Ordonnancement de tâches sous contraintes :
une approche énergétique

Task Scheduling underConstraints: An Energy-Based Approach

P. LOPEZ, J. ERSCHLER (1) et P. ESQUIROL (1)

Laboratoire d’Automatique et d’Analyse des Systèmes du C.N.R.S.
7, avenue du Colonel Roche — 31077 TOULOUSE Cédex
(1) Institut National des Sciences Appliquées de Toulouse

Résumé/Abstract

Cet article présente une approche énergétique pour l’analyse du problème d’ordonnancement de tâches sous des contraintes de temps et de ressources. La représentation du problème est basée
sur les notions d’intervalle temps-ressource et d’énergie, concepts visant une prise en compte si-
multanée du temps et des ressources. On distingue les intervalles consommateurs, ou tâches, et les
intervalles fournis, ou tâches. L’approche proposée consiste à étudier les interactions entre les tâches et
les intervalles fournis de manière à déduire de nouvelles contraintes sur les extrémités tempo-
relles d’une tâche (date de début au plus tôt, date de fin au plus tard) ; ceci permet de “rétrécir”
la fenêtre temporelle allouée pour son exécution. Ces résultats peuvent être utilisés pour affiner la
caractérisation des ordonnancements admissibles, ensemble de solutions respectant les contraintes
du problème, ou détecter des infaïsibilités si, compte tenu des contraintes, aucune solution n’est
possible.

This paper presents an energy-based approach to analyse the problem of task scheduling un-
der time and resource constraints. The problem modelling is based on the notions of energy and
time-resource interval. These concepts stem from combining time and resources. We distinguish
the consumer intervals (tasks) and the supplier ones. Our approach consists of studying the in-
teraction between consumer and supplier intervals. It allows to a narrowing of the time window
allotted to the task for its execution. These results can be used to characterize feasible schedules or
to detect infeasible ones.

Mots clés/Keywords

Ordonnancement de tâches, analyse sous contraintes, ordonnancements admissibles, approche
énergétique.

Task scheduling, constraint-based analysis, admissible schedules, energy-based approach.

Rubrique : Systèmes de Production.
Correspondant : Pierre LOPÉZ — groupe S.P. — LAAS-CNRS — 7, av. du Colonel Roche
— 31077 Toulouse Cédex — tél : 61 33 62 98 — e-mail : lopex@droopy.laas.fr

1RAIRO-APII, 1992, 26, pp. 453-481
1 Introduction

La fonction de planification et d'ordonnancement de la production organise dans le temps la réalisation des produits compte tenu de contraintes portant sur le temps et les ressources disponibles. Étant donné la complexité du problème liée à la variété des produits et des processus de fabrication, cette fonction est généralement réalisée à travers une structure de décisions multi-niveaux [Buffa, 1979] (long terme, moyen terme, court terme), qui travaille par affinements successifs. Le but d'une telle décomposition est de ramener la résolution d'un problème de grande dimension avec des caractéristiques variées, à une suite de résolutions de problèmes de taille raisonnable avec des caractéristiques plus homogènes, sur le plan temporel notamment. Cette décomposition pose des problèmes de coordination, les décisions prises à un niveau donné devant être compatibles avec celles prises aux niveaux supérieur et inférieur. Pour assurer au mieux cette coordination et compte tenu des perturbations qui peuvent remettre en cause les décisions prises à chaque niveau, il est nécessaire que chacun d' eux dispose d'une réelle autonomie.

L'approche retenue consiste à analyser le problème de décision à un niveau formulé exclusivement en termes de contraintes, ce qui permet d'expliciter l'autonomie disponible localement compte tenu des contraintes qui résultent de décisions prises par d'autres centres. Cette analyse peut également être utilisée pour valider ou remettre en cause ces contraintes et jouer ainsi un rôle dans la coordination entre niveaux. Dans cette optique, il est possible de développer des outils d'aide à la décision basés sur cette analyse en présence de contraintes et qui privilégient une logique d'interaction et de cohérence plutôt qu'une logique de prescription et d'optimisation.

Cet article s'intéresse à l'analyse sous contrainte de problèmes d'ordonnancement de tâches. Il propose une approche "énergétique" qui s'appuie sur les concepts d'intervalles de temps-ressource et d'énergie permettant de raisonner simultanément sur les contraintes de temps et de ressource.

Après une présentation des motivations et des principes généraux de l'analyse sous contrainte, les concepts de base utilisés pour l'approche énergétique sont introduits. L'analyse énergétique de l'intervalle associé à une tâche est ensuite décrite en détail. Enfin, des exemples viennent illustrer les résultats précédemment présentés.

2 Problématique retenue

2.1 Le problème d'ordonnancement considéré

- Un ensemble de tâches doit être réalisé ; leur préemption est interdite.
- Chaque tâche nécessite un ensemble de ressources qu'elle utilise en quantité constante pendant toute la durée de sa réalisation.
- Les contraintes portent sur la localisation temporelle des tâches et sur la disponibilité des ressources :
 - chaque tâche est caractérisée par une durée constante et doit être effectuée à l'intérieur d'une “fenêtre temporelle”, délimitée par sa date de début au plus tôt et sa date de fin au plus tard ;
- chaque ressource requise est toujours disponible (renouvelable) mais en quantité constante et limitée. ²

Dans cet article les contraintes d'interdépendance temporelle entre tâches ne sont pas considérées pour alléger la notation. De telles contraintes peuvent être représentées par un graphe sur lequel les déductions obtenues par l'analyse présentée ici peuvent être aisément propagées [Erschler, 1991].

2.2 Situation du sujet au regard de travaux antérieurs

L'approche que nous retenons s'inscrit dans la problématique de l'analyse sous contraintes. Les travaux antérieurs basés sur cette problématique [Erschler, 1976, 1979, 1986] s'appuient sur les conflits pour l'utilisation des ressources, à l'aide de la notion d'ensembles critiques de tâches [Bellman, 1982]. Ils proposent des règles basées sur le séquencement de tâches pour caractériser sur le plan temporel, grâce aux marges, et sur le plan séquentiel, par des contraintes de précédece entre tâches en conflit, l'ensemble des ordonnancements admissibles. L'application exhaustive de ces règles présente un aspect fortement combinatoire par : (1) la recherche de tous les ensembles critiques relatifs à l'utilisation d'une ressource commune et (2) la recherche de toutes les conditions séquentielles reliant des sous-ensembles de tâches inclus dans chaque ensemble critique obtenu.

Parce qu'elle privilégie de manière rigoureuse le seul respect des contraintes, on constate que l'analyse sous contraintes est d'autant plus profitable sur le plan des informations dégagées et d'autant plus efficace que le problème est fortement contraint. Cette propriété est inhérente à toute démarche fondée sur la propagation des contraintes en temps que moyen de réduction d'un problème de décision. L'application de ce principe a motivé de nombreux travaux en intelligence artificielle, discipline qui depuis sa naissance a fait une place importante à l'étude de méthodes générales de résolution de problèmes, aboutissant même à l'émergence de nouveaux langages de programmation (CHIP [Dinicas, 1988], PROLOG-III [Colmerauer, 1987], CHARME [Charme, 1990],...).

L'analyse sous contraintes se présente comme un processus de déduction logique, parce qu'elle met en œuvre des règles de déduction ; les contraintes peuvent donc facilement être définies comme des relations sur les variables de décisions. Pour cette raison, les premiers modules développés ont été écrits en langage Prolog.

2.3 Nouvelle approche pour l'analyse sous contraintes

L'approche présentée ici a pour but d'éviter la combinatorique d'une caractérisation séquentielle des ordonnancements admissibles. Elle porte sur une évaluation de l'énergie de

²Dans notre problème, les ressources sont affectées aux tâches et leur niveau d'utilisation est bien connu. Les problèmes où les caractéristiques concernant les ressources sont inconnues constituent les problèmes d'affectation. A ce sujet, on peut consulter [Weglarz, 1981] et [Leachman, 1990], travaux dans lesquels chaque tâche est représentée par une fonction qui traduit la relation entre le taux d'utilisation d'une ressource et la durée de réalisation de la tâche.
chacune ressource qui est réellement disponible pour une tâche donnée à l’intérieur de sa fenêtre temporelle, en considérant la consommation d’énergie des autres tâches. Cette évaluation peut être utilisée pour mettre en évidence un manque d’énergie sur une partie de la fenêtre temporelle. Ceci amène à rétrécir cette fenêtre par une augmentation des dates de début au plus tôt ou une diminution des dates de fin au plus tard : ce phénomène est appelé actualisation. Les conflits associés à la limitation des ressources ne sont donc pas pris en compte d’une manière combinatoire par des conditions de séquenancement, mais d’une manière plus continue par la consommation d’énergie qui agit directement sur la localisation de la tâche.

La représentation du problème est basée sur le concept d’intervalles temps-ressource présenté au paragraphe suivant. Ce concept, approprié à l’approche énergétique, permet de modéliser des situations plus générales que celles retournées dans le cadre de cet article (considérer par exemple des caractéristiques non connues ou variables).

Un élément central pour notre étude, la consommation obligatoire, est également introduit avant de présenter en détail le raisonnement énergétique. Le dernier paragraphe est consacré au déroulement de l’analyse sur trois exemples simples.

3 Concepts de base pour une approche énergétique

3.1 L’intervalles temps-ressource

L’idée de base de notre approche est d’introduire un concept qui permette de considérer les facteurs temps et ressource de manière simultanée. L’intervalles temps-ressource I est ainsi défini ; il est caractérisé par des valeurs instantanées :

- ses extrémités temporelles t_I (début) et C_I (fin),
- son intensité de ressource $Q^k_I(t)$ avec $t \in [t_I, C_I]$ et $k \in K_I$ où K_I est l’ensemble de ressources associé à I. Dans la suite, on ne considère que des intervalles uniformes, c’est-à-dire tels que $Q^k_I(t) = Q^k_I$ = constante $\forall t$.

On peut également lui associer des caractéristiques intégrales :

- sa durée : $p_I = C_I - t_I$
- son énergie de ressource $k : W^k_I = p_I Q^k_I$

Cette énergie est exprimée en unités de $[\text{ressource} \times \text{temps}]$ comme des hommes-jour, kilowatts-heure, etc.

Selon les problèmes abordés, les intervalles temps-ressource peuvent être définis par leurs caractéristiques instantanées, intégrales, ou les deux à la fois. Ces caractéristiques peuvent être connues précisément, inconnues ou bornées, indépendantes ou liées entre elles (la durée par exemple, peut être fonction de l’intensité de ressource [Wegglerz, 1981] [Daniels, 1989][Leachman, 1990]).

La modélisation de problèmes d’ordonnancement peut s’appuyer sur deux types d’intervalles temps-ressource :

- les intervalles consommateurs dans lesquels le temps et les ressources sont requis. Un intervalle consommateurs est associé à la position temporelle effective et à l’utilisation de ressource d’une tâche : il est donc simplement appelé tâche.
• les intervalles fournisseurs dans lesquels le temps et les ressources sont alloués. Sur
de tels intervalles, on étudie l’effet de la consommation d’énergie sur l’ordonnance-
ment (au sens de la localisation dans le temps) d’une ou plusieurs tâches. 3

La durée d’une tâche est supposée connue ; pour \(i = (t_i, C_i, q^k_i) \), elle est égale à \(C_i - t_i \)
et est notée \(p_i \). Chaque extrémité temporelle, \(t_i \) et \(C_i \), est bornée par une valeur mini-
mum et une valeur maximum : \(t_i \in [r_i, d_i - p_i] \) et \(C_i \in [r_i + p_i, d_i] \) (dates de début et de
fin au plus tôt et au plus tard). L’intervalles \([r_i, d_i]\) représente la fenêtre temporelle pour
l’exécution de \(i \).

On peut de plus remarquer que le concept d’intervalles temps-ressource permet de
modéliser des problèmes à ressources, soit renouvelables (contraintes sur l’intensité), soit
consommables (contraintes sur l’énergie), soit doublement contraintes, selon la termino-

3.2 Consommation obligatoire d’une tâche sur un intervalle fournisseur

3.2.1 Définition

Considérons un intervalle fournisseur \(\Delta = (t_\Delta, C_\Delta, Q^k_\Delta) \) et une tâche \(i = (t_i, C_i, q^k_i) \) de
durée \(p_i \). Le concept d’énergie obligatoirement consommée ou consommation obligatoire
est inspiré d’analyses faites à propos du processus de décision de l’utilisation de ressources
[Laabidi, 1982]. La consommation obligatoire de \(i \) sur \(\Delta \) correspond à l’énergie obtenue
lorsque l’on cherche à repousser au maximum \(i \) à l’extérieur de \(\Delta \). Le calcul de consomma-
tion obligatoire consiste donc à rechercher des positions de \(i \) telles que son intersection avec
\(\Delta \) soit minimale, voire nulle. Ce caractère minimal conduit à envisager quatre situations
caractéristiques possibles :

1. l’intersection de \(i \) et \(\Delta \) est minimale quand \(i \) est calée à gauche de sa fenêtre (fi-
gure 1) ;
2. l’intersection de \(i \) et \(\Delta \) est minimale lorsque \(i \) est calée à droite de sa fenêtre (fi-
gure 2) ;
3. la fenêtre de \(i \) est entièrement comprise dans \(\Delta \) (figure 3) ;
4. \(\Delta \) est entièrement compris dans la partie obligatoire de \(i \) (figure 4).

La formule suivante résume les quatre situations précédentes en tenant compte en outre
du fait qu’une consommation est au minimum nulle :

\[
\begin{align*}
\sigma^k_i &= \max \{0, \min \{t_i + p_i - t_\Delta, C_\Delta - (d_i - p_i), C_\Delta - t_\Delta, p_i\}\} \cdot q^k_i \\
&= T_i^\Delta \cdot q^k_i \geq 0.
\end{align*}
\]

3 Pour distinguer le fait qu’une ressource \(k \) peut être allouée ou non, l’intensité d’un intervalle four-

nisseur \(\Delta \) est représentée par une majuscule, celle d’une tâche \(i \) par une minuscule. On notera ainsi :

\(\Delta = (t_\Delta, C_\Delta, Q^k_\Delta) \) et \(i = (t_i, C_i, q^k_i) \).

4 Rappelons qu’une tâche possède une “partie obligatoire” si la fenêtre qui limite son exécution a une

largeur inférieure au double de la durée de la tâche. Il existe alors un intervalle de temps localisé où l’on

est assuré que la tâche possède une consommation non nulle (voir figure 4).
3.2.2 Exemple de calcul de consommation obligatoire

Soit \(E = \{a, b, c, d, e, f, g\} \) un ensemble de sept tâches de durées connues, dont les caractéristiques pour une ressource \(k \) sont données dans le tableau 1, tandis que la figure 5 illustre une certaine localisation pour ces sept tâches.

Sur l’intervalle fournisseur \(I = (3, 10, \Delta) \), la somme des consommations obligatoires de chaque tâche s’obtient en appliquant la formule (1) à chacune des tâches :

\[
\sum_{i \in E} w_i^{\Delta, k} = w_a^{\Delta, k} + w_b^{\Delta, k} + w_c^{\Delta, k} + w_d^{\Delta, k} + w_e^{\Delta, k} + w_f^{\Delta, k} + w_g^{\Delta, k} = 3 \times 4 + 3 \times 3 + 7 \times 2 + 2 \times 1 + 3 \times 1 + 2 \times 3 + 0 \times 2 = 46.
\]

3.3 Principe de l’approche énergétique

On étudie ici la conséquence directe de la limitation de consommation d’énergie sur la localisation dans le temps des tâches. Le raisonnement énergétique (détaillé dans [Lopez, 1991]) a pour but de déduire directement de nouvelles contraintes sur les extrémités temporelles d’un intervalle en évitant de caractériser explicitement les ensembles de tâches en conflit (cf. paragraphe 2.2).

Considérons un intervalle fournisseur \(\Delta = (t_\Delta, C_\Delta, \{Q^k_i\}) \) et une tâche \(i = (t_i, C_i, \{q_i^k\}) \). On appelle \(W_{\Delta, k}^{\Delta, i} \) l’énergie fournie par \(\Delta \) et \(w_i^{\Delta, k} \) la consommation obligatoire de \(i \) sur \(\Delta \). La différence \(W_{\Delta, k}^{\Delta, i} - \sum_{j \neq i} w_j^{\Delta, k} \) correspond à l’énergie maximale disponible pour l’exécution de \(i \) compte tenu de la consommation obligatoire des autres tâches sur \(\Delta \). La localisation
de i doit donc être telle que sa consommation sur Δ ne puisse pas dépasser cette énergie disponible. On s’intéresse alors aux localisations extrêmes de i dans sa fenêtre temporelle. Soit $w_{i+}^{\Delta,k}$ le consommation obligatoire de i sur Δ lorsque i occupe une de ces positions extrêmes. Ainsi, lorsque i est calé au plus tôt, on considère l’énergie $w_{i-}^{\Delta,k}$: pour i calée au plus tard, il sera question de $w_{i+}^{\Delta,k}$. Le raisonnement énergétique général est alors le suivant : si l’énergie disponible pour i sur Δ est inférieure à la consommation de i sur Δ lorsque i est calé dans une de ses positions extrêmes, alors une telle localisation de i n’est pas possible et l’énergie manquante doit être trouvée à l’extérieur de Δ. Pour cela, il est nécessaire de contraindre l’exécution de i de telle façon qu’une partie de sa consommation soit localisée à l’extérieur de Δ c’est-à-dire après C_{Δ} si i était calé au plus tôt (voir figure 6) et avant t_{Δ} si i était calé au plus tard (voir figure 7). En effet, dans chacun de ces cas, le déplacement d’énergie n’est possible que dans une seule direction. L’actualisation de date limite qui en résulte vise à annuler la différence entre l’énergie maximale disponible sur Δ et la somme des consommations obligatoires sur Δ.

![Diagramme de Gantt](image)

<table>
<thead>
<tr>
<th>i</th>
<th>p_i</th>
<th>r_i</th>
<th>d_i</th>
<th>q_{ik}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>10</td>
<td>1</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>6</td>
<td>0</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 1

![Figure 6](image) Actualisation de r_i

![Figure 7](image) Actualisation de $d_i
Plus formellement, les deux règles suivantes peuvent être énoncées :

\[\mathcal{R}_1 \begin{cases}
\text{si} & t_\Delta \leq r_i < C_\Delta < d_i \text{ et } W^{\Delta,k} - \sum_{j \neq i} w^\Delta_{jk} < w^\Delta_{ik} \\
\text{alors} & \text{le problème est faisable si une partie de } i \text{ est rejetée après la date } C_\Delta.
\end{cases} \]

Cette règle peut entraîner une actualisation de la date de début au plus tôt de \(i \).

\[\mathcal{R}_2 \begin{cases}
\text{si} & r_i < t_\Delta < d_i \leq C_\Delta \text{ et } W^{\Delta,k} - \sum_{j \neq i} w^\Delta_{jk} < w^\Delta_{ik} \\
\text{alors} & \text{le problème est faisable si une partie de } i \text{ est rejetée avant la date } t_\Delta.
\end{cases} \]

Celle-ci peut entraîner une actualisation de la date de fin au plus tard de \(i \).

Dans les deux cas, la partie de la tâche à rejeter correspond à l'énergie \(w^k_i - (W^{\Delta,k} - \sum_{j \neq i} w^\Delta_{jk}) \). Ces règles permettent donc d'affiner les valeurs des dates limites \(r_i \) et \(d_i \) associées aux tâches c'est-à-dire de caractériser les ordonnancements admissibles. Leur application constitue un simple processus de déduction logique à partir des contraintes initiales. L'efficacité du processus est étroitement liée aux choix des bornes \(t_\Delta \) et \(C_\Delta \) de l'intervalle d'analyse associé aux règles. Le processus d'analyse centré autour d'une tâche est présenté ci-après.

4 Analyse énergétique sur la fenêtre temporelle associée à une tâche

Les hypothèses retenues pour l'analyse sont les suivantes.

1. Nous nous limitons à l'étude d'intervalles temps-ressource uniformes. Cette hypothèse n'amène pas de restriction particulière sur le principe de calcul de la consommation obligatoire d'une tâche sur un intervalle fournisseur donné. Elle permet simplement d'éviter un calcul de type intégral.

2. A l'heure actuelle, l'approche exposée est essentiellement centrée sur l'utilisation d'intervalles fournisseurs dont une des bornes est valuée par une date limite d'une tâche \(i \); on étudiera par exemple un intervalle \(\Delta \) tel que \(t_\Delta = r_i \) ou \(C_\Delta = d_i \).

3. L'analyse pour le cas multi-ressources est effectuée ressource par ressource. Les déductions obtenues représentent alors des conditions nécessaires d'admissibilité pour le cas multi-ressources. Toutefois, on ne peut affirmer pour l'instant qu'une telle stratégie couvre l'ensemble des déductions obtenues par une analyse agrégée mettant en jeu plusieurs ressources simultanément.

En outre, pour simplifier les notations :

4. on ne considère que le cas d'utilisation d'une seule ressource ; sa quantité disponible étant constante sur tout l'horaizon d'étude, elle est notée \(Q \) quel que soit l'intervalle considéré ;

5. comme cela est dit en 2.1, l'interdépendance entre tâches n'est pas étudiée ici, mais est en réalité prise en compte dans un processus de propagation de contraintes élaboré dans [Esquirol, 1987].
4.1 Présentation de l'étude

Considérons une tâche \(i = (t_i, C_i, q_i) \) de durée \(p_i = C_i - t_i \) et un intervalle fourisseur \(Ix = (r_i, x, Q) \). On définit, pour toute valeur de \(x \), les grandeurs suivantes :

- \(W^{Ix} = (x - r_i)Q \) : énergie pouvant être fournie par \(Ix \),
- \(\sum_{j \neq i} w^{Ix}_j \) : consommation obligatoire de toutes les tâches autres que \(i \) sur \(Ix \),
- \(W^{Ix}_i = W^{Ix} - \sum_{j \neq i} w^{Ix}_j \) : énergie disponible sur \(Ix \) pour l'exécution de \(i \),
- \(w^{Ix}_i(t_i) = \min(x - t_i, p_i)q_i \) : énergie utilisée par \(i \) commençant à \(t_i \) sur \(Ix \).

L'expression définissant \(w^{Ix}_i(t_i) \) est illustrée par la figure 8.

\[\begin{array}{c}
\text{\(w^{Ix}_i(t_i) \)} \\
(\text{x-t}_i)q_i \\
\text{x} \\
\text{\((x-t)_i \)q_i} \\
\text{t_i} \\
\text{\(t_i \)q_i} \\
\text{\(t_i+p_i \)q_i} \\
\text{d_i} \\
\end{array} \]

Figure 8 : Energie utilisée par \(i \) débutant à \(t_i \)

Un exemple d'évolution de ces différentes grandeurs pour \(x \) variant de \(r_i \) à \(d_i \) est représenté sur la figure 9.

\[\begin{array}{c}
x_1, ..., x_4 \text{ représentent les instants correspondant aux points de cassure de la courbe donnant } W^{Ix}_i \text{ en fonction de } x. \text{ Ces instants sont appelés instants remarquables de l'intervalle fourisseur } I = (r_i, d_i, q_i). \text{ L'étude de la courbe } W^{Ix}_i \text{ donne une information sur la répartition de l'énergie disponible et sur son influence quant à la localisation de la tâche } i \text{ (localisation au plus tôt dans le cas présent). En effet, pour que l'exécution de } i \text{ commence à la date } t_i \text{ soit possible, il est nécessaire d'avoir } W^{Ix}_i \geq w^{Ix}_i(t_i) \text{ et ce à chaque instant } x. \text{ Conformément au principe de la règle } R1 \text{ vue en 3.3, cette condition peut impliquer un "glissement" de la courbe } w^{Ix}_i(t_i) \text{ vers la droite - comme indiqué sur la figure 9 -, la tâche ne pouvant plus commencer à la date } t_i \text{ mais seulement à une date } t'_i > t_i. \text{ Ceci entraîne donc une actualisation de la date de début au plus tôt de } i. \text{ Cette démarche est appelée analyse énergétique au plus tôt}. \]

Pour l'analyse, la stratégie suivante est proposée :

1. rechercher tous les instants remarquables \(x \) de l'intervalle fourisseur \(I \):

\[\text{5Il est possible de mener une étude symétrique en considérant un intervalle fourisseur } xI = (x, d_i, Q). \text{ La condition } W^{xI}_i \geq w^{xI}_i(C_i), \text{ \(x \) variant de } d_i \text{ à } r_i, \text{ peut entraîner une actualisation de la date de fin au plus tard de la tâche } i. \text{ On parle alors d'analyse énergétique au plus tard.}

Dans cet article, seule l'analyse au plus tôt est détaillée. En effet, tous les résultats de l'analyse au plus tard sont similaires et ne méritent pas de s'y attarder : cette analyse sera néanmoins appliquée lors du traitement des exemples (cf. paragraphe 5).

\[9 \]
2. Parmi ces instants, rechercher X qui provoque l’actualisation de r_i la plus forte ;

3. Si X existe, actualiser r_i en t'_i.

Chacun de ces points est détaillé dans les paragraphes suivants.

4.2 Recherche des instants remarquables

4.2.1 Ensemble des instants

Soit n le nombre d’instants remarquables d’un intervalle fournisseur $I = (r_i, d_i, Q)$. On note x les différentes valeurs des instants remarquables avec $r_i < x < d_i$; ces instants sont indexés séquentiellement.

Soit $O^f = \{j / w_j^f \neq 0\}$, l’ensemble des tâches qui ont une consommation obligatoire non nulle sur l’interval fournisseur I. Considérons une tâche $j = (t_j, C_j, q_j)$, de durée p_j, telle que : $j \neq i$ et $j \in O^f$. Au sein de I, on peut associer à j les instants remarquables suivants :

- $x = r_j + p_j$: date de fin au plus tôt de j,
- $x = d_j - p_j$: date de début au plus tard de j,
- $x = d_j$: date de fin au plus tard de j,
- $x = d_j + r_j - r_i$: instant x où la consommation obligatoire de j sur (r_i, x, Q) est la même que la tâche soit calée à droite ou à gauche :

 $[x - (d_j - p_j)]q_j = (r_j + p_j - r_i)q_j$,
Ces instants ne correspondent effectivement à des points de cassure de la courbe \(W^I_{\dot X} \) que si certaines conditions spécifiques sont satisfaites. Ces conditions, essentielles pour la détermination des instants remarquables mais n'intervenant pas pour la compréhension de la suite, sont énoncées en annexe 1.

4.2.2 Choix de \(X \)

Soient la tâche \(i = (t_i, C_i, q_i) \) et l'intervalle fournisseur \(IX = (r_i, x, Q) \) ; on a vu (cf. paragraphe 4.1) que l'exécution de \(i \) n'est possible que pour \(W^I_{\dot X} \geq w^I_{\dot X}(t_i) \) pour chaque instant. On va donc chercher, parmi les instants remarquables déjà trouvés, l'instant \(X \) qui entraîne l'actualisation maximale de \(r_i \) :

\[
X = \max_x \text{ tq } W^I_{\dot X} < w^I_{\dot X}(r_i).
\]

4.3 Actualisation de \(r_i \)

On considère la même tâche \(i \) et l'intervalle fournisseur \(IX = (r_i, X, Q) \) pour lequel l'inégalité \(W^I_{\dot X} < w^I_{\dot X}(r_i) \) est vérifiée. Il est donc nécessaire de repousser la tâche \(i \) vers la droite de manière à en rejeter une partie après \(X \). L'énergie minimale consommée par \(i \) qu'il faut éjecter de l'intervalle \(IX \) est :

\[
S_{IX} = w^I_{\dot X}(r_i) - W^I_{\dot X}.
\]

Une fois repoussée, la tâche \(i \) finit à une date \(C_i \) où le bilan énergétique suivant est respecté (ce calcul est détaillé en annexe 2) :

\[
[C_i - \max(X, r_i + p_i)]q_i \geq S_{IX}.
\]

La règle d’inférence \(R'1 \) est ainsi validée :

\[
R'1 \begin{cases}
\text{si} & W^I_{\dot X} < w^I_{\dot X}(r_i) \\
\text{alors} & [C_i - \max(X, r_i + p_i)]q_i \geq S_{IX}
\end{cases}
\]

Cette règle permet une actualisation de \(r_i \) ; on la détection d'une incohérence. \(^6\) Cette actualisation amène à une nouvelle définition de l'intervalle \(IX \), et le processus peut être réitéré. L'évolution de la valeur actualisée de \(r_i \) est exprimée par la suite récurrente définie par :

\[
r_i^{(0)} = r_i ; \quad r_i^{(p+1)} = \frac{\sum q_{i}^J w^I_{\dot X}(p) - (X^{(p)} - r_i^{(p)})Q}{q_i} + X^{(p)}
\]

avec \(IX^{(p)} = (r_i^{(p)}, X^{(p)}, Q) \).

En posant, \(\dot w^I_{\dot X}(p) = T_{\dot X}^{J} q_i \) (cf. paragraphe 3.2)

et

\[
\alpha_i = \frac{Q}{q_i} \geq 1
\]

\[
\beta_i^J = \frac{q_j}{q_i} > 0
\]

\(^6\)Il y a incohérence lorsque l'énergie à déplacer \(S_{IX} \) est supérieure à la consommation de \(i \) calée à gauche, \(w^I_{\dot X}(r_i) \). Dans ce cas le déplacement de \(i \) ne pourra jamais rétablir l'équilibre énergétique.
on obtient :

\[r_i^{(p+1)} = r_i^{(p)} + X^{(p)}(1 - \alpha_i) + \sum_{j \neq i} T_j^{X^{(p)}} \beta_i^j \]

La suite \(r_i^{(p+1)} \) converge vers une valeur limite \(r_i^* \) (voir Exemples) :

\[r_i^* = r_i^* + X^*(1 - \alpha_i) + \sum_{j \neq i} T_j^{X^*} \beta_i^j \]

5 Exemples

Les exemples qui suivent sont volontairement simples de manière à pouvoir suivre aisément le processus d’analyse. Toutefois, le traitement partiel de petits exemples ne vise pas à dissimuler l’efficacité de la méthode, la difficulté d’analyse résidant davantage dans le taux de contraintes du problème que dans sa taille.

5.1 Exemple 1 : problème disjonctif pur

Ce premier exemple se situe dans le cadre de ce que l’on peut appeler les problèmes disjonctifs purs. Dans un problème disjonctif, les ressources sont telles que l’exécution de deux tâches ne peut être réalisée simultanément. Un problème disjonctif est dit “pur” si les ressources sont disponibles en quantité unitaire (cas des machines-outils). On a donc :

\[Q = q_i = 1 \implies \alpha_i = \beta_i^j \ \forall (i,j). \]

On considère cinq tâches \(a, b, c, d, e \) caractérisées par les valeurs définies dans le tableau 2.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_i)</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>d_i</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>p_i</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 2

Le déroulement de l’analyse n’est détaillé que sur les tâches \(e \) et \(d \).

Analyse énergétique au plus tôt pour \(e \)

La fenêtre temporelle associée à la tâche \(e \) est bornée par 1 et 14. Les intervalles fournis-seurs considérés sont donc de la forme :

\[\text{Ex} = (r_e, x, q_e) = (1, x, 1) \quad \text{avec} \quad 1 < x \leq 14. \]

Pour une variation continue de \(x \) entre 1 et 14, l’évolution des différentes énergies liées à l’analyse de la tâche \(e \) est représentée par la figure 10.

Les instants remarquables \(x \) sont donnés par les points de cassure de la courbe représentant l’énergie disponible pour l’exécution de \(e \), soit \(W_e^\text{Ex} \) : on trouve les instants 4, 6, 8, 9, 12, 13, 14 qui permettent d’établir le tableau 3. L’instant remarquable \(X \) est déterminé par la plus grande valeur de \(x \) telle que \(W_e^\text{Ex} < w_e^\text{Ex}(r_e). \)

7Dans la procédure d’analyse, il est judicieux d’examiner les différentes valeurs de \(x \) suivant l’ordre décroissant. Ainsi le premier \(x \) qui vérifie la condition correspond à l’instant \(X \) recherché.
Figure 10 : Courbes d’énergie pour la tâche ε

<table>
<thead>
<tr>
<th>x</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>9</th>
<th>8</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^E_x</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$w^E(1)$</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$W^E_x < w^E(1)$?</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Tableau 3

On a ainsi : $X = 9$ et donc $EX = (r_e, X, q_e) = (1, 9, 1)$. Toutes les intensités de ressource étant réduites à l’unité, la consommation obligatoire sur EX est :

$$\sum_{j \neq e} w^E_j = \sum_{j \neq e} T^E_j = T^E_a + T^E_\epsilon = 7.$$

Sachant que la valeur actualisée de q_e s’écrit :

$$r'_e = r_e + \sum_{j \neq e} T^E_j$$

on trouve :

$$r'_e = 1 + 7 = 8$$

Analyse énergétique au plus tôt pour d

La fenêtre temporelle associée à d est comprise entre 5 et 13. Il en découle que les intervalles d’étude sont définis par :

$$Dx = (r_d, x, q_d) = (5, x, 1)$$ avec $5 < x \leq 13$.

13
On peut alors tracer les courbes représentant l'évolution des énergies (figure 11).

![Figure 11: Courbes d'énergie pour la tâche d](image)

La courbe W^D_d ne laisse apparaître que deux instants remarquables : 6, 13. On en déduit le tableau 4 :

<table>
<thead>
<tr>
<th>x</th>
<th>13</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W^{D_d}_x$</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>$w^{D_d}(5)$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$W^{D_d}_d < w^{D_d}(5)$?</td>
<td>non</td>
<td>oui</td>
</tr>
</tbody>
</table>

Tableau 4

qui permet de trouver $X = 6$, soit $DX = (r_d, X, q_d) = (5, 6, 1)$.

Sur l'intervalle [5,6] seule la tâche c a une consommation obligatoire non nulle :

$$\sum_{j \neq d} T^{DX}_j = T^{DX}_c = 1.$$

La valeur actualisée de r_d s’écrit donc :

$$r^*_d = r_d + T^{DX}_c$$

qui entraîne :

$$r^*_d = 5 + 1 = 6$$

Le tableau 5 montre les résultats finaux de l'étude énergétique au plus tôt et au plus tard, cette dernière n'entraînant pas d'actualisation dans cet exemple.

<table>
<thead>
<tr>
<th>i</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^*_d</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>d^*_i</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>p_i</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 5
5.2 Exemple 2 : problème cumulatif (cas de 2 itérations)

On considère désormais le cas des problèmes cumulatifs où les ressources peuvent être utilisées simultanément par plusieurs tâches. Trois tâches a, b, c, caractérisées par les données du tableau 6, utilisent une unité d’une ressource disponible en deux exemplaires. On a de fait: $\alpha_i = 2$ et $\beta_j = 1 \quad \forall (i,j)$.

\[
\begin{array}{|c|c|c|c|c|}
\hline
i & r_i & d_i & p_i & q_i \\
\hline
a & 0 & 5 & 4 & 1 \\
b & 0 & 3 & 2 & 1 \\
c & 0 & 5 & 3 & 1 \\
\hline
\end{array}
\]

\[Q = 2\]

Tableau 6

Analyse énergétique au plus tôt pour c

Itération 1

L’analyse de la tâche c dont l’exécution est limitée inférieurement par 0 et supérieurement par 5 entraîne l’étude d’intervalles tels que :

\[C \cdot x = (r_c, x, q_c) = (0, x, 2) \text{ avec } 0 < x \leq 5.\]

L’allure des courbes d’énergie est ainsi donnée par la figure 12.

![Figure 12: Courbes d’énergie pour la tâche c](image)

Les instants remarquables qui découlent de la courbe $W_{c}^{C \cdot x}$ sont 1, 3, 5. On établit le tableau 7 :

\[
\begin{array}{|c|c|c|c|}
\hline
x & 5 & 3 & 1 \\
\hline
W_{c}^{C \cdot x} & 4 & 2 & - \\
w_{c}^{C \cdot x}(0) & 3 & 3 & - \\
W_{c}^{C \cdot x} < w_{c}^{C \cdot x}(0) & \text{non} & \text{oui} & - \\
\hline
\end{array}
\]
duquel on tire $X^{(1)} = 3$ soit encore : $C\, X^{(1)} = (r_c, X^{(1)}, q_c) = (0, 3, 2)$.

Les tâches a et b consomment une énergie sur l'intervalle $C\, X$ égale à :

$$\sum_{j \neq c} T_j^{C\, X^{(1)}} \beta_j^c = T_a^{C\, X^{(1)}} \beta_a^c + T_b^{C\, X^{(1)}} \beta_b^c = 2 \times 1 + 2 \times 1 = 4.$$

En appliquant la formule d'actualisation de la date de début au plus tôt, on obtient :

$$r_c^{(1)} = 0 + 3 \times (1 - 2) + 4 = 1$$

A partir de cette nouvelle valeur, on poursuit le raisonnement sur c.

Itération 2

Les intervalles sont redéfinis ; on a désormais :

$$C\, x = (r_c^{(1)}, x, q_c) = (1, x, 2) \text{ avec } 1 < x \leq 5.$$

La figure 13 permet de visualiser les énergies.

![Diagramme de courbes d'énergie](image)

Figure 13: Courbes d'énergie pour la tâche c après actualisation

La courbe $W_c^{C\, x}$ nous donne 2, 4, 5 comme instants remarquables. On a alors le tableau 8 :

<table>
<thead>
<tr>
<th>x</th>
<th>5</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_c^{C, x}$</td>
<td>4</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>$w_c^{C, x}(1)$</td>
<td>3</td>
<td>3</td>
<td>—</td>
</tr>
</tbody>
</table>

| $W_c^{C\, x} < w_c^{C\, x}(1)$? | non | oui | — |

Tableau 8

16
qui amène $X^{(2)} = 4 \implies CX^{(2)} = (r^1_c, X^{(2)}, q_c) = (1, 4, 2)$
et la consommation obligatoire :

$$\sum_{j \neq c} T_j^c X^{(c)} \cdot \beta_j^c = T_a^c X^{(c)} \cdot \beta_a^c + T_b^c X^{(c)} \cdot \beta_b^c = 3 \times 1 + 1 \times 1 = 4.$$

D'où :

$$r^3_c = 1 \times 2 + 4 \times (1 - 2) + 4 = 2$$

On peut montrer que $r^3_c = r^{(2)}_c = r^*_c$.

L’analyse est terminée pour la tâche c et on étudie désormais la tâche b (on présente une analyse énergétique au plus tard dont la théorie n’a pas été développée dans cet article mais dont le mécanisme ne pose aucune difficulté de compréhension de par la symétrie du raisonnement).

Analyse énergétique au plus tard pour b

Les nouvelles données du problème sont les suivantes :

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>r_i</th>
<th>d_i</th>
<th>p_i</th>
<th>q_i</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 9

Les intervalles d’analyse sont décrits par :

$$x B = (x, d_b, q_b) = (x, 3, 2) \text{ avec } 0 \leq x < 3.$$
x variant de 3 à 0, on obtient la figure 14.

Les instants remarquables sont donnés grâce à la courbe W^{rB}_b. Il s’agit des instants 0, 1, 2 qui permettent de dresser le tableau 10.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^{rB}_b</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w^{rB}_b(3)$</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W^{rB}_b < w^{rB}_b(3)$?</td>
<td>non</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 10

L’instant retenu est $X = 1$ qui permet de définir l’intervalle : $X B = (X, d_b, q_b) = (1, 3, 2)$.

La consommation obligatoire sur $X B$ est :

$$\sum_{j \neq b} T_j^X B \cdot \beta_j^b = T_a^X B \cdot \beta_a^b + T_c^X B \cdot \beta_b^c = 2 \times 1 + 1 \times 1 = 3.$$

L’analyse s’effectue sans itération ; on obtient l’actualisation :

$$d^*_b = 3 \times 2 + 1 \times (1 - 2) - 3 = 2$$

Seules les analyses précédentes sont actualisantes. Les résultats finaux sont donc ceux inscrits dans le tableau 11.

17
Figure 14 : Courbes d’énergie pour la tâche b

\[
\sum_{i \in b} w_i^{x_B}
\]

\[
w_b^{x_B(2)}
\]

Tableau 11

<table>
<thead>
<tr>
<th>i</th>
<th>(r_i^x)</th>
<th>(d_i^x)</th>
<th>(p_i)</th>
<th>(q_i)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Exemple 3 : problème cumulatif (convergence asymptotique)

Voici enfin un petit exemple (tableau 12) qui montre un processus d’actualisation de dates qui ne converge qu’asymptotiquement.

\[
\sum_{i \in b} w_i^{x_B}
\]

\[
w_b^{x_B(3)}
\]

Tableau 12

<table>
<thead>
<tr>
<th>i</th>
<th>(r_i)</th>
<th>(d_i)</th>
<th>(p_i)</th>
<th>(q_i)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Là encore on a : \(\alpha_i = 2\) et \(\beta_i^j = 1\) \(\forall (i, j)\).

Analyse énergétique au plus tôt pour b

Itération 1

Lors de l’analyse de b, on étudie les intervalles :

\[Bx = (r_b, x, q_b) = (0, x, 1)\] avec \(0 < x \leq 3\).

On obtient la figure 15 sur les énergies.

Les instants remarquables sont 1, 3 ; on dresse le tableau 13 :
d'où est dégagé l'instant $X^{(1)} = 1$ qui implique : $BX^{(1)} = (r_b, X^{(1)}, q_b) = (0, 1, 2)$.

La consommation obligatoire sur $BX^{(1)}$:

$$\sum_{j \neq b} T_{j}^{BX^{(1)}} \beta_{j}^{a} = T_{a}^{BX^{(1)}} \beta_{a}^{a} = 0.5$$

permet de trouver la valeur actualisée de r_b :

$$r_{b}^{(1)} = 0 + 0 + 0.5 = 0.5$$

Itération 2

On a le nouveau problème :

<table>
<thead>
<tr>
<th>i</th>
<th>r_i</th>
<th>d_i</th>
<th>q_i</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0.5</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 14

L'évolution des énergies (figure 16) est décrite pour $0.5 < x \leq 3$.

La valeur de X est la même qu'à l'itération précédente soit $X^{(2)} = 1$ et donc, $BX^{(2)} = (0.5, 1, 2)$.

La consommation obligatoire diminue de moitié :

$$\sum_{j \neq b} T_{j}^{BX^{(2)}} \beta_{j}^{a} = T_{a}^{BX^{(2)}} \beta_{a}^{a} = 0.25$$

et entraîne la nouvelle valeur actualisée :

$$r_{b}^{(2)} = 0.5 + 0 + 0.25 = 0.75$$
La procédure converge asymptotiquement vers la valeur X^* telle que la consommation soit nulle sur l'intervalle BX^* : $\sum_{j \neq i} T_j^{BX^*} \cdot \beta^*_j = 0$.

On a alors :

$$r_i^* = 1$$

On obtient enfin les résultats en fin d'analyse :

<table>
<thead>
<tr>
<th>i</th>
<th>r_i^*</th>
<th>d_i^*</th>
<th>p_i</th>
<th>q_i</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 15

6 Conclusion

Les résultats présentés ci-dessus utilisent le concept d'énergie pour analyser les interactions entre contraintes de temps et de ressources en ordonnancement de tâches. Une procédure d'analyse énergétique (au plus tôt et au plus tard) a ainsi été développée ; elle permet d'actualiser directement les dates limites de tâches. Ces actualisations correspondent à des caractéristiques nécessaires des ordonnancements admissibles. La qualité de ces caractérisiques est étroitement liée à la définition des bornes des intervalles fournisseurs sur lesquels

8En pratique, pour éviter un phénomène d'itérations infinies, le processus d'analyse est réitéré tant que l'écart relatif entre la date actualisée et l'ancienne valeur reste supérieur à un seuil fixé.
s'opère l’analyse énergétique (instants remarquables). L’approche exposée dans cet article se limite à l’étude d’intervalles de fournisseurs dont une des bornes est directement liée à une date limite d’une tâche \(i \) (\(t_\Delta = t_i \) ou \(C_\Delta = d_i \)). Dans certains cas, le choix d’intervalles de fournisseurs différents peut engendrer des actualisations plus fortes [Lopez, 1991].

L’approche énergétique semble prometteuse car elle permet de traiter de manière homogène les ressources disjointes et cumulatives et d’étendre le raisonnement à des problèmes moins spécifiques (intervalles non uniformes, fenêtres temporelles discontinues, durées dépendantes de la quantité de ressource, problèmes multi-ressources, problèmes préemptifs, ...). Elle peut être envisagée, par exemple, dans une application de type gestion de projets : l’énergie des tâches est généralement connue et fixée, la durée dépend des conflits pour l'utilisation des ressources (possibilité de jouer sur la durée pour diminuer l’intensité).

Actuellement, il existe deux modules d’analyse sous contraintes implémentés en Prolog : le premier, MASCOT [Erschler, 1986][Esquirol, 1987], est basé sur des conditions séquentielles, le second, REPORT [Lopez, 1991], a été développé sur la base des résultats présentés dans cet article. Une étude comparative a été menée entre les différents modules. Elle montre que les deux approches se complètent sans se recouvrir.

Les travaux en cours tentent d’exploiter les avantages respectifs de chacune des approches (basée intensité et basée énergie) en les combinant au sein d’un même processus d’analyse. Ils portent de plus sur les stratégies d’élaboration des intervalles d’analyse en vue d’affiner la caractérisation des ordonnancements admissibles (en obtenant de meilleures actualisations), tout en restant dans un domaine de complexité raisonnable.

Références

Annexe 1

Les instants remarquables et les conditions spécifiques qui leur sont associées sont énoncées dans le tableau A.

<table>
<thead>
<tr>
<th>instant</th>
<th>condition spécifique</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_i - p_i)</td>
<td></td>
</tr>
<tr>
<td>(d_i + r_i - r_i)</td>
<td>(r_i < r_i < d_i - p_i) (71)</td>
</tr>
<tr>
<td>(d_i)</td>
<td>(r_i \leq r_i < d_i < d_i) (72)</td>
</tr>
<tr>
<td>(r_i + p_i)</td>
<td>(d_i - p_i \leq r_i) (73)</td>
</tr>
</tbody>
</table>

Tableau A

Les situations correspondant à chacune des conditions sont illustrées sur la figure 17.

Démonstration
(γ₁) 1. Pour que le minimum de consommation de i sur I soit obtenu lorsque i est calée à gauche, il est nécessaire d’avoir : \(r_j < r_i \).
2. de plus, pour être amené à caler j à droite, il est nécessaire d’avoir \(d_j - p_j > r_i \). En effet si \(d_j - p_j \leq r_i \), la consommation de j calée à droite est toujours supérieure ou égale à la consommation de j calée à gauche.

(γ₃) Si \(d_j - p_j \leq r_i \) la consommation de j calée à gauche est nécessairement inférieure ou égale à la consommation de j calée à droite.

Remarque : il existe un caractère exclusif entre certaines conditions associées aux instants : (γ₁) ou (γ₂), (γ₁) ou (γ₃), (γ₂) ou (γ₃)... De ce fait, il n’est possible, lors de l’étude de chaque tâche j, d’énumérer qu’au maximum deux instants remarquables x issus du tableau A. De plus, \(d_i \) est toujours un instant remarquable à considérer.

Annexe 2

Soit \(S_{IX} \) l’énergie minimale consommée par i qu’il faut éjecter de l’intervalle IX :

\[
S_{IX} = w_i^{IX}(r_i) - W_i^{IX},
\]

i doit finir à une date \(C_i \) telle que l’énergie requise par i après X soit au moins égale à \(S_{IX} \) éventuellement additionnée, si \(r_i < X < r_i + p_i \), de l’énergie requise par i au delà de X, avant éjection. Les conditions sur \(C_i \) dépendent donc de deux cas :

1. si \(X \geq r_i + p_i \) (figure 18), on a :

\[(C_i - X)q_i \geq S_{IX} \]
2. Si $r_i \leq X < r_i + p_i$ (figure 19), on a :

$$(C_i - X)q_i \geq S_{IX} + (r_i + p_i - X)q_i$$

$\iff [C_i - (r_i + p_i)]q_i \geq S_{IX}.$

![Figure 18](image1)

![Figure 19](image2)

Globalement on peut écrire :

$$[C_i - \max(X, r_i + p_i)]q_i \geq S_{IX}.$$