. Actually, each resis-
tive parameter occurs just once in the symbolic expression
of only one branch resistive parameter.

Then, as shown in Figure 13, the sub-matrices A s,
A3, A3 and Ag o are null sub-matrices and A4;; is a
(2 x 2) identity matrix.

The sub-matrices A» 1 and As s correspond to Ohm’s
laws equations and are such that there are only one —1
and one +1 on each of their lines.

In the same way, A3 3 corresponds to the Kirchhoft’s
laws equations and is such that there are at most one —1
and one +1 on each of its columns. Actually, each branch
intensity starts from and arrives at one node, the supply
pin or the ground pin.

The structure of the electric circuit is described in the
Ohm’s law equations by the sub-matrix As» and in the
Kirchhoff’s law equations by the sub-matrix A3 3. Then,
in our resistive net case, it can be observed that A2T72 =
A3,3.

Now, let us consider the computation of the determi-
nant of this matrix according to its k last lines corre-
sponding to the Kirchhoff’s law equations. First of all,
the determinant of the matrix A is equivalent to the de-
terminant of the sub-matrix A° composed of the blocks
Az, Aajz, Az and Ass.

In Figure 14, this determinant is computed according
to the non null coefficients (i.e., —1 or +1) of each line of
the sub-matrix Az 3 since the sub-matrix As » is null.

2 k nodes b intensities
4+“—r4+—r<¢—>
1.0
5 0 0
0 1
P’ 0
b Ohm’s laws Ay | As
equations
0 P
k Kirchhoff’s 0 0 Aj;
laws equations

Fig. 13. General structure of the matrix A

The determinant of a matrix form A**! corresponding
to the recursive step ¢ of the determinant computation,
is equivalent to a sum of determinant of matrix form A’
associated with —1 or +1 coefficients. Whatever the step
i, in A%, the block As o keeps the same and is equivalent
to the concatenation of the blocks A% and Aj.

Consequently, the determinant of A° is equivalent to a
sum of determinant of matrix form A* associated, —1 or
+1 coefficients. The determinant of the matrix form A*
is a product of L = b — k parameters multiplied by the
determinant of the square (k x k) block A%.

Any block A% is only composed of coefficient —1, 0 or
+1. Moreover, in each of its line, there are at most one
—1 and one +1, the other coefficients of the line being null
(i.e., these are the properties of an incidence matrix).

Let us prove, by recurrence according to the size k of the
matrix A%, the following proposition : Vk € N*, det(A%)
is —1, 0 or +1. In the literature, this type of matrix is
called totally unimodular matrix.

It is evident for & = 1 since the only term of the matrix
A} is =1, 0 or +1. Now, for any k € N*, if the deter-
minant calculus is developed according to one of the lines
of matrix A} then one of the following three alternatives
occurs.

e If all the terms of one line are null, then, det(A%) =0

e If only one of the terms of one line is non-null (i.e.,
—1 or +1), then, det(A%) = +det(AS™)

e If all the lines have two non-null coefficients (i.e., —1
and +1), then the sum of the terms of each line is
null and hence, det(A%) = 0.

According to the Cramer’s resolution method (see Fig-
ure 11), the denominator of the fraction is obtained di-
rectly from the determinant calculus of the matrix A
whereas the numerator is obtained from the A matrix
in which the jt* column corresponding to the variable
to evaluate is replaced by the second member vector



«——re¢——»
P’ 0 k b-i
+«—— P e —>
. A 0 k b-k
. A ! <+——>r+—>
1283 0
k
0 10 b A k A% 0
0 P ;
k 0 Az : P b 4 P 0
ki I 0 Az b-k !
0 p’ox

Fig. 14. Computation of the determinant of the matrix A

B. 1If Uy represents the electromotive power parameter
of the voltage supply, then the numerator has the form
(—1)7 x Uy x det(A;) where A; is the A matrix without
the 2"¢ line and the j** column. The previous proof holds
for matrix A" as well as for the matrix A.

However, the L values of the denominator Lg., and
the numerator L,,, can be different. Actually, in the
case where the variable to evaluate is an intensity, the
corresponding column among the sub-matrix composed
of A1 3, A>3 and As 3 disappears and Lyym = Lgen — 1.
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