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Abstract: This paper studies static Frequency Assignment Problem (FAP) in a satellite
communication system involving a satellite and a number of users located in a service area.
The objective is to maximise the number of users that the system can serve while maintaining
the signal to interference plus noise ratio of each user under a predefined threshold.
Traditionally, interference is binary and fixed. In this paper, the interference is cumulative and
variable depending on how the frequency is assigned. To solve the problem, we work on both
discrete and continuous optimizations. Integer linear programming formulations and greedy
algorithms are proposed for solving the discrete frequency allocation problem. The solution is
further improved by beam moving algorithm which involves continuous adjustment of satellite
beams and deals with non-linear change of interference.

Keywords: Optimization problem, Combinatorial mathematics, Operation research, Integer
linear programming, greedy algorithms

1. INTRODUCTION

With the continuing increase in demand, satellite com-
munication technology continuously evolves and move to-
wards greater capacity, higher flexibility, and better service
to the end-users. Spatial Division Multiple Access (SDMA)
appears to be an alternative to achieve these requirements
simultaneously, see Liberti and Rappaport (1999). The
technology employs antenna arrays and multi-dimensional
non-linear signal processing techniques to provide signif-
icant increases in capacity and quality of many wireless
communication systems. The technology is not restricted
to any particular modulation format or air-interface pro-
tocol, and is compatible with all currently deployed air-
interfaces, see Roy (1997) and Roy (1998).

An SDMA satellite equips with antennas that transmit
signals to numerous zones on the earth’s surface. The an-
tennas are highly directional, allowing the same frequency
to be reused in other surface zones where the frequency
separation is sufficiently large. To support a large number
of users, frequency selection should be carefully performed.
The frequency allocation strategy thus plays an important
role in the system performance. This class of problem is
well-known as Frequency Allocation Problem (FAP).

The satellite communication system that we study in this
paper aims at establishing bi-directional communications
to stationary user terminals located in a service area. We

propose Integer Linear Programming (ILP) formulations
and greedy algorithm for solving the problem and then
use beam moving algorithm to improve the solutions.

The paper is organised as follow: Section 2 provides the
description of the telecommunication system. In Section 3,
we describe ILP formulation, greedy algorithm, and beam
moving algorithm. Section 4 presents the experimental
results while conclusions are given in Section 5.

2. SYSTEM DESCRIPTION

In general, a satellite communications system consists of a
satellite, a gateway, and a number of users within a service
area. The satellite provides bi-directional communication
links towards users and acts as a repeater between them
and the gateway, the node that connects the satellite
system to the terrestrial network. In this study, we consider
only the satellite, the users, and communication links
between them.

To simulate the system, actual parameters are used in
conjunction with a number of randomly generated user’s
positions distributed over the service area which is defined
by a set of geographic coordinates. The satellite utilizes
SDMA technology to form beams and center them over the
users. The user’s perceived antenna gain, as shown in Fig.
1, is determined by the radiation pattern of the antenna
and the distance between the user and the satellite, see
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Fig. 1. An example of antenna diagram

Houssin et al. (2011). By centering the beam over the user,
maximum antenna gain is achieved.

The objective of the study is to serve as many users as
possible. A user is considered served if it is assigned with a
frequency and satisfies the link budget constraint (1) with
the user’s signal to interference plus noise ratio (SINR) no
less than the required signal to noise ratio.
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The terms K1 and K2 represent technical parameters
which are the terminal’s equivalent isotropic radiation
power (EiRP), the symbol rate (RS), the atmospheric
loss (LAtmo), the free space loss (LFSL), the antenna
equivalent temperature (TA + TRep), and the Boltzmann
constant (k). Users could have different values of EiRPs,
symbol rates and losses; nonetheless, we keep them as
constants in this study. Thus
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GSat(Beami→i) and GSat(Beamj→i) are user i’s antenna
gain (regarding to its beam and position) and the interferer
j ’s antenna gain at user i’s position.
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interference constraint for user i can be written in a linear
form as

∑

j∈Interf

δij ≤ αi (5)

where

δij = D ·GSat(Beamj→i), (6)

Fig. 2. A frequency allocation for 5 users

αi = GSat(Beami→i) · (1−AD −BD). (7)

The term αi can be perceived as an acceptable interfer-
ence threshold for the user i while δij as an interference
coefficient from users j towards the user i.

Fig. 2 shows an example of frequency allocation for 5 users
distributed in a service area with dedicated beams centered
on them. The X and Y axes correspond to longitude and
latitude in degree. The beam size is not to scale. Four users
can be allocated with the Color 1 or 2 as shown next to
the user. Color 0 means that the user can not be assigned
a frequency. The corresponding αi and δij are shown in
Table 1.

Table 1. Alpha and Delta of the users in the
given example

i αi × 1019 δij × 1019

1 9.10 0 1.27 115.86 12.29 0.04
2 8.08 1.14 0 1.07 0.63 86.58
3 9.31 118.30 1.21 0 56.73 0
4 9.64 12.93 0.73 58.47 0 0.67
5 8.05 0.03 86.29 0 0.57 0

If we assign a color to the fourth user, the cumulative inter-
ference will surpass the acceptable interference threshold
(negative constraints) as shown in the Table 2 with Color
set 2. These allocations are not allowed.

Table 2. Cumulative interference constraints of
the users given the assigned colors

i Color set 1 Constraints ∗ Color set 2 Constraints ∗

1 1 7.83 1 -4.46
2 1 6.94 1 6.31
3 2 9.31 2 9.31
4 0 - 1 -4.03
5 2 8.04 2 8.04

* (αi −

∑

j∈Interf
δij)

3. MODELING AND SOLVING FREQUENCY
ALLOCATION PROBLEM

3.1 FAP literature review

Several strategies for the optimization of satellite resource
management have been investigated. Apart from the traffic
demand, there are other system variations that have a
strong impact on the adopted resource management tech-
niques. These include changes in the link quality due to



weather conditions, mobility, jamming, and other factors,
see Giambene (2007). The resource management tech-
niques thus encompass one or combinations of frequency,
time channels, transmitted power, access methods, power
allocation, and call admission control.

Frequency allocation problem (FAP) is common in many
different types of wireless communication networks and
there have been a lot of research on this topic. Interested
readers are referred to the FAP web site http://fap.zib.de/
for a digest and a survey of frequency assignment liter-
ature. To which category a frequency assignment prob-
lem belongs is determined by its objective function. Five
common objective functions are Maximum Service FAP,
Minimum Blocking FAP, Minimum Order FAP, Minimum
Span FAP and Minimum Interference FAP. Our study is
based on the latter.

Most approaches dealing with MI-FAP consider binary
interference constraints, i.e. involving only two users. Be-
cause of the strong links between graph coloring and
frequency allocation with binary interference constraints,
most methods found in the literature are inspired by
coloring algorithms. The graph coloring algorithms are
well known to be NP-hard, thus, consequently the FAP.
Among the proposed methods, the constructive (greedy)
algorithms are widely used since they are simple and fast.
In this category, we find the generalisation of DSATUR
procedure, see Brélaz (1979). Other more sophisticated
algorithms, such as local search, metaheuristics, ILP, and
constraint programming approaches, are frequently en-
countered, see Aardal et al. (2003).

One of the difficulties in this study lies in the explicit
consideration of non-binary interference constraints. In
terms of graph coloring, deciding whether a given coloring
is feasible or not cannot be made any more by checking
pairwise user colors or assignments. Instead, for a given
user, the cumulative interferences of the users assigned
to the same color (frequency) has to be computed. The
coloring is feasible if this cumulative interference remains
under a threshold. In the literature, only a few approaches
explicitly take into account of such interferences, see
Dunkin et al. (1998), Mannino and Sassano (2003), Alouf
et al. (2005) and Palpant et al. (2008).

Alouf et al. (2005) presents an algorithm for resource
allocation in multi-spot satellite network to obtain a quasi-
optimal time/frequency plan for a set of terminals with
a known geometric configuration under interference con-
straints. The study is based on spatial distribution of
satellite spots and model interference based on geograph-
ical zones in that the users within the same zone exhibit
the same radio propagation condition. Our study is based
on dedicated spot-to-user concept and model interference
based on each user’s radio propagation property.

Note that there are other research branches regarding
SDMA technology. These concern channel access methods
over WLAN or cellular network systems.

3.2 Integer linear programming

Taking account of hypotheses and simplifications pre-
sented in Section 2, the FAP is similar to coloring problems
and thus formalised as the corresponding combinatorial

optimization problems. Each user has to be assigned a
color, representing a frequency.

Let n denotes the number of users, U = {1, . . . , n} a set
of users, and C the number of colors. Binary decision
variables xic are defined for i ∈ {1, . . . , n} and c ∈
{1, . . . , C} in that xic = 1 if color c is allocated to users
i and xic = 0 otherwise. The problem can be represented
by the following ILP:

max
n
∑

i=1

C
∑

c=1

xic, (8)

C
∑

c=1

xic ≤ 1 i = 1, . . . , n, (9)

n
∑

j=1

δijxjc ≤ αi +Mi(1− xic) i = 1, . . . , n, c = 1, . . . , C,(10)

xic ∈ {0, 1} i = 1, . . . , n c = 1, . . . , C. (11)

Objective (8) maximises the number of accepted users
while Constraints (9) restrict that at most one color has
to be selected for each user. Constraints (10) are the
cumulative interference constraints. The constant Mi has
to be large enough to withdraw these constraints if i is
not assigned a color c (xic = 0). More precisely, we set
Mi =

∑n

j=1 δij − αi.

3.3 Greedy algorithm

Solving the ILP formulations provides optimal solutions
only for small problems. For large-sized problems, a heuris-
tic approach is necessary. We propose greedy algorithms to
solve this problem. The principle of the greedy algorithm
is, at first, to consider the users sequentially according to a
given criterion named (user priority rule). Secondly, either
the selected user is assigned a color or rejected according
to a second criterion (frequency priority rule).

Let Q denotes a set of users that have not been assigned
a color yet. Initially we have Q = U . At each step of the
greedy algorithm, a user i is removed from Q and is either
rejected or assigned a color.

For the user priority rule, we may use the frequency
margin, where the margin M(i, c) of a user i ∈ Q for a
color c is given by M(i, c) = αi −

∑

j∈U\Q∪{i},Fj=c δij .

This margin corresponds to the positive or negative slack
of the cumulative interference constraint for user i if it is
assigned a color c.

As a preliminary result, we observed that the user priority
rule aimed at selecting first the most constrained users in
terms of available colors while it is well known that, with
this environment, the DSATUR algorithm for standard
graph coloring problem gives bad results. We thus consider
a kind of hybrid reverse DSATUR rule by alternately
selecting the user having the largest number of available
colors and the user having maximum interference with the
previously assigned user. In fact, we tested two following
user priority rules:

• Lexicographic: the user with the smallest number is
selected,



• Hybrid: the user having the largest number of avail-
able colors is selected. A color c is available for user
i ∈ Q if M(i, c) ≥ 0 and if for all users j ∈ U \ Q
that have already been assigned color c, M(j, c) ≥ 0.
In case of a tie, we select the user having the largest
total margin for all its available colors. Let i denotes
the selected user with this rule. For the next iteration,
we select the user having maximum interference with
i, i.e. the user j maximising δij +δji and we alternate
the two rules.

For the frequency selection, we tested two following fre-
quency priority rule:

• Lexicographic: the smallest available frequency is
selected,

• Most used: the most used available frequency is
selected. In case of a tie, we select the color c that
maximises the sum of margins M(j, c) for all users
j ∈ Q.

The proposed greedy algorithms run in O(n2C) time.

3.4 Beam moving algorithm

To further improve the results from the ILP and greedy
algorithm, we propose a subsequent non-linear local opti-
mization, called beam moving algorithm. This algorithm
exploits the benefit of SDMA technology by moving a
number of satellite beams from their center positions.

In fact the δij and αi in (6) and (7) can be written as
functions of user position (u, v) and beam position which
are

δij = D ·GSat(ui, vi, Beam uj , Beam vj), (12)

αi = GSat(ui, vi, Beam ui, Beam vi) · (1−AD −BD).(13)

The termsD and (1−AD−BD) are constant. We will keep
the user position fixed but alter the beam position; as a
result, both δij and αi changes. Nonetheless, the change is
non-linear according to the antenna gain shown previously
in Fig. 1.

Beam moving algorithm takes the output solutions from
either ILP or greedy algorithm as its input, identifies the
rejected users, and, for each rejected user, moves the most
k interfering beams and tries to reassign the user a color.

Let i denotes an unassigned user, the beam moving al-
gorithm selects a color c, i.e. sets xic = 1, and identi-
fies a set of interferers S containing all users j having
xjc = 1, ∀j ∈ S (unassigned user included). Let K ⊆ S
consists of a set of users whose beams will be moved. The
parameter k defines the number of strongest interferers to
the unassigned user i that are included in the set K. The
parameter UTVAR ∈ (0, 1), if set to 1, tells the algorithm
to replace the least interferer in the set K with i thus
including the user i in the move.

MAXINEG parameter provides a maximum negative mar-
gin from the required signal to noise ratio. It is based on
the fact that the closer the unassigned user’s signal to
interference plus noise ratio is to the required signal to
noise ratio, the more the possibility the algorithm has to
search for a solution. Before the algorithm tries to move
beams, the unassigned user is tested with this margin. If
failed, the remaining colors are tried or the user is rejected.

Fig. 3. An example on beam moving

The algorithm continuously moves the beams of users in

the set K from their center positions (u
(k)
0 , v

(k)
0 ) and in

each move evaluates if the new positions pass the link
budget constraints. The problem can be represented as:

min
∑

k∈K

‖ (u
(k)
0 − uk)

2 + (v
(k)
0 − vk)

2 ‖2, (14)

subject to
(

C
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(k)
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(k)
0 ) ≥

(

C

N

)

Required

∀k ∈ K.(15)

When a beam is moved from its center, the associated
user will obtain lower antenna gain and hence lower
SINR. Any move that violates the link budget constraints
(15) is rejected. Nonetheless, this move could benefit
the unassigned user by reducing its tentative interference
level. For a selected color c, the beam moving algorithm
minimizes the total move distance of the interferers’ beams
(14), maintains their interference constraints’ validity, and
reduces the tentative interference of the unassigned user i
to the level that the reassignment is valid.

If a decent move could not be found within a number of
iterations defined by MAXITER each of the remaining
colors is tried. If all colors have been tried and there is no
possible solution, the user i is rejected and the algorithm
moves to next unassigned users.

Fig. 3 shows a result of beam moving algorithm applied
to the example presented previously in Section 2. It can
be seen that the beam of the two interferers and the
unassigned users are moved. This yields a reassignment
of Color 1.

3.5 Closed-loop implementation

The ILP solver or the greedy algorithm would have more
possibility to find the optimal solution or provide a better
feasible solution if an initial feasible solution is given.
Consider an iteration as a combination of ILP - beam
moving or greedy - beam moving. We propose the closed-
loop implementation in that, in the next iteration of ILP
or greedy algorithm, the frequency allocation result from
beam moving algorithm is used as an initial solution and
the moved beam positions are used for recalculating the
αi and δij values.

The ILP starts with the initial solution, continues to
improve the solution, and by the given CPU time, outputs



the best found solution. We implemented two variations for
greedy algorithm. The first variation (Greedy 1) considers
both the frequency allocation result and the updated αi

and δij and works further on the unassigned users. The
second variation (Greedy 2) only considers the updated αi

and δij and restarts the frequency allocation from scratch.

4. COMPUTATIONAL EXPERIMENTS AND
RESULTS

The ILP formulation has been solved using IBM/ILOG
CPLEX 12.2, see Cpl (2010). The greedy algorithm has
been coded in C++. We tested the proposed algorithms
with C = 8; increasing stepwise the number of users by
20 from 20 to 200 users with 100 instances each. Real
system parameters are used in conjunction with randomly
generated and uniformly distributed user positions. The
results were obtained on a 2.7GHz Intel Core i5 machine
with 4GB RAM. The CPU times for the ILP resolutions
have been limited to 60s, 120s, and 180s after which the
best integer solution is obtained. The CPU times for the
greedy algorithm were negligible while the beam moving
was performed with the maximum of 40 iterations with no
limitation on the calculation time.

The beam moving algorithm is coded in Matlab, see
MATLAB (2008). The function fmincon with active-
set algorithm is used for computing the minimum move
distance according to the given non-linear constraints.

We first present a comparison of the greedy algorithms.
Table 3 reports the average number of accepted users over
1,000 instances. The results of the greedy algorithms are
very close. It was difficult to give better results than the
simple lexicographic rules. The algorithm that uses Hybrid
and Most used rules gives the best result. As of this, we
use it as the baseline for performance comparison with the
results from ILP and beam moving.

Table 3. Average number of accepted users
over 1,000 instances

Lexicographic (user + frequency) 93.83
Lexicographic (user) + Most used (frequency) 93.84
Hybrid (user) + Most used (frequency) 94.19

We tested 32 configurations of k-MAXINEG-UTVAR for
the beam moving algorithm over 20 instances of 200
users. Test results are provided in Fig. 4 and 5. It can
be seen that increasing any of k (from 3 to 10) or
MAXINEG (from 1 to 2) or enabling UTVAR (0 or 1)
yields higher number of reassigned users, at an expense of
longer calculation time. Both configuration 7-2-0 and 6-2-
1 provide good performances with acceptable calculation
times. We choose configuration 7-2-0 for improving the
results from the ILP and greedy algorithm through beam
moving.

Fig. 6 display, for each algorithm and number of users,
the average number of accepted users in the computed
frequency allocation plans. The number of optima pro-
vided by ILPs is given in Table 4. The greedy algorithm
performs as good as the other two ILPs at up to 120
users (ILP can solve to optima for all or almost all of
100 instances up to this point). For 140-200 users, the
performance gap becomes larger as the number of user

 0

 1

 2

 3

 4

 5

 6

 7

 3  4  5  6  7  8  9  10
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

N
u
m

b
e
r 

o
f 

re
a
s
s
ig

n
e
d
 u

s
e
rs

C
a
l.
 t

im
e
 /

 r
e
a
s
s
ig

n
e
d
 u

s
e
s
 (

s
)

k (number of interferers)

Beam Decentring with UTVAR = 0

Users (MAXINEG = 1)
Users (MAXINEG = 2)
Time (MAXINEG = 1)
Time (MAXINEG = 2)

Fig. 4. Average number of reassigned users and calculation
time for different beam moving configurations with
UTVAR=0

 0

 1

 2

 3

 4

 5

 6

 7

 3  4  5  6  7  8  9  10
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

N
u
m

b
e
r 

o
f 

re
a
s
s
ig

n
e
d
 u

s
e
rs

C
a
l.
 t

im
e
 /

 r
e
a
s
s
ig

n
e
d
 u

s
e
s
 (

s
)

k (number of interferers)

Beam Decentring with UTVAR = 1

Users (MAXINEG = 1)
Users (MAXINEG = 2)
Time (MAXINEG = 1)
Time (MAXINEG = 2)

Fig. 5. Average number of reassigned users and calculation
time for different beam moving configurations with
UTVAR=1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20  40  60  80  100  120  140  160  180  200

N
u
m

b
e
r 

o
f 

a
c
c
e
p
te

d
 u

s
e
rs

Number of users

Greedy
ILP (60s)

Greedy + Beam Decentring
ILP + Beam Decentring

Fig. 6. Average number of accepted users before and after
beam moving for Greedy algorithm and ILP 60s

increases. Performance degradation is found in ILP60s at
200 user instances. This signifies that, though not reaching
the optima, the ILP needs more time for a larger instance
to provide a better results.

Table 4. Number of optima provided by ILPs

n 20 40 60 80 100 120 140 160

ILP60s 100 100 100 100 100 97 54 0
ILP120s 100 100 100 100 100 98 61 0
ILP180s 100 100 100 100 100 100 67 0

Table 5 presents lower bounds and upper bounds for
ILP180s. Large gaps signify that the ILP formulation
yields poor relaxations.

Beam moving gives performance improvement for both
greedy algorithm and ILP. Significant improvements can
be seen in the greedy algorithm case. It could provide



comparable results at 200 users compared to ILP60s.
Nonetheless, the algorithm’s calculation time is high, see
Table 6.

The results for closed-loop simulations are shown in Table
7. Greedy 1 continuously improves the solutions over
the iterations and approaches saturation after Iteration
3. Degraded performance is found for Greedy 2 in ILP
Iteration 2 and 3. These are caused by restarting frequency
allocation from scratch. For both ILPs, small improvement
can be seen in the second iteration but no improvement
in the third. ILPs converge to the saturation faster than
Greedy algorithms.

5. CONCLUSION

In this paper we have developed an integer linear pro-
gramming formulation and greedy algorithms for solving
FAP which involves cumulative interference. The greedy
algorithm is simple, fast and efficient enough to provide
comparable results to the ILP at up to a certain number
of users. To improve the solutions, a non-linear continuous
algorithm a.k.a. beam moving algorithm is implemented.
The algorithm yields higher number of accepted users for
both ILP and greedy algorithm while significant improve-
ment is found in the latter case. Closed-loop implementa-
tion provides marginal solution improvement.

To further improve these results, an integrated approach
where frequency allocation and beam position are deter-
mined simultaneously and not sequentially, could be pro-
posed. This yields highly complex mixed non-linear integer
programming formulations. As a short term follow-up, the
closed loop implementation solves the integrated problem

Table 5. Average upper and lower bounds for
ILP180s.

n LB UB %(UB − LB)/UB
min. avg. max.

120 119.79 119.81 0.00 0.02 1.67
140 138.17 139.18 0.00 0.71 3.76
160 151.07 158.21 1.25 4.46 7.50
180 160.69 177.19 5.06 9.25 13.22
200 165.22 194.36 9.33 14.90 23.59

Table 6. Average calculation time (s) per-
formed by beam moving algorithm

n 80 100 120 140 160 180 200

Greedy 9.2 22.9 67.6 241.7 570.7 1017.3 1542.5
ILP60s - - 13.6 29.7 125.3 365.2 1032.0
ILP180s - - - 28.4 114.9 272.9 622.0

Table 7. Average percentage of accepted users
over 100 instances of 200 users

Iteration 1 Iteration 2 Iteration 3
ILP BM ∗ ILP BM ILP BM

Greedy 1 69.15 75.29 76.05 76.05 76.20 76.20
Greedy 2 69.15 75.29 70.27 71.71 70.94 72.37
ILP 60s 76.53 81.05 81.58 81.84 81.84 -
ILP 180s 82.66 85.49 85.53 85.53 85.53 -
# ∗∗ Greedy 1 - 100 73 24 24 1
# ∗∗ Greedy 2 - 100 7 93 19 93
# ∗∗ 60s - 100 14 13 0 -
# ∗∗ 180s - 100 4 3 0 -

* (Beam moving), ** (Number of improved solutions)

as a hill-climbing method. More improvements could be
reached by allowing temporary decrease of the objective
functions via metaheuristic framework such as tabu search.
Better upper bound techniques could also be helpful stop
the search earlier.
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