An on/off event-based formulation for RCPSP with production and consumption of resources

Oumar KONE1, Christian ARTIGUES1, Pierre LOPEZ1 and Marcel MONGEAU2

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France
\{okone,artigues,lopez\}@laas.fr

2 Université de Toulouse ; UPS, INSA, UT1, UTM ; Institut de Mathématiques de Toulouse
CNRS ; Institut de Mathématiques de Toulouse UMR 5219 ; F-31062 Toulouse, France
mongeaumath.univ-toulouse.fr

Keywords: Resource-constrained project scheduling, mixed integer linear programming, production and consumption of resources, on/off formulation.

Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the best-known cumulative scheduling problems due to the interest from the operational research community, and to its many industrial applications. In this article we are concerned with the extension of the RCPSP that, beyond renewable resources considered in its basic version, also allows resources that can be produced and consumed during the execution of activities. This extension is called \textit{RCPSP with production and consumption of resources}. Some authors also call this type of resources: \textit{cumulative resources} (Neumann \textit{et al.} 2003).

For more detail about the state of the art, see for instance (Laborie 2003, Bouly \textit{et al.} 2005, Carlier \textit{et al.} 2009).

In our study, after a detailed description of the RCPSP and the considered extension, we present a mixed integer linear programming (MILP) model of the problem which uses variables indexed by events. Finally, we present some computational results.

1 Problem description

The resource-constrained project scheduling problem (RCPSP) is defined by a tuple (V, p, E, R, B, b), where V is a set of activities, p is a vector of durations, E is a set of precedence relations, R is a set of renewable resources, B is a vector of resource availabilities, and b is a matrix of demands.

A set of n activities, represented by the set $\{0, \ldots, n+1\}$ where activities 0 and $n+1$ are dummy activities, must be scheduled on m available renewable resources belonging to the set $R = \{1, \ldots, m\}$. Each activity i has a duration p_i (with $p_0 = p_{n+1} = 0$), and demands b_{ik} for each resource k during its processing. Each resource k is available in quantity B_k.

The precedence relations (precedence constraints) are given by a set E of index pairs such that $(i, j) \in E$ means that the execution of activity i must precede that of activity j. Resource constraints dictate that at any time the sum of demands of activities being processed does not exceed the resource availability.

A schedule corresponding to a point S (with $i^{th} \text{ component } S_i$, the start time of activity i, and $S_0 = 0$ the start of the project), is said feasible if it is compatible with both the precedence constraints and the resource constraints.

The RCPSP is the problem of finding a non-preemptive (with no interrupted activities) schedule S of minimal makespan (its end date S_{n+1}) subject to precedence constraints and
resource constraints. According to the computational complexity theory, this problem is NP-hard in the strong sense (Blazewicz et al. 1983, Uetz 2001).

The particularity of the RCPSP with production and consumption of resources is that, in addition to using the renewable resources described above, we also deal with specific resources. These resources are consumed (or not) at the start time of an activity in a certain amount and/or then produced in another amount at the completion time of this activity. More specifically, an activity i consumes c_{ip}^- units of resource p at the beginning of its processing and produces c_{ip}^+ units at the end of its processing. Furthermore, the total amount of each resource must remain non-negative during all the scheduling horizon.

2 Proposed model

In contrast to the formulations using variables indexed by time (like the formulations proposed by (Pritsker et al. 1963) and (Christofides et. al. 1987)), we propose here a new formulation that uses variables indexed by events. This is inspired by the work of (Pinto and Grossmann 1995) on batch process problems and on the formulation in (Dauzère-Pérès and Lasserre 1995) for flow-shop problems. Events correspond to start or end times of activities.

Remark that, in any potential optimal solution for the RCPSP (left-shifted schedule for the RCPSP, with finish-to-start precedence relations, with zero time lag), the start time of an activity is either 0 or coincides with the end time of some other activity. Consequently, the number of events to be considered is at most equal to $n + 1$. It can be easily shown that the set of left-shifted (or semi-active) schedules is dominant (it suffices to reduce our research to such schedules).

Extension of previously-proposed event-based models to the RCPSP is not straightforward. Indeed, such approaches were based on sequential variables on machines i.e. where resource availability is equal to 1, where all events are totally ranked on each machine, and such activities assigned to distinct events cannot overlap in time. For resource availability greater than 1, as in the RCPSP, there is only a partial order between activities.

Zapata et al. 2008 propose such an event-based formulation for a multimode RCPSP. Their formulation considers that an event occurs when an activity starts or ends. Transposed to the RCPSP, this model involves three types of binary variables. Our proposition uses only one type of binary variable per event. We define a decision variable z_{ie} which remains equal to 1 for the duration of the process of activity i. That is why we call this model, the on/off event-based formulation (noted OOE). In this model, the number of events can be restricted to the number of activities n. A continuous variable t_e represents the date of event e. We also use one single extra continuous variable: C_{max} (the makespan).

With formulation OOE, the resource constraints are modeled in a straightforward manner. The OOE model does not involve the use of dummy activities and, as the flow-based continuous-time formulation (FCT) proposed in (Artigues et al. 2003), has also the advantage of being able to deal with instances containing non-integer activity processing times. Above all, it involves fewer variables compared to the models indexed by time. Remark also that the event-based formulations we are introducing in this paper do not involve any big-M constant.

We also define OOE_Prec, a preprocessed variant of OOE. Roughly speaking, it is obtained from OOE by removing, from the set of possible events for an activity, all the first events during which the activity cannot or does not need to be in processed because of its predecessors. Symmetrically, we remove the last events during which the activity cannot, or does not need to, be in process because of its successors.
3 Computational results

We perform a series of tests and we compare the results obtained by OOE et OOE_Prec with those obtained by time-indexed formulations proposed in (Pritsker et al. 1963) (DT), Christofides (DDT) (Christofides et al. 1987), and flow-based continuous-time formulation (FCT) (Artigues et al. 2003). We use different types of modified RCPSP instances where we randomly generate resource productions and consumptions: KSD30 (Kolisch and Sprecher 1997), BL (Baptiste and Le Pape 2000), PACK (Carlier and Néron 2001). We use instances PACK_d and KSD15_d obtained from the PACK and KSD30 instances by increasing the range of processing times as this feature is common in the process industry (Pinto and Grossmann 1995). We obtained the following results with ILOG-CPLEX (version 11) on Xeon 5110 biprocessor Dell PC clocked at 1.6GHz with 4GB RAM, running Linux Fedora as operating system. In Table 1, \%integer gives the percentage of instances for which

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Inst.} & \text{Model} & \%\text{integer} & \%\text{Optimal} & \text{BestSol gap} & \Delta C P M \text{ gap} & \text{Time} \\
\hline
\text{KSD30} & \text{DT} & 84 & 63 & 10.21 & 25.20 & 52.60 \\
& \text{DDT} & 82 & 71 & 0.13 & 7.65 & 83.87 \\
& \text{OOE_Prec} & 78 & 1 & 52.63 & 76.13 & 415.70 \\
& \text{FCT} & 69 & 20 & 46.65 & 70.35 & 289.39 \\
& \text{OOE} & 1 & 0 & 65.96 & 65.96 & \\
\hline
\text{PACK} & \text{OOE} & 94.55 & 1.82 & 20.44 & 77.83 & 110.85 \\
& \text{OOE_Prec} & 92.73 & 3.64 & 13.13 & 258.18 & 449.26 \\
& \text{DT} & 90.91 & 18.18 & 48.04 & 365.49 & 126.63 \\
& \text{DDT} & 47.27 & 32.73 & 1.33 & 245.66 & 168.04 \\
& \text{FCT} & 9.09 & 0 & 5.90 & 96.41 & \\
\hline
\text{BL} & \text{OOE_Prec} & 100 & 0 & 17.61 & 72.57 & \\
& \text{DDT} & 94.87 & 48.72 & 1.32 & 47.62 & 125.55 \\
& \text{DT} & 87.18 & 38.46 & 49.82 & 119.82 & 108.60 \\
& \text{OOE} & 74.36 & 0 & 27.64 & 87.56 & \\
& \text{FCT} & 20.51 & 0 & 26.79 & 72.51 & \\
\hline
\text{KSD15_d} & \text{FCT} & 100 & 93.94 & 0.12 & 10.15 & 18.26 \\
& \text{OOE_Prec} & 100 & 80.81 & 0.05 & 10.08 & 30.69 \\
& \text{OOE} & 100 & 79.80 & 0.10 & 10.14 & 62.33 \\
& \text{DT} & 0 & 0 & 0 & 0 & \\
& \text{DDT} & 0 & 0 & 0 & 0 & \\
\hline
\text{PACK_d} & \text{OOE_Prec} & 96.36 & 5.45 & 1.62 & 249.77 & 252.09 \\
& \text{OOE} & 96.36 & 5.45 & 5.80 & 264.41 & 320.62 \\
& \text{FCT} & 5.45 & 1.82 & 0 & 44.02 & 100.01 \\
& \text{DT} & 0 & 0 & 0 & 0 & \\
& \text{DDT} & 0 & 0 & 0 & 0 & \\
\hline
\end{array}
\]

a (non-necessarily optimal) integer solution was found within 500 seconds of CPU time, %Optimal is the percentage for which an optimal solution was found, BestSol gap represents the average deviation percentage for solved instances from the value of the best solution known, \(\Delta C P M \text{ gap}\) provides the average deviation percentage for solved instances from the critical-path method lower bound, and Time is the average time (in seconds) to find an optimal solution.

We note that, in terms of number of (not necessarily optimal) solutions found, the model OOE and its variant OOE_Prec have almost the best performance on three types of instances (PACK, BL and PACK_d), the second best performance on KSD15_d, and
the third best performance on the last one type (KSD30). Overall, these results allow us to conclude that OOE and its variant OOE_Prec are the best overall at finding integer solutions. In terms of optimal solutions found, OOE models are outperformed by DT and DDT for the instances with small duration ranges. However, OOE models are uncomparably better than DT and DDT for the instances with high duration ranges.

Conclusion

In this paper, we proposed a new MILP formulation for the RCPSP with consumption and production of resources using variables indexed by events. Compared to other classical formulations issued from the literature, our formulation provides encouraging results. Future work should consider designing MILP approaches that combines the advantages of time-indexed and event-based formulations.

References

