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1. INTRODUCTION

The functioning of Discrete Event Dynamic Sys-
tems (DEDS) subject to synchronization and
delay phenomena can be described by linear
models in a particular algebraic structure called
dioid. A linear system theory has been developed
over dioids by analogy with conventional theory
(Baccelli et al., 1992).

Many transportation systems can be described as
a DEDS. As in (Goverde et al., 1998), (de Vries
et al., 1998) and (Nait-Sidi-Moh, 2003), we
consider transportation networks as (max, +)-
systems where state variables represent departure
times of vehicles at some stations ((max, +) alge-
bra is an example of dioid).

We are here interested in the control of these
particular systems. In normal conditions, the con-
trol of urban transportation systems is realized by
the timetables. They are defined at each stop to
specify times at which buses should theoretically
run. They are used to inform passengers and,
at particular stops, to synchronize vehicles. In
(Houssin et al., 2004), a solution has already been
proposed in which timetables was subject to two
kinds of constraints.

In this paper, we generalize the problem of
timetable computation by considering additional

constraints for the control objective. More pre-
cisely, we can consider any constraint which can
be expressed by an implicit inequality over the
system state. For example, it is possible to specify
for a given stop, with this formalism: a desired
number of departures in an interval of given dates,
a minimum and/or a maximum time separation
between two departures, or a critical time con-
straint on a path of the system. The problem is
formulated as an extremal fixed point computa-
tion. An iterative method is proposed to solve it.

2. PRELIMINARIES

2.1 Dioid theory

A dioid (D,⊕,⊗) is an idempotent semi-ring with
neutral elements denoted ε and e (Baccelli et
al., 1992, §4). A dioid is said to be complete if it is
closed for infinite sums and if product distributes
over infinite sums too. The sum of all its elements
is generally denoted > (for top).

Example 1. The set Zmax endowed with the max
operator as sum and the classical sum as product
is a complete dioid in which ε = −∞, e = 0
and > = +∞. Set Zmin = (Z ∪ {−∞} ∪
{+∞},min, + ) is also a complete dioid in which
ε = +∞, e = 0 and > = −∞.



Due to the idempotency of the sum, a dioid is
endowed with a partial order relation, denoted º,
defined by the following equivalence: a º b ⇔
a = a ⊕ b. The notation a ≺ b defines a ¹ b
and a 6= b. A complete dioid has a structure of
complete lattice, i.e., two elements in a complete
dioid always have a least upper bound, namely
a ⊕ b, and a greatest lower bound denoted a ∧
b =

⊕
{x|x¹a, x¹b} x.

2.2 Representation of DEDS in dioids

Dioid algebra enables to model DEDS which in-
volve synchronization phenomena. The behavior
of such systems can be represented by some dis-
crete functions called dater functions. More pre-
cisely, a discrete variable x(·) is associated to
an event labeled x. This variable represents the
occurring dates of event x. The numbering con-
ventionally begins at 0: x(0) corresponds to the
date of the first occurrence of x. These vari-
ables are extended towards negative values by:
x(k) = −∞ = ε for k < 0 such that they can
be manipulated as mappings from Z to Zmax.

The considered DEDS can be modeled by a linear
state representation

x(k) = Ax(k − 1)⊕Bu(k),
y(k) = Cx(k), (1)

where x, u and y are the state vector, the input
vector and the output vector respectively.

The initial sate of a system is defined by a vector
v(k) added to the dynamic equation as follows:

x(k) = Ax(k − 1)⊕Bu(k)⊕ v(k).

More precisely, vi(k) for 0 ≤ k < kdi represents
the earliest occurring dates of initial events. To
be manipulated as a dater, each variable vi is
extended such that: vi(k) = ε for k < 0 and
vi(k) = vi(kdi −1) for k ≥ kdi . We say that initial
conditions are canonical if ∀k ∈ Z, v(k) = ε and
the dynamic behavior of the system then obeys
to state equation (1). Index kdi denotes the first
occurrence of event xi induced by inputs (this
definition of initial conditions is more detailed
in (Baccelli et al., 1992, §5.4.4.1)). The notion
of characteristic number introduced in (Boimond
and Ferrier, 1996) enables to calculate this index.

Definition 1. (characteristic number). Let [A]i be
the i-th row of matrix A, the characteristic num-
ber associated with the state variable xi of a
model described by (1), if it exists, is the least
integer, noted kdi , such that [Akdi ]iB 6= ε.

The characteristic number kdi corresponds to the
event shift between inputs and a state xi. Let us

define now the event shift between a state xi and
an output yj . We define it, if it exists, as the least
integer kfji , such that Cj [A

kfji ]i 6= ε (notation
[A]i indicates the i-th column of A).

The γ, δ-transform enables to manipulate formal
power series, with two commutative variables γ
and δ, representing daters trajectories. The set of
these formal series is a complete dioid denoted
Max

in Jγ, δK. In the following, we denote x the
corresponding element of {x(k)}k∈Z in Max

in Jγ, δK.
The support of a series x is defined as Supp(x) =
{k ∈ Z|x(k) 6= ε}.
In Max

in Jγ, δK, state representation (1) becomes

x = Ax⊕Bu,
y = Cx,

(2)

in which entries of matrices are elements of
Max

in Jγ, δK.
In accordance with the earliest functioning rule
(an event occurs as soon as possible), we select
the least solution of the first equation in (2) which
is given by x = A∗Bu with A∗ =

⊕
i∈NAi.

Consequently we have y = Hu, in which H =
CA∗B is called the transfer matrix.

2.3 Residuation theory

Let us consider mappings defined over complete
dioids. Such a mapping f : D → C is said
to be isotone if a, b ∈ D, a ¹ b ⇒ f(a) ¹
f(b). Moreover f is lower-semicontinous (l.s.c.) if
∀a, b ∈ D, f(a⊕b) = f(a)⊕f(b). Residuation the-
ory (Blyth and Janowitz, 1972) defines ”pseudo-
inverses” for some isotone mappings defined over
ordered sets such as complete dioids (Baccelli et
al., 1992). More precisely, if the greatest element
of set {x ∈ D|f(x) ¹ b} exists for all b ∈ C, then
it is denoted f ](b) and f ] is called residual of f .

Theorem 1. (Baccelli et al., 1992, th. 4.50) Let
f : D → C be an isotone mapping, the following
statements are equivalent:

(i) f is residuated,
(ii) f is l.s.c. and f(εD) = εC ,
(iii) there exists a unique mapping f ] such that

f ◦ f ] ¹ IdC and f ] ◦ f º IdD.

Theorem 2. (Baccelli et al., 1992, th. 4.56) Let
f : D → C and g : C → B. If f and g are residuated
then g ◦ f is residuated and (g ◦ f)] = f ] ◦ g].

Example 2. The valuation val(x) of a series x ∈
Max

in Jγ, δK is defined by (Baccelli et al., 1992,
definition 5.19):

val : Max
in Jγ, δK −→ Zmin

x 7−→ val(x) = Min(Supp(x)).



As an example, we have val(γ3δ1 ⊕ γ5δ2) = 3.

Proposition 1. Mapping val is residuated and its
residual is val](x) = γxδ∗.

Proof : Mapping val is l.s.c. and val(ε) = ε (see
(Baccelli et al., 1992, lemma 4.93)). According
to item (ii) of theorem 1, it is then residuated.
We check that the proposed residual satisfies item
(iii) of theorem 1:

val ◦ val](x) = val(γxδ∗) = x

val] ◦ val(x) = γval(x)δ∗ º x.

Example 3. Let Pra : Max
in Jγ, δK → Max

in Jγ, δK
defined by:

Pra : x 7−→ Pra(x) = Pra(
⊕

(n,t)∈Z2

x(n, t)γnδt)

=
⊕

(n,t)∈Z2

xa(n, t)γnδt,

in which xa(n, t) =

{
x(n, t) if t ≥ a,

ε otherwise.

Given a series x ∈Max
in Jγ, δK, the mapping Pra(x)

consists in preserving the monomials of x whose
exponents in δ are greater than or equal to a. As
an example, we have Pr3(γ1δ2 ⊕ γ3δ3 ⊕ γ4δ5) =
γ3δ3 ⊕ γ4δ5.

Proposition 2. The mapping Pra is residuated
and its residual is Pr]

a(y) = y ⊕ (γ−1)∗δa−1.

Proof : According to item (iii) of theorem 1, we
check that Pra◦Pr]

a(y) ¹ y and Pr]
a◦Pra(y) º y:

Pra ◦ Pr]
a(y) = Pra(y ⊕ (γ−1)∗δa−1)

= Pra(y) ¹ y

Pr]
a ◦ Pra(y) = Pr]

a(Pra(y))
= Pra(y)⊕ (γ−1)∗δa−1 º y

2.4 Greatest fixed point of mappings defined over
dioids

We denote Ff = {x|f(x) = x} (resp. Pf =
{x|f(x) º x}) the set of fixed points (resp. the
set of post-fixed points) of an isotone mapping f
defined over a complete dioid D. We recall that
Pf has a complete lattice structure (Baccelli et
al., 1992, th 4.72). Tarski’s theorem (Tarski, 1955)
states that an isotone mapping defined over a
complete lattice admits at least one fixed point.
Moreover, it can be shown that the greatest fixed
point coincides with the greatest element of Pf :

Sup Pf = Sup Ff and Sup Ff ∈ Ff . (3)

In the following proposition, we specify to dioids
a well known method to compute greatest fixed
point of isotone mappings defined over lattices.

Proposition 3. If the following iterative computa-
tion

y0 = >
yk+1 = f(yk) ∧ yk

(4)

converges in a finite number ke of iterations, then
yke

is the greatest fixed point of f .

3. OPTIMAL CONTROL

The principle of the proposed control can be
summarized in three items:

. The process verifies some initial conditions
and some given final conditions.

. State variables are subject to some con-
straints.

. The control is ”optimal” in the sense that it
optimizes a chosen criterion.

3.1 Terminal conditions

We consider here canonical initial conditions. For
each state variable xi, we defined its characteristic
number (definition 1), i.e. the index kdi of the first
occurrence of xi generated by the inputs of the
system.

In our framework, the given final state corre-
sponds to the last occurrences of outputs that we
want to control. From that goal, we can deduce
the last occurrences of the state variables which
have to be controlled. We denote kfyj

(resp. kfi)
the last occurrence of event yj (resp. xi) that
we aim at controlling. The computation of this
index is function of the shift event kfji between a
state variable xi and an output yj of the system
(cf. §2.2). The last occurrence of xi generating
the last occurrence kfyj

of output yj is given by
k′fji

= kfyj
− kfji . We then deduce that the last

occurrence of xi to control is the one which gen-
erates the last desired occurrence for all outputs,
so kfi = max(k′f1i

, k′f2i
, . . . , k′fpi

) for a p−outputs
system.

3.2 Constraints

We consider constraints which can be formulated
as an implicit inequality in x. These constraints
are applied to an interval of occurrences for each
concerned state variable. More precisely, for an
event labeled xi, constraints are applied only
for indices of occurrences included in interval



[kdi , kfi ]. Indeed, xi should not be constrained for
indices less than kdi

since these are not induced by
the inputs of the system (cf. §2.2). Furthermore,
kfi

corresponds to the index of the last occurrence
of xi that we aim at controlling. In order to
express these constraints in dioid Max

in Jγ, δK, in
which we manipulate the whole trajectory of a
dater {xi(k)}k∈Z as a formal power series xi, we
use two vectors ω and ν:

x ¹ (gl(x) ∧ ω)⊕ ν, for l ∈ {1, . . . , q} (5)

in which ω (resp. ν) is a n-vector (n is the dimen-
sion of the state vector) with entries ωi = γkdi δ∗

(resp. νi = γkfi
+1δ∗), and each gl, l = 1, 2, . . . , q,

is a mapping from Max
in Jγ, δKn to Max

in Jγ, δKn
modeling a constraint. Vectors ω and ν enable to
relax constraints for the occurrences of events xi,
i = 1, 2, . . . , n, whose indices are not included in
[kdi , kfi ].

3.3 Criterion

A relevant goal for the control of DEDS is to
delay as much as possible the input events oc-
currences (i.e. to compute the greatest control
vector u) while ensuring performances imposed by
a specification (the specification corresponds here
to terminal conditions and constraints). It corre-
sponds to the just in time control problem which
commonly aims at supplying the ”right quantity”
(the demand) at the ”desired time” (date of the
demand). Therefore, the considered criterion J
is J = u. The optimal control is the one which
maximizes J .

3.4 Synthesis

Considering the earliest functioning rule of the
system, we obtain from (2) x = A∗Bu and using
the following notation g′l = A∗B ◦\((gl(A∗Bu) ∧
ω) ⊕ ν), the optimal control u is the greatest
solution of inequalities :

u ¹ g′l(u), for l ∈ {1, . . . , q} (6)

which is equivalent to find the greatest u satisfying

u ¹ g′1(u) ∧ . . . ∧ g′q(u) = f(u). (7)

Proposition 4. If the following iterative computa-
tion converges in a finite number ke of iterations

u0 = >
uk+1 = f(uk) ∧ uk,

then uke is the control which both respects ter-
minal conditions and constraints traduced by f
(equation (7)) and optimizes the criterion J .

Proof : The set of controls u which satisfy the
constraints is the set Pf of post fixed points of
f . The iterative computation defined in proposi-
tion 3, if it terminates, gives its greatest element
Sup Pf .

4. APPLICATION TO URBAN
TRANSPORTATION NETWORKS

In this section, we first present a (max, +)-linear
model for urban bus networks. The timetable
synthesis problem ((Nait-Sidi-Moh, 2003)) is then
decomposed as constraints on state vector. We
solve it by applying the method introduced in
section 3.

4.1 Modeling of a bus network

A transportation system can be modeled as a state
representation in Zmax by:

x(k) = Ax(k − 1)⊕Bu(k),
y(k) = Cx(k), (8)

in which x(k) is a vector such as xi(k) denotes
the departure time of the (k + 1)−th bus at stop
i. Matrix A is defined such as Aij = aij where aij

corresponds to the traveling time from stop j to
stop i, Aij = ε otherwise. Travelling time aij may
correspond either to the time spent by a bus to run
from stop j preceding stop i on the same line, or to
the walking time between stops j and i belonging
to different lines (a connexion between buses de-
parting from j and arriving at i is then specified).
Vector y(k) corresponds to the vector of daters
associated with stops considered as ”strategic”
(at which the level of service must be respected
more particularly). The timetable is represented
by input vector u(k), and variable ui(k) denotes
the scheduled departure time of the (k+1)−th bus
at stop i. In practice, synchronizations of buses
with timetable occur only at particular stops of
the network such as the beginning or the end of a
line. Concerning the other stops, the timetable has
only an indicative value. So, entries of matrix B
are such as Bii = e if timetable must be respected
at stop i, Bij = ε otherwise.

4.2 Timetable synthesis problem

We present here the timetable synthesis problem
by decomposing it into several constraints on the
state vector of the proposed model.



• In a first place, we define an expected level
of service at strategic stops of the network.
This quality is specified by a target vector
denoted z(k) which contains the latest depar-
ture dates for buses at strategic stops. This
constraint leads to :

C ⊗ x(k) ¹ z(k) for kdi
≤ k ≤ kfi

. (9)

• For each line, we define a maximum headway
(i.e. the expected maximum time separation
between two buses departures at a stop).
Maximum headways enable to define a min-
imum departure frequency for each line. For
stop i, this constraint can be written:

{
xi(k) = xi(kdi

) for k = kdi
,

xi(k) ¹ 4max
i ⊗ xi(k − 1) for kdi

< k ≤ kfi
,

⇔ xi(k) ¹ 4max
i ⊗ xi(k − 1)⊕ xi(kdi

) (10)

for kdi ≤ k ≤ kfi , where kdi and kfi are the
bounds of the interval of indices that we want
to control for event xi (cf. §3.1).

• Furthermore, minimum headways enable to
avoid the natural tendency of transit vehicles
to bunch up as soon as a bus is in late. For
stop i, this constraint can be written

xi(k) º 4min
i ⊗xi(k−1) for kdi ≤ k ≤ kfi .

(11)
Generally, a specific minimum headway is

defined for each line.
• In the daytime, some rush hours appear. Ori-

gins of these peaks of charge can be different:
intermodal connections or urban activities
(school at home-time, factories closing time)
but they are generally planned. In this case,
it is wanted that one or several departure(s)
occur(s) in an interval of given dates in order
to quickly absorb peaks of charge. For stop i,
we model this constraint by: ∃k ∈ [kdi , kfi ],
s.t.

xi(k) º tj and xi(k + s) ≺ tj + r, (12)

in which s is the expected number of de-
parture(s) at stop i during interval [tj , tj + r]
in order to absorb the peak.

• At some stops of the network, we want to
limit waiting times to achieve a quality of
service or because of physical constraint (case
of a stop located on a road shared with cars).
We note φmax

ji the sum of the traveling time
from i to j with the maximum waiting time
expected at stop i. This constraint can be
formulated as:

xj(k) ¹ φmax
ji ⊗xi(k−1) for kdj ≤ k ≤ kfj .

(13)

4.3 Resolution

In order to apply results of section 3 to these sys-
tems, constraints have to be expressed as formal
power series in dioid Max

in Jγ, δK such as (5).

• Constraint (9) is traduced in Max
in Jγ, δK by :

x ¹ (C ◦\z ∧ ω)⊕ ν.
• Constraint (10) can be formulated by in-

equality: x ¹ ((γ4maxx ⊕ xd) ∧ ω) ⊕ ν,

in which 4max =




δ
4max

1 ε ε

ε δ
4max

2 ε

ε ε
. . .


and xd

is defined by xdi
= γkdi δxi(kdi

).
• In the same way, we model constraint (11) by

x ¹ (γ4min ◦\x ∧ ω)⊕ ν, in which 4min has
an analogous structure to 4max.

• To formulate constraint (12) inMax
in Jγ, δK we

use mappings Pra and val previously defined
in §2.3. In order to point out at least one
occurrence of event xi between dates tj and
tj + r, we specify that the index of the first
occurrence later than tj + r (i.e. for t ≥ tj +
r+1) must be strictly greater than the index
of the first occurrence later than tj − 1 (i.e.
for t ≥ tj).

val(Prtj+r+1(xi)) ≺ val(Prtj (xi))
⇐⇒ val(Prtj+r+1(xi)) ¹ 1⊗ val(Prtj (xi)).

In order to require the occurring of at least
s events, we use inequality:

val(Prtj+r+1(xi)) ¹ s⊗ val(Prtj (xi)).

We recall that mappings val and Pra are
both residuated. By using theorem 2, previ-
ous inequality can be rewritten:

xi ¹ Pr]
tj+r+1(val](s⊗ val(Prtj (xi)))).

• The γ, δ-transform of (13) leads to x ¹
((φmax x)∧ ω)⊕ ν, in which φmax is defined
as




φmax
ll = e for l 6= j

φmax
ji = δφmax

ji

φmax
αβ = ε otherwise.

Constraints have then been modeled with respect
to (5). With notations of §3.4, these inequalities
are equivalent to the following inequality:

u ¹ g′1(u) ∧ g′2(u) ∧ . . . ∧ g′5(u) = f(u).

Finally, the problem comes down to finding the
greatest u such that u ¹ f(u). If the iterative
computation presented in proposition 4 converges
in a finite number ke of iterations then uke is the
optimal timetables for stops at which synchroniza-
tions with timetables is respected. For the other
stops (where timetables have only an indicative
value), we deduce the scheduled departures times



from a simulation of the system based on model
(8) and uke .

4.4 Example

We consider the urban transportation network
represented on figure 1 and composed of two lines.
It is assumed that stops x2 and x6 are respectively
in connection with x8 and x10.
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Fig. 1. A simple urban bus network

The dynamic behavior of the system is described
by (8) with

A =
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,

B = Id (timetable must be respected at each stop)
and we define C in such a way that strategic stops
are x4 and x8:

C =
(

ε ε ε e ε ε ε ε ε ε
ε ε ε ε ε ε ε e ε ε

)
.

Initial conditions of the system lead to vector ω
such that ∀i, ωi = γ0δ∗. We want 10 departures
at stop y1 = x4 and 10 departures at stop y2 = x8,
then we obtain a vector ν s.t. νi = γ10δ∗.

The following constraints are specified:

¤ The sixth bus at stop x4, resp. the 10-th,
must depart before 80, resp. 130 and the
eighth bus at stop x8, resp. the 10-th, must
depart before 60, resp. 100, then we have
z1 = γ0δ80⊕ γ6δ130 and z2 = γ0δ60⊕ γ8δ100,

¤ minimum headways correspond to 4min
ii =

δ6 for 1 ≤ i ≤ 6 and 4min
ii = δ5 for

7 ≤ i ≤ 10,
¤ maximum time separation between buses is
4max

ii = γ0δ9 for 1 ≤ i ≤ 6 and4max
ii = γ0δ7

for 7 ≤ i ≤ 10,
¤ a departure at stop x2 must occur between

dates 105 and 107 and a departure at stop x6

must occur between dates 60 and 62,
¤ buses are not allowed to stop more than 2

time units at stop x9. Considering the travel
time between x8 and x9, we have φ98 = δ6.

The iterative computation defined in prop. 4 con-
verges in 10 iterations providing the following
timetable.

k u1 u2 u3 u4 u5 u6 u7 u8 u9 u10
1 40 45 48 50 59 62 23 25 31 41
2 46 51 54 56 68 71 28 30 36 46
3 52 57 60 62 77 80 33 35 41 51
4 58 63 66 68 86 89 48 40 46 56
5 64 69 72 74 95 98 43 45 51 63
6 70 75 78 80 104 107 48 50 56 70
7 79 84 87 89 113 116 53 55 61 77
8 88 93 96 98 122 125 58 60 66 84
9 96 101 105 107 131 134 65 67 73 91
10 102 107 114 116 140 143 72 74 80 98

5. CONCLUSION

We have introduced a new method to compute
just in time control for DEDS. Originality of this
control is the possibility to take into account any
constraint which can be expressed as an implicit
inequality involving state vector. We apply this
method to transportation systems, more particu-
larly to the problem of timetable synthesis. The
convergence of the iterative computation has ever
since been proved and a real-life example has also
been proposed in (Houssin et al., 2006).
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thesis. UTBM - Université de Franche-Comté.
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