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Abstract— This paper considers Cyclic Jobshop Problem,
which aim to find the tasks processing order for each machine
that maximizes the throughput or equivalently minimizes the
cycle time. We develop a branch and bound enumeration
procedure to solve the Cyclic Jobshop Problem, based on heap
of pieces theory and max,+ algebra. We propose an extension of
this model to consider more structures of K−cyclic schedules.
It provides more realistic values for the evaluation of the cycle
time and improve the efficiency of the approach.

I. INTRODUCTION

In classical scheduling, a set of tasks is executed once
while the determined schedule optimizes objective functions
such as the makespan or earliness-tardiness. In contrast,
cyclic scheduling means performing a set of generic tasks
infinitely often while minimizing the time between two
occurrences of the same task. Cyclic scheduling has several
applications, e.g. in robotic industry (see [1]), in manufac-
turing systems (see [2] and [3]) or multiprocessor computing
(see [4]). It has been studied from multiple perspectives,
since several representations of the problem exists such as
graph theory, mixed integer linear programming, Petri nets
or (max,+) algebra. An overview about cyclic scheduling
problems and the different approaches can be found in [5].

For our concern we tackle the Cyclic Jobshop Scheduling
Problem (CJSP). This problem is proven to be NP-hard by
[6]. We employ graph theory to represent the problem (see
[7] and [5]). The goal of the CJSP is to find a periodic
schedule with minimal asymptotic cycle time that satisfies
all uniform and disjunctive constraints. This problem can
be derived in a mixed integer linear program (MILP) for-
mulation decribed in [7] and [6]. However, a less known
tool is the heaps of pieces approach. The seminal paper
considering this modelling for cyclic scheduling is [8] in
which the authors introduce a method to represent safe Petri
nets as particular automata allowing the computation of the
height of heaps of pieces. This approach enables to compute
efficiently the throughput of a cyclic schedule by means
of (max,+) algebra. In this paper, we use the heaps of
pieces approach for solving cyclic scheduling problems with
resource constraints.

The paper is organized as follows. In section 2, we
first introduce the CJSP and the parameters of the problem
(work-in-process and cyclicity). The MILP formulation is
also presented. Section 3 is devoted to the heap of pieces
theory. We recall (max,+) algeabric tools in this section.
We propose an extension of the heap of pieces model and
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we design a branch-and-bound procedure in section 4. A
simple numeric example is developed throughout the paper.

II. CYCLIC SCHEDULING PROBLEMS

A. The Basic Cyclic Scheduling Problem

We first remind the Basic Cyclic Scheduling Problem
(BCSP). This problem involves generic tasks and precedence
constraints between tasks but no resource constraints are
considered. A set T of n generic tasks is processed in
parallel by an unbounded number of machines and there is
a set of q precedence constraints. We denote this set A =
{a1, . . . ,aq} where each element corresponds to a constraint
represented by a triple (i, j,h). More precisely, the uniform
constraint (i, j,h) means that

si(k)+ pi ≤ s j(k+h),

where si denotes the beginning of the operation i, pi is the
processing time of i. The variable h is usually called the
height of the constraint. In this framework, the asymptotic
cycle time α(S) is usually minimized (with S a feasible
schedule). Equivalently we can aim at maximizing the
throughput r(S) = 1

α(S) .
A directed graph G = (T,E) with a vertex set T and a set

of arcs E can be associated with a BCSP such that a node
(resp. an arc) of G corresponds to a task (resp. precedence
constraints) in the BCSP. Each arc (i, j) of G is equipped
with two values: the processing time pi of the task i and the
height (also called event shift) Hi j ∈ Z.

Since this problem doesn’t involve any resource problem,
it can be easily solved with linear programming or (max,+)
algebra [5]. Moreover, it can be shown that the minimum
cycle time of the system is given by the critical circuit of the
graph. Several algorithms exist to compute the critical circuit.
In the following, we briefly present three different ways to
solve this problem. We can first mention the algorithm from
[9] which runs in O(n3log(n)). Second, Karp’s algorithm in
[10], [11] can be used to find the critical circuit in O(n3).
However, Karp’s algorithm only works when for all existing
h in (i, j,h), we have h = 1. When h > 1, a remodeling
is necessary (see [12]). In cyclic scheduling, also negative
heights can occur frequently. (cf. the basic example of [6]).
A first attempt for considering negative heights in Karp’s
algorithm was made in [13]. Howard’s algorithm ([14]),
originally designed for Markov decision processes, is adapted
to the framework of (max,+) algebra in [15] and can be used
to compute the critical circuit of a double weighted directed
graph . Although the complexity remains unproved it shows
excellent performance and almost linear running time.



We can distinguish two categories of cyclic schedules:
1-periodic schedules and K-periodic schedules. The first
category is characterized by a period α such that :

si(k+1) = α + si(k), ∀i ∈T , ∀k ≥ 0.

Whereas K-periodic schedules are also defined by period
which corresponds to a fixed interval time between any K
consecutive occurences of i :

si(k+K) = αK + si(k), ∀i ∈T , ∀k ≥ 0.

In this case, the asymptotic cycle time is then defined by αK
K .

B. The Cyclic Jobshop Scheduling Problem

For our concern, we are interested in the cyclic job
shop problem. In this case, tasks are a priori mapped onto
machines and the number of machines is smaller than the
number of tasks to perform. More precisely, a cyclic job
shop is defined by :
• a set T of elementary tasks,
• a set R of machines,
• for each task t ∈T , a processing time pt and a machine

mt ∈R on which the task has to be performed,
• a set A of uniform constraints (as defined above),
• a set of jobs J corresponding to a production sequence

of elementary tasks. More precisely, a job J1 defines a
sequence J1 = t11 . . . t1k to be executed in this order.

Regarding the cycle time evaluation, the problem is the
same as in §II-A since it still is the search of maximum
circuit ratio in a graph. The graph of the CJSP is slightly
different from the BCSP since resource constraints add arcs
in the graph of the BCSP (see [16] for details). These
disjunctive arcs occurs between two tasks mapped on the
same machine and an arc (i, j) is labelled with the processing
time pi and an event shift Ki j that describe if task i is
performed before task j (see [16] for details).

Besides a mixed integer linear program is designed in [6]
from the graph representation in order to solve the problem.
Remodeling is necessary because the resource constraint
features a non-linear component with α × Ki j. Thus, the
throughput τ = α−1 is introduced together with a new
variable ui = si(0)×α−1, which leads to a linear formulation
that can be solved with a linear programming solver.

maxτ (1)
s.t.

u j ≥ 0 , ui ≥ 0 (2)
u j−ui ≥ τ× pi i, j ∈T (3)

u j−ui ≥ τ× pi−Ki j i, j ∈T (4)
Ki j +K ji = 1 Ki j,K ji ∈ Z, ∀i, j ∈ Ts, s ∈M

(5)

In this problem, two parameters define the structure of
the schedule. The first one is the Work-In-Process (WIP),
it corresponds to the maximum number of occurrences of
job that can be simultenaously processed. Let us consider

the example 1. The figure 1 shows a schedule (a solution of
example 1) with a WIP=1 and the figure 2 shows the same
schedule with a WIP=2. We can notice that at time t = 7,
2 occurrences of the Job J1 are in process in the schedule
of Fig. 2 whilst this scheduling structure is not allowed if
WIP=1.

Example 1:
Job J1 J2 J3 J4
Task t1 t2 t3 t4 t5 t6 t7 t8 t9

Processing time 1 3 3 1 2 2 1 2 1
Machine M1 M2 M3 M3 M2 M1 M3 M1 M3

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 1 8 6 1 8 6 1 8 6

M2 2 5 2 5 2 5

M3 4 9 3 7 4 9 3 7 4 9 3 7

α = 8

Fig. 1. 1-cyclic schedule with WIP=1

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 1 8 6 1 8 6 1 8 6

M2 2 5 2 5 2 5

M3 4 9 3 4 7 9 3 4 7 9 3 7

α = 6

Fig. 2. 1-cyclic schedule with WIP=2

The second parameters has already been discussed in the
section II-A. Indeed, the structure of the schedule is highly
dependant of the cyclicity. Previous studies of this problem
have shown that K-periodic schedules are dominant ([5]) and
the problem is NP-hard ([6]) for throughput maximization.
Figure 3 illustrates an example of K-cyclic solution of the
problem in example 1.

III. THE HEAP OF PIECES MODEL

We first recall some algebraic tools concerning (max,+)
algebra. The (max,+) semiring is the set R∪{−∞} endowed
with the max operator, written a⊕ b = max(a,b), and the
usual sum written a⊗ b = a+ b. The sum (resp. product)
admits a neutral element denoted ε = −∞ (resp. e = 0), it
leads to a⊕ ε = a and a⊗ e = a. For matrices, additions
and products give (A⊕ B)i j = Ai j ⊕ Bi j and (A⊗ B)i j =⊕n

k=1 Aik⊗Bk j.



Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 1 8 8 1 6 6 1 8 6 1 8 6

M2 2 5 2 5 2 5 2 5

M3 4 4 9 3 9 3 7 7 4 4 9 3 9 3 7 7

α = 12/2 = 6

Fig. 3. 2-cyclic schedule with WIP=2

An exhaustive presentation of (max,+) algebra can be
found in [12]. We now present the heap model structure that
was introduced in [8].

Definition 1 (Heap model): A heap model is composed
by :
• P a finite set of pieces,
• S a finite set of slots,
• R gives the subset of slots occupied by a piece,
• l : P ×S → R∪{−∞} gives the lower contour of a

piece,
• u : P ×S → R∪{−∞} gives the upper contour of a

piece.
For each piece p (possibly non connected) of a heap

model, we define the matrix M (p) of dimension |S |× |S |
by

M (p)sr =


0 if s = r, r /∈ R(p),
u(p)r− l(p)r ifr ∈ R(p), s ∈ R(p),
ε otherwise.

Calculus in the heap model are based on (max,+)-algebra.
More precisely, if a piece p1 is piled up in an empty
heap, the upper contour of the heap is given by x(p1) =
I⊗M (p1) where I is a 1× |S | matrix defined by I j = 0,
∀ j ∈ {1, . . . , |S |}. In the same manner, the pile of two pieces
p1 and p2 give the following upper contour of the heap :
x(p1 p2) = I⊗M (p1)⊗M (p2).

Example 2: Let us consider a 3 slots heap and 4 pieces
a, b, c and d such that :

M (a) =

 2 1 2
2 1 2
2 1 2

 , M (b) =

 0 ε ε

ε 4 ε

ε ε 0



M (c) =

 3 1 1
3 1 1
3 1 1

 , M (d) =

 1 3 1
1 3 1
1 3 1


The pattern composed of the pile of the 4 pieces leads to

M (acbd)=M (a)⊗M (c)⊗M (b)⊗M (d)=

 8 10 8
8 10 8
8 10 8


The upper contour of the heap is then

xH (acbd)=
(

0 0 0
)
⊗

 8 10 8
8 10 8
8 10 8

=
(

8 10 8
)
.

The figure 4 illustrates the heap obtained.
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Fig. 4. Two patterns: abcd and acbd

IV. APPLICATION TO THE CYCLIC JOBSHOP PROBLEM

A. Model construction

In this section, we show how to model the cyclic job shop
problem as a heap of pieces. As shown in [8], the job shop
problem admits a heap realization described by

P = T
S = R ∪J

R(t) = mt ∪{Ji|t ∈Ji}
l(t,r) = 0 if mt = r, l(t,r) = ε otherwise
u(t,r) = p(t) if mt = r, u(t,r) = ε otherwise.

In this framework, each elementary task t is represented
by a matrix M (t). Considering the objective of the cyclic
job shop problem, the problem is to find the sequence of
pieces piled up in the heap that maximize the throughput.
The following theorem indicates how to compute the cycle
time

Theorem 1: The throughput of a job Ji for the cyclic
sequence p1 . . . pn in a heap model representing a job shop
system is given by

λJi = |p1 . . . pn|Ji ⊗ (ρ(M (p1)⊗ . . .⊗M (pn)))
−1. (6)

where |p1 . . . pn|Ji denotes the number of jobs Ji completed
under the sequence p1 . . . pn and ρ(X) is the unique eigen-
value of the irreducible matrix X (see [12, chap.2]).

Proof: Considering the heap, the cyclic sequence
p1 . . . pn corresponds to a cyclic piled-up of these pieces. Let
v= p1⊗ . . .⊗ pn. The matrix M (v) can be seen as the matrix
representing an unique piece p1 . . . pn. The evolution of the
heap is now given by the pile up of v. As seen in section
III, the upper contour of the heap is given by x(v . . .v) =
I ⊗M (v)⊗ . . .⊗M (v). Since the job shop is connected
(and we assume it is), the matrix M (v) is irreducible. After
a certain number of iterations (that is called the transient



time), a cyclic behaviour appears for an irreducible matrix
X : Xk+c = ρ(X)c⊗Xk (see [17]). This property hold for
M (v) and after a certain number of iterations, the growth
rate of the heap become ρ(M (v)) and the throughput is
given by (6).

B. A branch and bound algorithm for the CJSP

We propose a branch and bound procedure to solve this
problem. The branching rule chose the piece to pile up in
the heap. We experimentaly observe that best results were
obtained when the task with greatest processing time is
selected first. Due to the particular structure of the matrix
M (v)

Then the evaluation function is the cycle time computation
of the pattern in the heap. As remarked in [8], two tasks a and
b belonging neither to the same job nor to the same machine
can be piled up in an equivalent order since in this case
M (a)⊗M (b) = M (b)⊗M (a). This latter remark leads
to an important reduction of the number of nodes in the
search tree. Moreover, the following theorem derived two
lower bounds from the structure of the problem (see [16]).

Theorem 2: Consider a CJSP, we have the following lower
bound denoted α− for the cycle time.

α
− = max{αu,αs}. (7)

in which αu is the minimum cycle time of the BCSP (the
same problem without resource constraints) induced by the
uniform constraints and αs is defined below

αs = max
m∈R
{ ∑

i∈T |mi=m
pi}. (8)

The bound αu is significantly dependant on the WIP (see
[13] and [16]). More precisely, we have

αu = max
J∈J
{∑i∈J pi

WIP
}.

Proof: The lower bound αs is the sum of all processing
times of tasks belonging to a same machine and we obviously
have

t j(k+1)≥ ∑
i∈Tj

pi + t j(k) ∀ j ∈T

Since all tasks have the same cycle time, even if they do
not belong to the same machine, we deduce that the cycle
time of the CJSP cannot be smaller than the maximal sum of
processing times per machine. In other words, αs is deduced
by the bottleneck machine.

Example 3: Consider again example 1 and assume WIP=2
we have αu =max{ 7

2 ,
3
2 ,

3
2 ,

3
2}=

7
2 and αs =max{5,5,6}= 6.

We conclude that α− = 6.

C. Advantages and weaknesses of the heap of pieces model
for the CJSP

Considering the heap of pieces model, the cyclic job shop
problem is equivalent to find a bounded sequence of pieces
with the maximum throughput. Compared to classical ap-
proaches, this model takes benefit from K-cyclic schedules.
Indeed, graph based approach (such as the mixed integer

linear program in II-B ) have to consider K × n number
of nodes. Regarding mixed integer linear programming, the
number of variables grows substantially whereas the number
of slots of the heap of pieces model remains the same since
it is independant of K.

Nonetheless the drawback of this method is that we can
only consider one work in progress and it can not represent
a ”nested” sechedule (as in Fig.2 for example) since it can
only represent pattern that can be piled up (no intertwine).

Let us consider this very small example to illustrate this
drawback.

Example 4:

Job J1 J2
Task t1 t2 t3 t4

Processing time 5 4 2 3
Machine M1 M2 M1 M2

Assume that we pile up t1t2t3t4, it leads to the heap in
Fig. 5 and a cycle time α = 9. It is obvious that the Gantt
representation, depicted in Fig. 6 produced by the heap
representation is not optimal.
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Fig. 5. Heap representation of the pattern t1t2t3t4

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 1 3 1 3

M2 2 4 2 4

α = 9

Fig. 6. Gantt diagram of the pattern t1t2t3t4

Besides, only one WIP is possible inside the pattern
for K−cyclic schedules. If we consider the example 1,
and a 2-cyclic schedule w = t1t4t4t2t8t9t6t5t3t1t8t2t7t9t5t5t6t7,



we obtain the heap depicted in figure 7 and we obtain
ρ(M (v)) = 15 and the cycle time is then α = 15

2 . As we
can remark, the second occurrence of J1 doesn’t start before
the end of the first occurrence.
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Fig. 7. Heap representation of the pattern w =
t1t4t4t2t8t9t6t5t3t1t8t2t7t9t5t5t6t7

These two disadvantages limit the heap of pieces approach
for scheduling. To deal with this situation, we propose in the
next section an extension of this model to consider several
works in process inside the pattern (but not nested pattern)
through an increase of the number of slots.

D. Extension of the heap of pieces model

We extend this model to consider several work in pro-
cess inside the pattern (but not nested pattern) through an
extension of the number of slots.

Definition 2: A K−cyclic jobshop problem is specified
by:

P = T
S = R ∪J K

R(t) = mt ∪{Ji|t ∈Ji}
l(t,r) = 0 if mt = r, l(t,r) = ε otherwise
u(t,r) = p(t) if mt = r, u(t,r) = ε otherwise.
In this new model, several occurrences of a job can be

processed simultenaously inside a pattern. More precisely,
the slots of the heap are now composed by the machines
and K Jobs. It enables K occurrences simltenaously of a job.

The size of the model increases as we have |R|+K×|J |
slots. Let us consider the same schedule as in Fig. 7, the new
representation leads to Fig. 8.

The evaluation of the cycle time in the new representation
leads to α = 13

2 and we have the Gantt diagram in Fig. 9
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Fig. 8. Extended heap representation of the pattern w =
t1t4t4t2t8t9t6t5t3t1t8t2t7t9t5t5t6t7

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

M1 1 8 6 1 8 6 1 8 6 1 8 6

M2 2 5 2 5 2 5 2 5

M3 4 4 9 3 7 9 3 7 4 4 9 3 7 9 3 7

α = 13/2 = 6.5

Fig. 9. Gantt diagram of the pattern of the pattern w =
t1t4t4t2t8t9t6t5t3t1t8t2t7t9t5t5t6t7

V. CONCLUSION

We presented a method to model a solution of a cyclic
jobshop problem. Moreover we exhibit the advantages and
the weaknesses of the method. Indeed, the cyclicity and the
work in process are two parameters that significantly defines
the structure of the solution. Although the heap of pieces
is not able to consider WIP greater than one, it reveals
to be efficient for K−cyclic scheduling while graph based
method are rapidly ineffective. An extension of heap of
pieces model is proposed. It allows to consider more than one
job in process inside the pattern. Consequently, this extension
improve only K−cyclic schedules. Despite of the increase of
the size of the model, it is worthwile to consider the extended
model since it removes strong constraint on the the structure
of the K−cyclic schedule.

Further works will compare the approach considered in
this paper with the mixed integer linear program defined in
§II-B on classical cjsp benchmark set.
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