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1. INTRODUCTION

Discrete Event Dynamic Systems (DEDS) subject
to synchronization phenomena can be modeled by
linear equations in a particular algebraic struc-
ture called dioid or idempotent semi-ring. For
about twenty years, this property has motivated
the elaboration of a ”new” linear system the-
ory. Indeed, concepts such as state representation,
transfer matrix, optimal control, correctors syn-
thesis and identification theory have been trans-
posed from conventional linear system theory to
the considered algebraic structure (Baccelli et al.,
1992). Applications of this theory have essen-
tially concerned manufacturing systems (Menguy
et al., 2000; Lahaye et al., 2003a), communica-
tion networks (Le Boudec and Thiran, 2001) and
transportation networks (Braker, 1993; de Vries
et al., 1998). In the latter, the focus has been on
modelling, performance evaluation and stability
analysis of railway networks.
For our concern, we are interested in applying
dioids algebraic tools to the study of urban bus
networks. The piloting of these networks can be
seen as a two steps process. Firstly, a so-called
operating schedule is defined for ”mean condi-
tions”. In particular, timetables are defined at
each stop to specify times at which buses should
theoretically run. These timetables are used to
inform passengers and, at particular stops, to
re-synchronize buses. The second step consists
in regulation operations: in reaction to current

conditions (breakdown of a bus, modifications of
traffic flows, etc.), a supervisor 1 may decide of
adjustments from the operating schedule (transfer
passengers, stop or reroute buses, etc.).
In (Lahaye et al., 2003b), we have proposed a
first approach aiming at modelling some of these
regulation operations. In practice, such a model
may be used as a tool to aid decisions since it
allows evaluating relevance of adjustments.
In this paper, the focus is rather on the first stage
described above. In fact, we propose a model for
urban bus networks functioning according to their
operating schedule. We then show how dioid tech-
niques 2 can be used for the synthesis of timeta-
bles. As described in (Ceder et al., 2000) this
problem is crucial, and aims notably at maximiz-
ing connections between buses from different lines.
The outline of the paper is as follows. In §2, we
recall elements of dioid theory as well as principles
of DEDS description and control over dioids. In
§3, we describe how bus networks operate, and
a model is introduced. In §4, the method for
timetables synthesis is proposed. An application
to an elementary bus network is proposed in §5.

1 Visualizing evolutions inside the network and communi-
cating with bus drivers.
2 The proposed approach is mainly based on residuation
theory.



2. PRELIMINARIES

2.1 Elements of dioid theory

Definition 1. (Dioid). A dioid is a set D with two
inner operations denoted ⊕ and ⊗. The sum is as-
sociative, commutative, idempotent (∀a ∈ D, a⊕
a = a) and admits a neutral element denoted ε.
The product is associative, distributes over the
sum and admits a neutral element denoted e. The
element ε is absorbing for the product.

In a dioid D, the equivalence : a º b ⇔ a = a⊕ b
defines a partial order relation.

Definition 2. (Complete dioid). A dioid is said to
be complete if it is closed for infinite sums and
if product distributes over infinite sums too. The
sum of all its elements is generally denoted >.

A complete dioid has a structure of complete
lattice (Baccelli et al., 1992, §4) , i.e. two elements
in a complete dioid always have a least upper
bound namely a ⊕ b and a greatest lower bound
denoted a ∧ b =

⊕
{x|x¹a, x¹b} x.

Example 1. The set Z = Z∪{+∞,−∞} endowed
with the max operator as sum and the classical
sum as product is a complete dioid, denoted Zmax

and usually called (max, +) algebra, with ε = −∞
and e = 0.

Theorem 1. The implicit equation x = ax ⊕ b
defined over a complete dioid admits x = a∗b as
least solution with a∗ =

⊕+∞
i=0 ai and a0 = e. The

star operator ∗ is usually called Kleene star.

2.2 Residuation theory

A mapping f defined from a complete dioid D
into a complete dioid C is said to be isotone
if a, b ∈ D, a ¹ b ⇒ f(a) ¹ f(b). Residua-
tion theory (Blyth and Janowitz, 1972) defines
”pseudo-inverses” for some isotone mappings de-
fined over ordered sets such as dioids (Cohen,
1998). More precisely, if the greatest element of
set {x ∈ D|f(x) ¹ b} exists for all b ∈ C, then it
is denoted f ](b) and f ] is called residual of f .

The isotone mapping La : x 7→ a ⊗ x defined
in a complete dioid is residuated. The greatest
solution to a ⊗ x ¹ b exists and is equal to
L]

a(b), also denoted b
a or a ◦\b. We furthermore

have the following formulæ (see (Baccelli et al.,
1992, §4.4)).

x

ab
=

a ◦\x
b

(1)
x

a∗
¹ x (2)

a∗ ◦\x
a∗

=
x

a∗
(3)

Theorem 2. (Baccelli et al., 1992, Th. 4.56) Let
f : D → C and g : C → B. If f and g are residuated
then g ◦ f is residuated and (g ◦ f)] = f ] ◦ g].

Definition 3. (Mapping restriction). Let f : D →
C a mapping and A ⊆ D. We denote f|A : A → C
the mapping defined by equality f|A = f ◦ Id|A
where Id|A : A → D is the canonical injection.

A constrained residuation problem (Cohen, 1998)
consists in finding the greatest solution to f(x) ¹
b not in the whole D but only in a subset A of D.
More precisely, being given a residuated mapping
f we aim at solving:

f|A(x) = f ◦ Id|A(x) ¹ b. (4)

Proposition 1. If the canonical injection Id|A is
residuated, then the constrained residuation prob-
lem (4) admits an optimal solution denoted f ]

|A(b).

Proof :

Thanks to theorem 2, if Id|A is residuated, then
so is f ◦ Id|A, and the greatest solution to (4) is
given by

f ]
|A(b) = (f ◦ Id|A)](b) = Id]

|A ◦ f ](b) (5)

2

2.3 Representation of DEDS using dioids

Dioids algebra enables to model DEDS involving
(only) synchronization phenomena. For instance,
by dating each event, i.e. by associating with each
event a discrete function x (resp. u and y for an
input and an output) called dater 3 , it is possible
to get a linear state representation:

{
x(k) = Ax(k − 1)⊕Bu(k)
y(k) = Cx(k). (6)

An analogous transform to Z-transform (used
to represent discrete-time trajectories in classi-
cal theory) can be introduced for daters. The γ-
transform of a dater x(k) is defined as the fol-
lowing formal power series: x =

⊕
k∈Z x(k)γk.

Indeed, variable γ can be interpreted as the back-
ward shift operator in event domain. The set of
formal power series in one variable γ and coeffi-
cients in Zmax is a dioid denoted ZmaxJγK.
State representation (6) becomes in ZmaxJγK:

3 x(k) is the time of the k + 1-th occurrence of event x.



{
x = γAx⊕Bu
y = Cx.

(7)

Considering the earliest functioning of the system,
we select the least solution of the first equation of
(7) which is given according to theorem 1 by x =
(γA)∗Bu. This leads to y = Hu = C(γA)∗Bu, in
which H = C(γA)∗B is called the transfer matrix.

2.4 Just In Time control

The Just In Time (JIT) control of a DEDS con-
sists in computing the latest input dates which
cause output dates to be earlier than or equal to
a given target. Let us define a dater specifying the
desired outputs and z its γ-transform. From the
representation in dioid algebra, this control prob-
lem is formulated as an inequality, and residuation
theory leads to optimal solution uopt:

uopt =
⊕

{u|LH(u)=Hu¹z}
u =

z

H
=

z

C(γA)∗B
.

(8)

3. MODELLING OF URBAN BUS
NETWORKS

Many transportation systems may be studied as
DEDS. With this point of view, their evolution is
conditioned by events such as arrivals or depar-
tures of vehicles. In next sections, the focus is on
urban bus networks. We first describe how they
operate. Then, we propose a model in dioid Zmax.

3.1 Functioning of urban bus networks

As presented in (Hayat and Maouche, 1997), pi-
loting of public transportation networks can be
decomposed in two stages : the ”operating sched-
ule” and the ”regulation”.

Definition of an operating schedule The op-
erating schedule is established with the aim of op-
timizing the offer of service according to objectives
and constraints (bus fleet, line layouts, staff hours
of work, etc). It is calculated for mean functioning
conditions. In practical terms, this optimization
results in:

(1) The definition of the bus routes and the bus
stops for each line.

(2) The choice of a level-of-service for each line:
distribution of resources (buses, drivers), def-
inition of the minimum and maximum head-
ways 4 (i.e. the expected minimum and max-
imum time separations between two buses).

4 A minimum headway is defined to counteract the natural
tendency of transit vehicles to bunch up. Thus, if a bus falls

(3) The synthesis of timetables defining times at
which buses should theoretically run at each
stop. Timetables are used to inform passen-
gers and, at some stops, to re-synchronize
buses.

Regulation This stage corresponds to adjust-
ments or adaptations from the operating sched-
ule in reaction to current functioning conditions.
Common conditions leading to such adjustment
operations are disturbances: breakdown of buses,
modifications of traffic flows (for instance due to
accidents), etc. A supervisor may then decide to
transfer passengers, stop or reroute buses...

In the following, we are only interested in mod-
elling the operating schedule. In §4, we further-
more show how dioid techniques can be used for
the synthesis of timetables.

3.2 Modelling of a bus network

In this section, we propose a model for urban bus
networks functioning according to their operating
schedule. We assume that each line i includes
ni bus stops. The network is composed by M
lines and N = n1 + . . . + nM stops. In the
following, let xi(k) denote the departure time
of the (k + 1)-st bus at stop i. Without loss
of generality, we assume that at the beginning
of operation a bus departs from each stop 5 .
Suppose that the bus coming from stop j reaches
stop i. Then we have the following inequation:
xi(k) ≥ aij + xj(k − 1), k > 1, in which aij

denotes the travelling time from stop j to i. Let
x(k) = (x1(k), x2(k), . . . , xN (k))t, for the whole
network this inequation can be written in max-
algebraic matrix notation

x(k) ≥ A⊗ x(k − 1), (9)

in which Aij = aij if stop j precedes stop i,
otherwise Aij = ε.

In practice, a public transportation network oper-
ates under a timetable which schedules the depar-
ture times of every bus. Buses respect timetables

slightly behind schedule for any reasons, it will have more
than the average number of passengers to pick up at the
next station, which causes further delays. Thus, it keeps
failing further behind schedule. Conversely, the bus behind
it encounters fewer passengers than usual, allowing it to
catch up with the preceding bus. Such bunching tends to
appear if no minimum headway is defined. Symmetrically,
a maximum headway specifies the desired level-of-service
since it defines the minimum frequency of buses on the line.
5 If no or several bus(es) initially depart from stops, then
this results only in indexes modification. These cases can
be dealt exactly as cases of places initially containing no
or several token(s) for the modelling of timed event graph
(Baccelli et al., 1992, §2.5.2).



only at specific stops 6 such as terminus or depar-
ture of lines or main stations. At the other stops,
timetables are only used to inform passengers. We
denote ul(k) the scheduled departure time for the
(k + 1)-st bus at stop l and Su the set of specific
stops, this leads to

x(k) ≥ Bu(k), (10)

in which B is a N × N matrix where Bii = e if
stop i ∈ Su, Bij = ε otherwise.

Considering inequations (9) and (10) and assum-
ing that buses depart as soon as possible, a sched-
uled transportation network is modelled in dioid
Zmax by a state equation as in (6).

4. TIMETABLES SYNTHESIS OF URBAN
BUS NETWORKS

4.1 Problem description

In a bus network, it may be profitable to minimize
waiting times at a given stop for passengers arriv-
ing from another given stop. Such stops, generally
close from a geographic point of view 7 , belong to
an itinerary which should be promoted 8 and are
called connection stops.

With the aim of doing so, we consider a problem
formulated in (Ceder et al., 2000) 9 . This problem
consists in finding timetables which

(i) maximize synchronizations at connection
stops,

(ii) ensure an expected level-of-service at partic-
ular stops of the network,

(iii) satisfy planning constraints (i.e. minimum
and maximum headways, see §3.1).

In order to compute timetables at each stop so
as to synchronize bus departures at connection
stops (objective mentioned at item (i)), we have
to find input {u(k)}k∈Z such that state {x(k)}k∈Z
satisfies:

x(k) = A′x(k − 1)⊕B′u(k) (11)

where evolution matrix A′ takes into account
connections between lines and B′ = B. More
precisely, A′ij = Aij if stop j precedes stop i on
the same line; A′ij = wij denotes the walking time

6 Where buses can park without blocking or disturbing
traffic.
7 Walking time between these stops is small (they are
sometimes located at a same node of the network).
8 Due to the important flow of users and/or for commercial
reasons.
9 Tools used in (Ceder et al., 2000) are essentially based
on linear programming methods

from stop j to stop i if i is in connection with j;
A′ij = ε otherwise.

The desired level-of-service (mentioned at item
(ii)) is specified for some particular stops (we
denote So the set of these stops). More precisely,
for such a stop i ∈ So, a dater {zi(k)}k∈Z can
be defined: zi(k) specifies the latest date at which
the k + 1-st bus should depart from stop i. From
equation (11), departure times at stops belonging
to So are given by:

y(k) = C ′x(k), (12)

where C ′ is a q × N matrix (q = Card(So)) in
which C ′ij = e if i, j are indexes in y and x of a
same stop in So, C ′ij = ε otherwise.

We then aim at finding {u(k)}k∈Z such that

y(k) = C ′x(k) ¹ z(k). (13)

According to item (iii), timetables given by dater
{u(k)}k∈Z must furthermore satisfy the planning
constraints, i.e.

u(k + 1) ≥ 4minu(k) (14)

4maxu(k) ≥ u(k + 1), (15)

where 4min and 4max are diagonal matrices
traducing minimum and maximum headways for
each line. For all stops s of line i, the element
4min

ss (resp.4max
ss ) is equal to the minimum (resp.

maximum) headway 4min
i (resp. 4max

i ) of line i.

4.2 Formalization as a constrained residuation
problem

From γ-transforms of equations (11) and (12), we
obtain the expected input/output behavior (cf. §
2.3): y = Hu = LH(u), with H = C ′(γA′)∗B′.

Equation (13) can then be written

y = LH(u) ¹ z. (16)

More precisely, we are interested in finding the
greatest solution to this inequation. This solution
allows buses to stay at stops belonging to Su as
late as possible while satisfying desired departures
dates at stops in So (given by z). With this
formulation, the problem given by equation (16)
then appears to be a JIT control problem (cf. §
2.4).

Moreover, the searched solution u must satisfy
inequations (14) and (15). Denoting AJγK the
subset of ZmaxJγK composed of series satisfying
γ-transforms of (14) and (15), we can rewrite the



considered problem as a constrained residuation
problem (cf. § 2.2):

{
LH(u) ¹ z
u ∈ AJγK (admissible domain). (17)

Canonical injection of the subset AJγK in ZmaxJγK
is denoted Id|A and LH|A is the mapping LH re-
stricted to the domain AJγK. Regarding definition
3, the constrained problem is equivalent to solve:

LH|A(u) = LH ◦ Id|A(u) ¹ z . (18)

4.3 Solving the problem

From equation (18), we can apply proposition 1 if
Id|A is residuated:

L]
H|A

(z) = Id]
|A ◦ L]

H(z). (19)

The considered problem will then be solved in two
stages:

(i) compute the solution to the ”relaxed” prob-
lem uopt = L]

H(z) (i.e without planning con-
straints),

(ii) find the best approximation of (i) in admis-
sible domain uoptA = Id]

|A(L
]
H(z)).

To apply this reasoning, it remains to show that
canonical injection Id|A is residuated. With that
goal, we first characterize the subset AJγK.
Subset AJγK is composed of formal power series
which satify planning constraints (14) and (15).
Since 4max is diagonal, it is invertible and we
obtain the two following inequations:

{ 4min u(k − 1) ¹ u(k)
(4max)−1 u(k + 1) ¹ u(k),

The γ-transforms of these inequations lead to

{ 4min γu ¹ u
(4max)−1 γ−1u ¹ u,

and (4min γ ⊕ (4max)−1 γ−1) u ¹ u. Since
product is residuated, we equivalently have

u =
u

4min γ ⊕ (4max)−1 γ−1
∧ u.

The greatest solution is given by (see (Baccelli
et al., 1992, Th. 4.7.3))

u =
u

(γ4min ⊕ γ−1(4max)−1)∗
. (20)

With the aim of abbreviating notations, we below
denote p = γ4min⊕ γ−1(4max)−1. Equality (20)
allows the following definition of subset AJγK:

AJγK = {x ∈ ZmaxJγK | x =
x

p∗
}.

In order to show the residuability of canonical
injection Id|A, we study the quotient of ZmaxJγK
by a particular equivalence relation (this idea was
inspired by (Cohen, 1993, Th. 30)).

Proposition 2. Let Π be the mapping from ZmaxJγK
into itself defined by Π : x 7→ x

p∗ . We define the
following equivalence relation

{x R y} ⇐⇒ { x

p∗
=

y

p∗
}.

(1) Each equivalence class of ZmaxJγK/R con-
tains one and only one element belonging
to Π(ZmaxJγK) and this element is explicitly
given by x

p∗ for any x in the class.
(2) Element x

p∗ is the least element in [x]R, and
it is the greatest element among those of
Π(ZmaxJγK) which are less than x.

Proof :

(1) For a given element x ∈ ZmaxJγK, the el-
ement x

p∗ clearly belongs to Π(ZmaxJγK)
and since p∗ ◦\x

p∗ = x
p∗ (using (3)), it also

belongs to [x]/R. Moreover, suppose that
there is another element x1 ∈ [x]R which
also belongs to Π(ZmaxJγK): Π(x′1) = x1 ⇔
x1 = x′1

p∗ = p∗ ◦\x′1
p∗ = x1

p∗ , however x1Rx,
so x1

p∗ = x
p∗ hence x1 = x

p∗ which proves
uniqueness of the element belonging to [x]R
and Π(ZmaxJγK).

(2) Since p∗ º e, for all y ∈ [x]R, we have x
p∗ =

y
p∗ ¹ y (see (2)). Consequently x

p∗ is the
least element of [x]R. For all z ∈ Π(ZmaxJγK)
such that z ¹ x, since Π is isotone, we obtain
z

p∗ ¹ x
p∗ , hence x

p∗ is the greatest element
of Π(ZmaxJγK) which is less than x.

2

Note that for any element x ∈ Π(ZmaxJγK) there
exists y such that x = y

p∗ , and we have x
p∗ =

p∗ ◦\y
p∗ = y

p∗ = x (using (3)), which shows that
Π(ZmaxJγK) ⊆ AJγK. The converse is obvious and
subsets Π(ZmaxJγK) and AJγK are then identical.

Last assertion of proposition 2 consequently proves
that canonical injection Id|A is residuated and
with x′ ∈ ZmaxJγK, its residual is

Id]
|A(x

′) =
⊕

{x∈AJγK|x¹x′}
x =

x′

p∗
.



5. EXAMPLE

We now present an example of bus network com-
posed of two lines including two connection stops
(see the graph below). We assume that x5 and
x7 are respectively in connection with x1 and x3

(null walking times for these connections). We
then obtain the following matrix A′.

l i n e  1
l i n e  2 x 1

x 2 x 3

x 4

x 5

x 6

x 7

3

5
4

7

8

8

1

A′ =




ε ε 4 ε ε ε ε
3 ε ε ε ε ε ε
ε 5 ε ε ε ε ε
ε ε ε ε ε ε 1
e ε ε 7 ε ε ε
ε ε ε ε 8 ε ε
ε ε e ε ε 8 ε




The desired output is specified for only one stop
x7 (So = {x7}), this leads to C =

(
ε ε ε ε ε ε e

)
.

Moreover, the following tabular represents the
desired level-of-service of x7.

k 1 2 3 4 5
z(k) 10 20 24 28 40

Planning constraints are identical for both lines:
4min = 7 and 4max = 10.

We solve the problem in two stages (cf. item (i)
and (ii) of §4.3). The first step consists in comput-
ing the solution of the relaxed problem uopt. We
show the computed dater uopt6 of the generated
timetables. Note that planning constraints are not
satisfied.

k 1 2 3 4 5

y(k) 10 20 24 28 40

uopt6 (k) 12 16 20 32 >
Finally we find the best approximation of uopt in
AJγK.

k 1 2 3 4 5

y(k) 7 14 21 28 38

uoptA6 (k) 6 13 20 30 40

1 2 3 4 5 6

1 0

2 0

3 0

4 0

5 0

k 1 2 3 4 5 6

1 0

2 0

3 0

4 0

5 0

k

u o p t 6 u o p t 6
u o p t A 6

m i nD

m a xD

Fig. 1. Computation of dater uoptA6(k) in two
stages

Remark 1. For the computation, we have used
software tools dedicated to calculus in dioids
(SW2004, 2004).

6. CONCLUSION

We show that dioids algebra can be suitable for
bus networks modelling. First, we have described

the functioning of such systems. A (max, +) mod-
elling is established to simulate such particular
systems which are conditioned by timetables. We
suggest a solution using residuation theory to the
problem of timetables generation. We are cur-
rently trying to extend this work by consider-
ing ”more general” synchronizations at connection
stops (e.g. not occurring at each departure).
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Algèbres Max-Plus et applications en informa-
tique et automatique : Ecole d’informatique
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