
A New Procedure for the Cyclic Job Shop

Problem

Martin Fink ∗,∗∗ Touria Ben Rahhou ∗∗ Laurent Houssin ∗∗

∗ TUM-School of Management, Technische Universität München,
80333 Munich, Germany

∗∗ CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse,
France Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ;

F-31077 Toulouse, France

(e-mail: {mfink , tbenrahh , houssin}@laas.fr)

Abstract: The topic of this paper is the cyclic job shop problem which aims at minimizing
the cycle time under precedence and resource constraints. Based on graph theory, we propose
a new branch and bound enumeration procedure to solve this problem. We compare the new
procedure with other exact methods and present numerical test results.

Keywords: Cyclic scheduling, Discrete optimization, Branch and bound algorithm, Job shop
problem.

1. INTRODUCTION

In classical scheduling, a set of tasks is executed once
while the determined schedule optimizes objective func-
tions such as the makespan or earliness-tardiness. In con-
trast, cyclic scheduling means performing a set of generic
tasks infinitely often while minimizing the time between
two occurrences of the same task. Cyclic scheduling has
multiple applications, such as robotics (see Kats and Lev-
ner (1997)), manufacturing systems (see Pinedo (2005) and
Hillion and Proth (1989)) or multiprocessor computing
(see Hanen and Munier (1995b)). It has been studied from
multiple perspectives, since there exist several possible
representations of the problem such as graph theory, in-
teger linear programming, Petri nets or (max,+) algebra.
An overview over cyclic scheduling problems and the differ-
ent approaches can be found in Hanen and Munier (1995a).

We consider the cyclic job shop problem (CJSP), which
is proven to be NP-hard by Hanen (1994) and employ
graph theory to represent the problem (see Brucker and
Kampmeyer (2008) and Hanen and Munier (1995a)). The
goal of the CJSP is to find a periodic schedule with
minimal asymptotic cycle time that satisfies all uniform
and disjunctive constraints. However, only two exact so-
lution procedures exist to solve this problem, to the best
of our knowledge. First, a mixed integer linear program
(MILP) formulation of the CJSP described in Brucker and
Kampmeyer (2008) and Hanen (1994) which can be solved
with linear programming software. Second, a branch and
bound procedure based on conservative height functions
and amplitudes which is described in Hanen (1994).

In this paper, we propose a new branch and bound enumer-
ation procedure that derives bounds on shift events using
the consistency of a graph and evaluates different solutions
using the (max,+) algebra version of Howard’s algorithm
(see Cochet-Terrasson et al. (1998)). Subsequently, we

compare our approach to two existing solution procedures
to evaluate its performance.

The paper is organized as follows. In section 2, we first
present the underlying general basic cyclic scheduling
problem (GBCSP) and briefly highlight algorithms to
solve it. Subsequently, we outline the CJSP and present
existing solution procedures which we will compare to our
procedure. In section 3, we introduce a new branch and
bound procedure for the CJSP, which is compared with the
two existing solution procedures for the CJSP in section 4.
Computational results are given and discussed. In section
5, we draw conclusions and provide an outlook on future
research in the field of CJSP and solution procedures.

2. PROBLEM DEFINITION AND NOTATION

In this section, we first present the general basic cyclic
scheduling problem (GBCSP) and several algorithms to
solve it. Subsequently, we focus on the cyclic job shop prob-
lem (CJSP), recall the problem notation and definition,
and summarize characteristics of the two existing solution
procedures that are to be compared with our procedure.

2.1 The General Basic Cyclic Scheduling Problem

The GBCSP is characterized by a set of generic tasks
T = {1, ..., n} that is repeated infinitely often. Each task
i has a corresponding processing time pi and < i, k >
denotes its kth occurrence. In a GBCSP, tasks are linked
by uniform precedence constraints that define which of the
two tasks precedes the other.

Solving a GBCSP means assigning a starting time t(i, k)
to each occurrence < i, k >. Given a periodic schedule
with cycle time α we obtain

∀i ∈ T , ∀k ∈ N : t(i, k) = t(i, 0) + αk. (1)



Knowing that the occurrence < i, k + 1 > cannot begin
before the end of the occurrence < i, k >, a non-reentrance
constraint can be written as

∀i ∈ T , ∀k ∈ N : t(i, k + 1) ≥ t(i, k) + pi. (2)

A directed graph G = (T,E) with a set of nodes T and a
set of arcs E can be associated with a GBCSP such that
a node (resp. an arc) of G corresponds to a task (resp.
precedence constraints) in the GBCSP. Each arc (i, j) of
G is equipped with two values: the delay or length Lij ∈ Q
and the height (also called event shift) Hij ∈ Z. Uniform
precedence constraints can be expressed as follows:

∀(i, j) ∈ E, ∀k ∈ N : t(i, k) + Lij ≤ t(j, k +Hij). (3)

2.2 Existing solution procedures for the GBCSP

Once the graphG is obtained, one can check if the GBCSP
is consistent with the following theorem (Hanen (1994),
Carlier and Chrétienne (1988), Cohen et al. (1985)).

Theorem 1. The GBCSP is feasible if and only if any
circuit in the associated graph G has a positive height.

Moreover, it can be shown that the minimum cycle time of
the system is given by the critical circuit of the graph. Sev-
eral algorithms exist to compute the critical circuit. In the
following, we briefly present three different ways to solve
this problem. We can first mention the algorithm from
Gondran and Minoux (1995) which runs in O(n3log(n)).
Second, Karp’s algorithm Karp (1978); Dasdan and Gupta
(1998) can be used to find the critical circuit in O(n3).
However, Karp’s algorithm only works when for all existing
Hij , we have Hij = 1. When Hij ≥ 0, a remodeling is
necessary (see Baccelli et al. (1992)). In cyclic scheduling,
also negative heights can be found frequently. (cf. the basic
example of Hanen (1994)). A first attempt for considering
negative heights in Karp’s algorithm was made in Houssin
(2011).

Howard’s algorithm (Howard (1960)) was originally de-
signed for Markov decision processes. In Cochet-Terrasson
et al. (1998), it was adapted to the framework of (max,+)
algebra and can be used to compute the critical circuit of
a double weighted directed graph. Although the complex-
ity remains unproved it shows excellent performance and
almost linear running time.

2.3 The Cyclic Job Shop Problem

The major difference between the CJSP and the GBCSP is
that the GBCSP processes each task on its own dedicated
machine whereas in the CJSP, the number of machines
is smaller than the number of tasks. As a consequence,
machines play an important role and need to be added
to the CJSP. The CJSP can therefore be interpreted as a
GBCSP equipped with resource constraints. We consider
a set of machines M = {1, ...,m} with m < n. Task i is
processed on machine M(i) ∈ M for its whole processing
time pi. We refer to an event when two occurrences
of different tasks using the same machine overlap as a
resource conflict, which can be resolved by adding resource
or disjunctive constraints.

We denote by Ts the set of tasks to be processed on
machine s ∈ M. We can express disjunctive resource
constraints as following:

∀s ∈M, ∀i, j ∈ Ts∀k, l ∈ N :

t(i, k) ≤ t(j, l)⇒ (t(i, k)+pi ≤ t(j, l)) or (i = j and k = l).
(4)

As in the GBCSP, a directed graph G = (T,E) can
be associated with a CJSP such that a node (resp. an
arc) of G corresponds to a task (resp. constraints) in the
CJSP. Each uniform arc (i, j) of G again has two values
Lij = pi and Hij . Each disjunctive arc also features two
values: the delay Lij = pi and the event shift Kij ∈ Z.
For each machine s, if i ∈ Ts and j ∈ Ts then: Kij +
Kji = 1 (see Hanen (1994) for further details). Two
dummy nodes are introduced in the model. They represent
the start of an occurrence k and the end of this occurrence.
The arc between these two nodes is valuated with no
processing time and with a non negative height. This
height represents the maximum work in progress of the
system. Further considerations of the value of the height
are available in Brucker and Kampmeyer (2008).

Example The example consists of four generic tasks
grouped into two jobs and two machines. Table 1 indicates
details of this CJSP and Figure 1 shows the associated
graph. The nodes 1 (start) and 6 (end) are dummy nodes.

Job 1 2

Task 2 3 4 5

Processing time 5 4 2 3

Machine 1 2 1 2

Table 1. Data for the CJSP example

1

2 3

4 5

6

(0,2)

(0,0)

(0,0)

(5,0)

(4,0)

(2,0)
(3,0)

(5, K24)
(2,K42)

(4, K35)
(3,K53)

Fig. 1. Graph example

2.4 Existing Solution Procedures for the CJSP

The CJSP as described in chapter 2.3 can be solved by
two existing procedures:

• The mixed integer linear program (MILP) as de-
scribed in Hanen (1994) or Brucker and Kampmeyer
(2008) .
• The branch and bound enumeration procedure from
Hanen (1994).

In the following, we briefly sum up the major characteris-
tics of both approaches.



Mixed Integer Linear Program The CJSP can be trans-
formed to a MILP. The remodeling is necessary because
the resource constraint features a non-linear component
with α×Kij . Thus, the throughput τ = α−1 is introduced
together with a new variable ui = ti × α−1, which leads
to a linear formulation that can be solved with a linear
programming solver.

max τ (2.5)

s.t.

uj − ui ≥ τ × pi −Hij (2.6)

uj − ui ≥ τ × pi −Kij (2.7)

Kij +Kji = 1 (2.8)

Branch and Bound Procedure from Hanen In the con-
sidered paper from Hanen (1994), the author presents a
branch and bound procedure that - unlike the general
MILP formulation - is tailored to the graph representation
of the CJSP. It is based on two concepts: conservative
height functions and amplitudes.

The author proves that a feasible conservative height func-
tion is associated with a set of feasible schedules, out of
which the best solution can be determined by solving an
instance of the GBCSP with the algorithm from Gondran
and Minoux (1995) in O(n3log(n)). Amplitudes are em-
ployed to derive upper bounds on the height function.

An adjustment procedure is used to evaluate nodes. It
iteratively increases amplitude lower bounds and decreases
height function upper bounds until either no changes are
made or a circuit with positive amplitude is detected and
the solution hence is unfeasible. Since Hanen’s procedure
requires an upper bound on the cycle time to start with,
a heuristic is developed for this purpose in Hanen (1994).

3. A NEW BRANCH AND BOUND PROCEDURE
FOR THE CJSP

We propose a branch and bound procedure for the CJSP
that relies on two major pillars: the consistency of a graph
to derive bounds on the shift events and Howard’s algo-
rithm to calculate the cycle time and to evaluate a node.
The following paragraph first establishes the underlying
theoretic concepts before we describe the structure of the
algorithm in the second subsection and demonstrate the
algorithm through the use of the example introduced in
chapter 2.3 in the third subsection.

3.1 Theoretic Concepts

A graph G is said to be consistent if and only if every
circuit C in G has a height equal or bigger than 1. The
height of a circuit is defined as the sum of the heights
of all arcs on the circuit. This implies that we sum up
heights in case of uniform arcs and event shifts in case of
disjunctive arcs. A new disjunctive arc that is appended
to the graph creates at least one circuit and may not
violate the consistency of the graph if the solution is to
remain feasible. Therefore, each disjunctive arc (i, j) has
a clear lower bound on its shift event Kij which may not
be undercut to guarantee the consistency of the graph.

We can easily show this concept in our example. Assuming
that the tasks 2 and 4 are processed on the same machine,
two disjunctive arcs - one from 2 to 4 and the other from
4 to 2 - are required to determine a precedence between
the two nodes. Let us focus on the disjunctive arc from
2 to 4. This arc induces a new cycle C = (2, 4, 5, 6, 1, 2).
Concerning the height of the cycle, we know that H(C) =
K24 + 0 + 0 + 2 + 0 ≥ 1 needs to hold for the solution to
be feasible. This can be rewritten to K24 ≥ −1. It leads to
the following theorem.

Theorem 2. Consider a CJSP where tasks i and j are
performed onto the same machine. We can derive a lower
bound denoted K−

ij for the event shift Kij such that

K−

ij = 1−min{H(µ)|µ path from j to i in G}. (3.1)

Proof. A feasible solution requires a height at least
equal to 1 for each circuit in the graph. Therefore,
H(C) ≥ 1 for all circuits C in G. When a shift
event for arc (i, j) is on the circuit, we obtain Kij +
{H(µ)|µ path from j to i in G} ≥ 1, which can be rear-
ranged toKij ≥ 1−{H(µ)|µ path from j to i in G}. Since
this inequality has to hold for all paths from j to i in G,
we must consider the minimum path.

Corollary 3. Since we know that Kij + Kji = 1, we can
derive an interval for each variable Kij as follows:

K−

ij ≤ Kij ≤ 1−K−

ji (3.2)

To allow for an efficient way to compute bounds on
all Kij , we construct a height matrix B of size n × n.
The elements of the matrix Bij are initialized with the
heights Hij of all uniform arcs and the shift events Kij

of all already determined disjunctive arcs. Subsequently,
we employ the algorithm from Floyd and Warshall as for
example described in Cormen et al. (2009) which runs in
O(n3) to find all pairs’ shortest paths in B. Using the
height matrix, the lower bound on a shift event Kij equals

K−

ij = 1−Bji.

Since updating the height matrix involves the algorithm of
Floyd and Warshall and hence might slow the procedure
down, we suggest two versions of the algorithm. Version
one updates the bounds on the shift events in every node
on the search tree and hence does not examine feasibility
of the solution. Version two computes bounds only once
when the algorithm is initialized but checks the feasibility
of each solution with Howard’s algorithm when evaluating
the node.

Furthermore, we can derive bounds on the cycle time from
the general problem (see section 2.1).

Theorem 4. Consider a CJSP, we have the following lower
bound denoted α− for the cycle time.

α− = max{λu, λs}. (3.3)

in which λu is the solution of the GBCSP induced by the
uniform constraints and λs is defined as follows

λs = max
m∈M

{
∑

pi|M(i) = m}.



Proof. It is obvious to remark that the relaxed version
of the CJSP (i.e. without resource constraints) leads to
the GBCSP and it is not possible to obtain a lower
cycle time than λu. The second bound is the sum of all
processing times of tasks belonging to a same machine and
we obviously have

tj(k + 1) ≥
∑

M(i)=M(j)

pi + tj(k).

Since all tasks have the same cycle time, even if they do
not belong to the same machine, we deduce that the cycle
time of the CJSP cannot be smaller than the maximal sum
of processing times per machine.

3.2 Structure of the Branch and Bound Procedure

We now outline our branch and bound procedure version
one and subsequently show the differences of version two.
The algorithm can be divided into two parts, namely
the head and the body. Whereas the head initializes the
procedure, the body houses the main loop.

The head consists of the method initialize(), which de-
termines the upper bound on the cycle time by summing
up the processing time of all tasks. The first node in the
search tree is created and Howard’s algorithm is employed
to determine its cycle time and check the feasibility of
the initial solution. This means that the graph consisting
only of uniform arcs is tested on its consistency and the
cycle time for the GBCSP is computed. The lower bound
on the cycle time is derived from theorem 4. If the initial
node is feasible - and the graph is consistent - we push
this node on the node stack and determine the shift event
lower bounds in two steps. First, we set all Bij to Hij if an
arc (i, j) exists and assign ∞ to all other elements in B.
Second, we employ the algorithm from Floyd and Warshall
to find the shortest paths in B.

In the body, the algorithm repeats a set of operations until
the stack is empty or until the lower bound equals the
upper bound on the cycle time. The method checkSum()
determines both shift events Kij = K−

ij and Kji = K−

ji

as in Hanen’s procedure if the sum of their lower bounds
equals one. If all shift events Kij have been determined, a
complete selection prevails. In this case, the upper bound
on the cycle time is updated with the current α if it is
lower than α+. If the cycle time is higher than the upper
bound on the cycle time, we can discard this node. In case
of no complete selection, a new Kij is selected according to
the branchingRule(). This method selects an undetermined
Kij for which the sum of the lower bounds on Kij and Kji

is maximal, which induces the minimal number of child
nodes and hence leads to the smallest possible search tree.
We then call the method branch() which creates a new
child node for each integer in the interval [K−

ij , 1−K−

ji] for
the selected Kij , assigns an integer in this interval to the
respective child node, and puts the nodes into the node
container N . The subsequent subroutine evaluateNodes()
updates the lower bounds on the shift events by inserting
the respective shift event Kij into the height matrix B
at Bij and by calling the Floyd and Warshall algorithm
to update the matrix once again. The second step of the
method evaluateNodes() is to employ Howard’s algorithm
to update the cycle time. Finally, we call the procedure

nodeSelection() which pushes all child nodes on the stack
in an order defined by the node selection rule. The node
selection rule dictates, that the node with the lowest cycle
time is selected first. As a tie breaker in case of identical
cycle times, the minimum index of a solution can be used.
The outlined procedure can also be seen in figure 2.

Input: G = (T,E), assignment of tasks to machines
Output: α
//Head
S0 ← Initialize()
//Body

while nodestack 6= EMPTY and α− 6= α+ do
S ← upper most node from nodestack
checkSum(S)
if S(α) < α+ then

if S is a complete selection then

α+ ← S(α)
else

S(selected Kij)← branchingRule(S)
N ← branch(S)
evaluateNodes(N)
nodestack ←nodeSelection(N)

return α+

Fig. 2. The new procedure

Version two of the algorithm implements two changes in
the method evaluateNodes(). First, the height matrix B
is not updated for each child node but only initialized as
in version one. This leads to the second adjustment: the
feasibility of each child node needs to be checked, which is
achieved with the procedure of Howard.

3.3 Example

In this subsection, we provide a concrete picture of our
procedure version one by solving the example from chapter
2.3.

The method initialize() computes the sum of all processing
times to 14 and saves this value as α+. It then creates
the first node S0 which represents the uniform graph,
calculates the solution of the GBCSP to 5 and also
confirms that the uniform graph is consistent. It then
determines the sum of processing times of tasks performed
on machines 1 and 2 to 5+2 and 4+3, respectively. Given
the sum of processing times per machine and the solution
of the GBCSP, the lower bound on the cycle time can be
computed to α− = max{5; 7} = 7. Before the initial node
is pushed on the node stack, the lower bounds on the shift
events K24, K42, K35 and K53 and calculated. For this, we
employ the height matrix B which can be seen in table 2.

Table 2. The initial height matrix B

1 0 0 0 0 0

2 1 0 2 2 0

2 2 1 2 2 0

2 2 2 1 0 0

2 2 2 2 1 0

2 2 2 2 2 1



For K24 we know that K−

24 = 1 − B42 = 1 − 2 = −1.
Similarly, we obtain K−

42 = −1, K−

35 = −1, and K−

53 = 1.

In the body, we select S0 and delete it from the node
stack. The method checkSum() does not affect the solution
since neither K−

24 +K−

42 = −2 nor K−

35 +K−

53 = 0 equals
1. The cycle time of S0 is 7 and below α+ with 14.
Hence, we further fathom this node. Since no complete
selection prevails, a shift event is determined. The method
branchingRule() selects the shift event K35 over K24

because the interval for the shift event K24 is [−1; 0]
compared to [−1; 2]. For each integer in this interval, the
method branch() creates one child node which inherits
the solution of its parent plus the new pair of disjunctive
arcs. In our example, we create two child nodes S1 and
S2 with the values K35 = −1 and K35 = 0, respectively
and the corresponding values for K53 = 2 and K53 = 1,
respectively. For both nodes, the method evaluateNodes()
calculates the cycle time with Howard to 7 and 9 and
updates the lower bounds on K24 and K42. For S2, the
lower bound on K24 increases from −1 to 0 since B42 now
equals 1. The first iteration of the loop finally calls the
procedure nodeSelection() to select the child node with
the lowest cycle time - in our example S1.

The second iteration continues with S1. Again, check-
Sum() does not alter the solution and since 7 ≤ 14 and no
complete selection prevails, we select the last remaining
shift event K24 to branch on. Afterwards, the method
branch() creates four child nodes S3, S4, S5, and S6 with
the values −1, 0, 1, and 1 for K24 and evaluateNodes()
computes their cycle times 11, 7, 7, and 10. nodeSelection()
selects S4. In the third iteration, we obtain a complete
selection with a cycle time below α+ and hence update α+

to 7. Afterwards, the procedure stops because α− = α+

and the optimal cycle time 7 is found. Figure 3 shows the
search tree for the branch and bound procedure.

S0 α = 7

K35

S1α = 7 S2 α = 9

K24

S3

α = 11

S4

α = 7

S5

α = 7

S6

α = 10

Fig. 3. Example search tree

4. COMPARISON OF SOLUTION PROCEDURES

To evaluate performance, we have tested the two versions
of our procedure using randomly generated cyclic job shop
problems and compare the results with the performance of
the procedure from Hanen and the MILP from Hanen and
Brucker in the following subsections.

4.1 Comparison of Different Branch and Bound Concepts

We have compared four implementations of branch and
bound procedures to solve the CJSP: our procedure ver-

sion one, our procedure version two, Hanen’s procedure
with the algorithm from Howard and the MILP formula-
tion which is solved with CPLEX. We briefly contrast the
four former approaches in table 3.

Table 3. Overview over implementations to
solve the CJSP without CPLEX

Procedure Our’s Hanen’s

Version Version 1 Version 2

Algorithm

for

GBCSP

Howard Howard Howard

Concept

of

bounds

Consistent

graph,

updated

for each

node

Consistent

graph,

checked

with

Howard

Amplitude

Discarding

of nodes

α ≥ α
+

α ≥ α
+,

node unfea-

sible

Positive circuit

amplitude

End of

proce-

dure

Node stack

empty,

α
− = α

+

Node stack

empty,

α
− = α

+

Node stack empty

Node se-

lection

Lowest α Lowest α Based on circuit

amplitude

Branching

rule

Smallest

interval

Smallest

interval

Based on circuit

amplitude

In addition to the observations in table 3, our algorithm
performs a depth-first search and computes the cycle time
for every node. Hanen’s approach also pursues a depth-first
approach but calculates the critical circuit of the GBCSP
only when a complete selection is reached.

4.2 Technical Specifications

The testing of the four implementations has been con-
ducted on a computer with a AMD Athlon 64 x2 3800+
processor, 1.7 GB RAM and a Linux Fedora 9 operating
system. The CJSP test instances were randomly gener-
ated. They are characterized by the number of jobs, num-
ber of tasks and number of machines and follow the layout
of the example: each job is connected to one dummy start
node and one dummy end node. Moreover, the two dummy
nodes are connected by a uniform arc of processing time
0 and height 2. We tested six different types of CJSP
instances, each consisting of ten problems, which can be
seen in table 4.

Table 4. Overview over problem types

Type 1 2 3 4 5 6

Number of jobs 2 2 5 5 10 8

Number of tasks 10 20 10 20 20 30

Number of machines 2 5 2 5 2 4

4.3 Numerical Test Results

In this subsection we present results of the numerical test
of all four implementations. For each of the six problem
types, ten problem instances have been solved. We have
limited the running time of each implementation to six
seconds and then noted the number of problems that could
be solved within this time interval. The results are shown
in table 5.



Table 5. Numerical test results

1 2 3 4 5 6

Our procedure version 1 10 10 10 10 9 9

Our procedure version 2 10 10 10 10 3 5

MILP 10 10 9 8 0 0

Hanen’s procedure 10 10 9 5 0 0

4.4 Interpretation of numerical results

The results can be interpreted in two ways. First, all
implementations are compared with each other, and we
can distinct between small problems (type 1 and 2),
medium problems (type 3 and 4) and larger problems (type
5 and 6). Second, we discuss the different performance of
the two versions of our procedure.

For small problems (type 1 and 2), the four implemen-
tations perform similarly well and solve all 10 problem
instances within six seconds. Hence, no significant differ-
ences can be observed. The picture changes for medium
problems, where our procedure still solves all problem
instances, the MILP and CPLEX perform slightly worse
and Hanen’s procedure even only solves half the number
of all problems of type 4. This trend continues in case of
larger problems, where our procedure still shows superior
performance. However, both the MILP and Hanen’s pro-
cedure underperform significantly as they cannot solve a
single problem in under six seconds.

The two versions of our procedure behave equally well for
small and medium problems. In case of larger problems,
the two versions differ considerably. Obviously, updating
the height matrix is superior to letting Howard’s algorithm
examine the feasibility of a node. Furthermore, less nodes
need to be examined in case of version one, as the shift
event lower bounds can only increase during the course of
the procedure and hence the interval and the number of
child nodes decreases.

5. CONCLUSION

In this paper, we have proposed a new procedure to solve
the CJSP. Its two major characteristics are the node
evaluation with Howard’s algorithm and bounds based on
the consistency of a generic graph. We have implemented
two versions of the new procedure that pursue differ-
ent bounding approaches and have compared them with
two other implementations of solution procedures for the
CJSP: First, the branch and bound algorithm from Hanen
with Howard’s algorithm and second an MILP formulation
solved with CPLEX. The numerical tests demonstrated
that our procedure performs as good as CPLEX and as
Hanen’s procedure for small problem instances. For bigger
instances, it clearly outperforms Hanen’s procedure and
partly also CPLEX.

Although the results are promising, the new procedure still
has potential for improvement and should be subject to
future research to achieve even better results. One area
is the node evaluation function of the new procedure.
Currently, it uses Howard’s algorithm to determine the
lower bound of a subproblem but neglects disjunctive arcs
that are still to be appended to the graph. In addition
to improving the procedure itself, further computational
experiments could be conducted. Our procedure stands to

be tested for larger problem instances, which might trigger
a large set of disjunctive arcs. To be able to cope with
many disjunctive arcs, either a depth-first approach or a
preselection of disjunctive arcs via a heuristic might be a
solution. Also, a benchmarking of the new procedure with
the original version of Hanen’s procedure incorporating the
algorithm from Gondran and Minoux should be conducted
to obtain additional performance comparisons.

REFERENCES

Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.P.
(1992). Synchronization and Linearity. Wiley.

Brucker, P. and Kampmeyer, T. (2008). A general model
for cyclic machine scheduling problems. Discrete Applied
Mathematics, 156(13), 2561 – 2572.

Carlier, J. and Chrétienne, P. (1988). Problèmes
d’Ordonnancement: modélisation, complexité, algo-
rithmes. Masson, Paris.

Cochet-Terrasson, J., Cohen, G., Gaubert, S., Gettrick,
M.M., and Quadrat, J.P. (1998). Numerical computa-
tion of spectral elements in max-plus algebra. In Pro-
ceedings of the IFAC Conference on System Structure
and Control. Nantes.

Cohen, G., Dubois, D., Quadrat, J.P., and Viot, M.
(1985). A linear system theoretic view of discrete event
processes and its use for performance evaluation in
manufacturing. IEEE Trans. on Automatic Control,
AC–30, 210–220.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C.
(2009). Introduction to Algorithms. The MIT Press.

Dasdan, A. and Gupta, R.K. (1998). Faster maxi-
mum and minimum mean cycle algorithms for system-
performance analysis. IEEE Trans. on CAD of Inte-
grated Circuits and Systems, 17(10).

Gondran, M. and Minoux, M. (1995). Graphes et algo-
rithmes, 3e édition revue et augmentée. Eyrolles.

Hanen, C. (1994). Study of a np-hard cyclic scheduling
problem: The recurrent job-shop. European Journal of
Operational Research, 72(1), 82 – 101.

Hanen, C. and Munier, A. (1995a). Scheduling Theory and
Its Applications, chapter Cyclic Scheduling on Parallel
Processors: An Overview. Wiley.

Hanen, C. and Munier, A. (1995b). A study of the cyclic
scheduling problem on parallel processors. Discrete
Applied Mathematics, 57, 167–192.

Hillion, H.P. and Proth, J.M. (1989). Performance eval-
uation of job-shop systems using timed event graphs.
IEEE Transaction on Automatic Control, 34(1), 3–9.

Houssin, L. (2011). Cyclic jobshop problem and
(max,plus) algebra. In Proceedings of IFAC WC. Milan,
Italy.

Howard, R. (1960). Dynamic programming and Markov
processes. Technology Press of Massachusetts Institute
of Technology.

Karp, R.M. (1978). A characterization of the minimum
cycle mean in a digraph. Discrete Math, 23.

Kats, V. and Levner, E. (1997). A strongly polynomial
algorithm for no-wait cyclic robotic flowshop scheduling.
Operations Research Letters, 21, 171–179.

Pinedo, M. (2005). Planning and Scheduling in Manufac-
turing and Services. Springer.


