Algorithms for the flexible cyclic job-shop problem

F. Quinton, I. Hamaz, L. Houssin

LAAS-CNRS, Toulouse, France

September 7, 2021

Cyclic scheduling

Scheduling repetitive tasks

What people¹ think it is

¹Of course not PMS audience.

Cyclic scheduling

Scheduling repetitive tasks

What people¹ think it is

What it really is

 1 Of course not PMS audience.

F. Quinton, I. Hamaz, L. Houssin

Algorithms for the flexible cyclic job-shop problem

Schedule elementary tasks $T = \{1, ..., n\}$ infinitely repeated.

• Each task *i* has a processing time p_i and belongs to a subset $T_J \subset T$ called job.

Schedule elementary tasks $T = \{1, ..., n\}$ infinitely repeated.

- Each task *i* has a processing time *p_i* and belongs to a subset *T_J* ⊂ *T* called job.
- t(i, k), $k \in \mathbb{N}$, is the start time of the k-th occurrence of i

 $\forall i \in T, \forall k \in \mathbb{N}: \quad t(i, k+1) = \alpha + t(i, k)$

where α is the cycle time.

Schedule elementary tasks $T = \{1, ..., n\}$ infinitely repeated.

- Each task *i* has a processing time *p_i* and belongs to a subset *T_J* ⊂ *T* called job.
- $t(i, k), k \in \mathbb{N}$, is the start time of the k-th occurrence of i

 $\forall i \in T, \forall k \in \mathbb{N}: t(i, k+1) = \alpha + t(i, k)$

where α is the cycle time.

Each elementary task *i* is executed using a machine M(*i*) ∈ M = {1,..., m}, where m < n

Schedule elementary tasks $T = \{1, ..., n\}$ infinitely repeated.

- Each task *i* has a processing time *p_i* and belongs to a subset *T_J* ⊂ *T* called job.
- $t(i, k), k \in \mathbb{N}$, is the start time of the k-th occurrence of i

 $\forall i \in T, \forall k \in \mathbb{N}: t(i, k+1) = \alpha + t(i, k)$

where α is the cycle time.

- Each elementary task *i* is executed using a machine $M(i) \in M = \{1, ..., m\}$, where m < n
- Elementary tasks are connected by uniform constraints and disjunctive constraints.

Uniform constraints

• Precedence constraint between tasks *i* and *j*:

 $\forall i, j \in T, \forall k \in \mathbb{N}: \quad t(i, k) + p_i \leq t(j, k + H_{ij}).$

Uniform constraints

• Precedence constraint between tasks *i* and *j*:

 $\forall i, j \in T, \forall k \in \mathbb{N}: \quad t(i, k) + p_i \leq t(j, k + H_{ij}).$

Disjunctive constraints

Resource constraints leads to $\forall i, j \in T, \forall k \in \mathbb{N}$ such that $M(i) = M(j), i \neq j$: $t(i, k) + p_i \leq t(j, k + K_{ij})$ $t(j, k) + p_j \leq t(i, k + K_{ji})$

Occurrence shift property

For all couple of elementary tasks $(i,j) \in T^2$ such that M(i) = M(j) we know that

 $K_{ij} + K_{ji} = 1$

Solving a cyclic job-shop scheduling problem

Goal

Minimize the cycle time α .

• find a cyclic schedule w where all t(i, k) minimize α .

Solving a cyclic job-shop scheduling problem

Goal

Minimize the cycle time α .

- find a cyclic schedule w where all t(i, k) minimize α .
- A cyclic schedule w is totally defined by

▶ a set
$$S_w = \{t(i,0) \in \mathbb{R}^+ \mid i \in T\}$$

 \blacktriangleright a cycle time lpha

$\min \alpha$

s.t.

$$\alpha \geq p_{i}, \quad \forall i \in \mathcal{T}$$

$$t_{j} + \alpha H_{i,j} \geq t_{i} + p_{i}, \quad \forall (i,j) \in \mathcal{E}$$

$$t_{j} + \alpha \times K_{ij} \geq t_{i} + p_{i}, \quad \forall (i,j) \in \mathcal{D}$$

$$K_{ij} + K_{ji} = 1, \quad \forall (i,j) \in \mathcal{D}$$

$$K_{ij} \in \mathbb{Z}, \quad \forall (i,j) \in \mathcal{D}$$

$$t_{i} \geq 0, \quad \forall i \in \mathcal{T}.$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(6)$$

$\min \alpha$

s.t.

$$\alpha \geq p_{i}, \quad \forall i \in \mathcal{T}$$

$$t_{j} + \alpha H_{i,j} \geq t_{i} + p_{i}, \quad \forall (i,j) \in \mathcal{E}$$

$$t_{j} + \alpha \times K_{ij} \geq t_{i} + p_{i}, \quad \forall (i,j) \in \mathcal{D}$$

$$K_{ij} + K_{ji} = 1, \quad \forall (i,j) \in \mathcal{D}$$

$$K_{ij} \in \mathbb{Z}, \quad \forall (i,j) \in \mathcal{D}$$

$$t_{i} \geq 0, \quad \forall i \in \mathcal{T}.$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(6)$$

Define the variable $\tau = \frac{1}{\alpha}$ and for all $i \in T$, the variables $u_i = \frac{t_i}{\alpha}$.

s.t.

$$\tau \leq \frac{1}{p_i}, \quad \forall i \in \mathcal{T}$$

$$u_j + H_{i,j} \geq u_i + \tau p_i, \quad \forall (i,j) \in \mathcal{E}$$

$$u_j + K_{ij} \geq u_i + \tau p_i, \quad \forall (i,j) \in \mathcal{D}$$

$$K_{ij} + K_{ji} = 1, \quad \forall (i,j) \in \mathcal{D}$$

$$K_{ij} \in \mathbb{Z}, \quad \forall (i,j) \in \mathcal{D}$$

$$u_i \geq 0, \quad \forall i \in \mathcal{T}.$$

$$(17)$$

max 7

Example

CJSP Example

• Data:

- 7 tasks
- 4 machines

Task	1	2	3	4	5	6	7
Time	5	4	5	4	4	3	5
Machine	M_1	M_1	<i>M</i> ₃	M_1	<i>M</i> ₂	M_4	<i>M</i> ₃

Associated graph of the CJSP

Associated graph of the CJSP

(0,2)

Example - cyclic schedule with WIP = 2

Figure: Periodic schedule example.

Example - cyclic schedule with WIP = 2

Figure: Periodic schedule example.

Flexible cyclic job shop scheduling problem

The Flexible Cyclic Job shop Scheduling Problem (FCJSP) is a CJSP where the elementary tasks are **flexible**.

Flexibility

For all elementary task $i \in T$, define the set $R(i) \subset M$ of machines on which *i* can be assigned.

• The assignment of a task *i* to a machine $r \in R(i)$ is a decision variable.

Flexible cyclic job shop scheduling problem

The Flexible Cyclic Job shop Scheduling Problem (FCJSP) is a CJSP where the elementary tasks are **flexible**.

Flexibility

For all elementary task $i \in T$, define the set $R(i) \subset M$ of machines on which i can be assigned.

- The assignment of a task *i* to a machine $r \in R(i)$ is a decision variable.
- A flexible cyclic schedule w is totally defined by

• a set
$$S_w = \{t(i,0) \in \mathbb{R}^+ \mid i \in T\}$$

• a set
$$R_w = \{m(i) \in R(i) \mid i \in T\}$$

Example

FCJSP Example

• Data:

- 5 tasks
- 2 machines

• Task 2 can be assigned to machines M_1 or M_2 .

Task	1		2	3	4	5
Machine	M_1	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₂	M_1	M_2

Effect of machine assignment on the set of constraints

With task 2 assigned to machine 1:

Effect of machine assignment on the set of constraints

With task 2 assigned to machine 2:

Example

• Data:

- 7 tasks
- 4 machines
- Each task can be assigned to one of three machines.

Task	1			2			3		
Machine	M_1	M_2	<i>M</i> ₄	M_1	M_2	<i>M</i> ₃	<i>M</i> ₂	<i>M</i> ₃	M_4
Time	5	6	6	4	5	6	7	5	6
Task	4			5			6		
Machine	M_1	M_2	<i>M</i> ₃	M_1	M_2	<i>M</i> ₃	M_1	<i>M</i> ₃	M_4
Time	4	7	5	4	4	5	3	4	3
Task		7							
Machine	M_1	M_2	<i>M</i> ₃						
Time	5	7	5						

Example - flexible cyclic schedule

Example - flexible cyclic schedule

Example - flexible cyclic schedule

Let us define

- $\forall i \in T, \forall r \in R(i), m_{i,r} = \begin{cases} 1 \text{ if task i is assigned to machine r} \\ 0 \text{ otherwise} \end{cases}$
- $\forall i, j \in T$, $R(i, j) = R(i) \cap R(j)$ the set of common machines for tasks *i* and *j*.
- $E = \{(i,j) \in T^2 | i \text{ precedes } j\}$ the set of precedence constraints.
- $D = \{(i,j) | R(i,j) \neq \emptyset\}$ the set of disjunction constraints.

Non-linear intuitive model for the FCJSP The FCJSP can be modelized as follows:

min α

s.t.

$$\begin{split} \alpha \geq p_{i,r} - (1 - m_{i,r}) \times M_1, & \forall i = 1, ..., n; \forall r \in M(i) \\ t_j + \alpha \times H_{i,j} \geq t_i + p_{i,r} \times m_{i,r}, & \forall (i,j) \in E; \forall r \in M(i) \\ t_j + \alpha \times K_{ij} \geq t_i + p_{i,r} \times m_{i,r}, & \forall (i,j) \in D; \forall r \in M(i) \\ & \sum_{r \in M(i)} m_{i,r} = 1, & \forall i = 1, ..., n \\ & t_i \geq 0, \alpha \geq 0 \quad \forall i = 1, ..., n \\ & K_{i,j} + K_{j,i} = 1, & \forall (i,j) \in D \\ & K_{ij} \in \mathbb{Z} \\ & m_{i,r} \in \{0,1\}, & \forall i = 1, ..., n \end{split}$$

Non-linear intuitive model for the FCJSP The FCJSP can be modelized as follows:

min α

s.t.

$$\begin{split} \alpha \geq p_{i,r} - (1 - m_{i,r}) \times M_1, & \forall i = 1, ..., n; \forall r \in M(i) \\ t_j + \alpha \times H_{i,j} \geq t_i + p_{i,r} \times m_{i,r}, & \forall (i,j) \in E; \forall r \in M(i) \\ t_j + \alpha \times K_{ij} \geq t_i + p_{i,r} \times m_{i,r}, & \forall (i,j) \in D; \forall r \in M(i) \\ & \sum_{r \in M(i)} m_{i,r} = 1, & \forall i = 1, ..., n \\ & t_i \geq 0, \alpha \geq 0 \quad \forall i = 1, ..., n \\ & K_{i,j} + K_{j,i} = 1, & \forall (i,j) \in D \\ & K_{ij} \in \mathbb{Z} \\ & m_{i,r} \in \{0,1\}, & \forall i = 1, ..., n \end{split}$$

Linearization

For linearization purpose we introduce:

•
$$\tau = \frac{1}{\alpha}$$

• $\forall i \in T, u_i = \frac{t_i}{\alpha}$

MIP model the the FCJSP

 $\max \tau$ $au \leq \sum_{r \in R(i)} \frac{m_{i,r}}{p_{i,r}}, \quad \forall i \in T, \forall r \in R(i)$ $u_j + H_{i,j} \ge u_i + \sum p_{i,r} y_{i,r}, \quad \forall (i,j) \in E, \forall r \in R(i)$ $r \in R(i)$ $P_1(2 - m_{i,r} - m_{j,r}) + u_j + K_{i,j} \ge u_i + p_{i,r}y_{i,r}, \quad \forall (i,j) \in E, \forall r \in R(i,j)$ $\sum y_{i,r} = \tau, \quad \forall i \in T$ $r \in R(i)$ $y_{i,r} \leq m_{i,r}, \quad \forall i \in \mathcal{T}, \forall r \in R(i)$ $\sum m_{i,r} = 1, \quad \forall i \in T$ $r \in R(i)$ $K_{i,i} + K_{i,i} = 1, \quad \forall (i, j) \in D$

MIP model the the FCJSP

 $K_{ij} \in \mathbb{Z}, \quad \forall (i,j) \in D$ $u_i \ge 0, \quad \forall i \in T$ $m_{i,r} \in \{0,1\}, \quad \forall i \in T \forall r \in R(i)$ $y_{i,r} \ge 0, \quad \forall i \in T \forall r \in R(i)$

Figure: FCJSP example solved by the MIP.

Figure: FCJSP example solved by the MIP.

Figure: FCJSP example solved by the MIP.

Numerical Results

Table: Numerical results with the MIP model

Instance parameters	Solving time	Gap to optima	Number of
	(sec)		solved instances
15 tasks 3 machines	25.09	-	10
15 tasks 4 machines	36.58	11.11%	9
15 tasks 5 machines	5.13	16.67%	9
20 tasks 3 machines	111.87	17.29%	8
20 tasks 4 machines	115.25	13.06%	8
20 tasks 5 machines	time out	23.81%	0
30 tasks 3 machines	time out	32.64%	0
30 tasks 4 machines	time out	123.61%	0
30 tasks 5 machines	time out	121.95%	0

First approach

- Corresponding Master Problem (MP) is composed of the constraints involving only the integer variables and the optimality cuts and the feasibility cuts.
- Subproblem involves only continuous variables. Can be written as a LP.

First approach: Master Problem

max z

s.t.

$\sum_{r\in r(i)} m_{i,r} = 1, \forall i$	$r \in \mathcal{T}$ (13a)
$m{K}_{ij}+m{K}_{ji}=1, \ \ orall ($	$(i,j) \in \mathcal{D}$ (13b)
Feasibility Cuts ${\cal F}$	(13c)
Optimality Cuts ${\cal O}$	(13d)
$m_{i,r} \in \{0,1\}, \forall i$	$T \in \mathcal{T}, \forall r \in R(i)$ (13e)
$z\in \mathbb{R}, K_{ij}\in \mathbb{Z}, orall ($	$(i,j) \in \mathcal{D}.$ (13f)

First approach: SubProblem

s.t.

$$\tau \leq \sum_{r \in R(i)} \frac{\overline{m}_{i,r}}{p_{i,r}}, \quad \forall i \in \mathcal{T}$$
(14)

$$u_{j} + H_{ij} \ge u_{i} + \sum_{r \in \mathcal{R}(i)} y_{i,r} \ p_{i,r}, \quad \forall (i,j) \in \mathcal{E}$$

$$(15)$$

$$P_1(2 - \overline{m}_{i,r} - \overline{m}_{j,r}) + u_j + \overline{K}_{i,j} \ge u_i + y_{i,r} p_{i,r}, \quad \forall (i,j) \in \mathcal{D}, \forall r \in R(i,j)$$
(16)

max T

$$\sum_{r \in R(i)} y_{i,r} = \tau, \quad \forall i \in \mathcal{T}$$
(17)

$$\mathbf{y}_{i,r} \leq \overline{\mathbf{m}}_{i,r}, \quad \forall i \in \mathcal{T}, \forall r \in \mathbf{R}(i)$$
 (18)

$$\tau \ge 0, \quad u_i \ge 0, \forall i \in \mathcal{T}, \quad y_{i,r} \ge 0, \forall i \in \mathcal{T}, \forall r \in R(i).$$
 (19)

First approach: Results

- very slow
- produces tons of infeasibility cuts

First approach: Why is it so bad?

- Not enough connection between the MP and the SP.
- The master runs around like a headless chicken.

Second approach

- Add cuts in the MP to ensure the existence of feasible starting times fulfilling the disjunction constraints and precedence constraints implied by the integer variables.
- Even a naive UB of the cycle time is sufficient to ensure feasibility of the SP.

Numerical experimentations

Instance name	MILP	Benders	2-Flex
		decomposition	heuristic
inst0_10tasks_4machines	29.37	505.57	1.78(10.49%)
inst1_10tasks_4machines	461.93	668.82	0.63(-)
inst2_10tasks_4machines	52.68	356.89	0.91(8.25%)
inst3_10tasks_4machines	132.53	703.93	1.04(2.53%)
inst4_10tasks_4machines	93.66	458.89	1.01(1.40%)
inst5_10tasks_4machines	19.78	364.25	0.43(5.44%)
inst6_10tasks_4machines	9.15	514.52	0.66(9.57%)
inst7_10tasks_4machines	49.81	455.74	0.31(2.97%)
inst8_10tasks_4machines	124.83	659.4	0.86(2.46%)
inst9_10tasks_4machines	14.65	317.62	0.87(2.97%)
		'	

Time to optimality

Numerical experimentations

Time to optimality

Instance name	MILP	Benders decomposition	2-Flex heuristic
inst0_10tasks_3machines	timeout	819.95	66.29(-)
inst1_10tasks_3machines	946.08	614.28	2.93(-)
inst2_10tasks_3machines	1640.75	516.42	6.74(-)
inst3_10tasks_3machines	823.53	589.63	27.07(-)
inst4_10tasks_3machines	658.47	385.83	34.43(2.58%)
inst5_10tasks_3machines	765.6	424.89	21.01(2.58%)
inst6_10tasks_3machines	timeout	954.92	7.62(-)
inst7_10tasks_3machines	2383.02	945.99	34.74(-)
inst8_10tasks_3machines	3215.08	769.91	9.81(-)
inst9_10tasks_3machines	2337.64	473.86	13.17(-)
		•	

Conclusion and perspectives

Conclusion

- An original model for the flexible CJSP.
- A Benders decomposition.
- We propose a heuristic procedure and perform some numerical experimentations. heuristic
- Full paper in Annals of OR 2020

Heuristics for the FCJSP

The FCJSP is highly combinatory. For large instances, MIP does not give satisfying results. To tacle this issue, we propose two heuristic procedures:

- For every $i \in T$, consider a wisely chosen subset of R(i).
- Solve the problem where only a subset of elementary tasks $i \in T$ are flexible.

Define $R^{H}(i) \subset R(i) \forall i \in T$ the reduced subset of machines to which task *i* can be assigned.

- $R^{H}(i)$ can be defined has the set of the k machine that produce task i the fastest, with k < card(R(i)).
- Solving with a reduced number of machines for every tasks drastically reduces the combinatory of the problem.

Figure: FCJSP example solved by the MIP.

Figure: FCJSP example solved by the Benders algorithm.

Figure: FCJSP example solved "2-Flex" heuristic.

Set of feasible values for the MP

▲ back