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Abstract

Providing new generations of airbags with reliable information about
the vehicle inner space occupancy in order to minimize inappropriate in-
flation is a real challenge. Within this paper two techniques to rebuilt
the 3D cockpit scene, are presented; beside the well-known stereoscopic
vision principles, 3D reconstruction based on matricial sensor combined
with an infrared structured light emitter is described. From the 3D points
acquired by these sensors a 3D description of the seat area is built, perti-
nent attributes are extracted, and using a previously learnt data base, the
current seat situation is identified amongst the learnt situations (empty
seat, baby seat in normal or rear position, occupant, ...). First promising
results are depicted.

1 Introduction

These last years a special effort has been focused on the improvement of pas-
sive safety both by car manufacturers and suppliers all over the world. Frontal
airbags for the driver and the passenger are now mounted in almost every new
car. In brief lateral airbags will be massively installed. The most part of these
airbag systems are operating in open loop conditions. That means that when-
ever an impact is detected, the airbag is automatically inflated without any
feedback from the seat occupant nature. This operating mode has caused some
dramatic situations, for example: babies installed on a baby seat in rear posi-
tion thrown to the back of the vehicle when airbag inflates, passengers in ”out
of position” situation who are injured by the airbag...

*This project was supported and funded by the PREDIT II program of the french Ministry
of National Education and Research.



In US, 97th statistics show that airbags saved about 1600 lives. It is also
acknowledged that they killed 32 childrens and 20 small adults. New gen-
erations of airbags need to be more “intelligent” to provide appropriate in-
flations with regard to the vehicle inner space situation and thus to mini-
mize the injury risk. The improvement of this function requires the intro-
duction of new sensors to provide reliable information about the cockpit oc-
cupancy such as passenger nature, occupant morphology, occupant volumic
distribution to detect “out of position” situations of the passenger (figure 1).
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but these devices remain inadequate to

give pertinent informations such as the passenger posture for example.
More sophisticated techniques have been explored: time of flight sensor and well-
known stereoscopic vision. A time of flight sensor [1] is based on a NIR laser
diode and a CMOS camera with an ultra short integration time; the intensity
measured at the CMOS sensor depends on the distance and the surface reflex-
ion. A recent improvement of such systems consists in determining the light
propagation time by multiple double short time integration [11]. Advantages
of this system are its cost, its insentivity to backlight and its high-integrated
possibilities while a major drawback concerns the need of the short illumination
time and the good synchronization between the camera shutter and the light
source.

Stereoscopic vision is based on the princi-
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three classes, (2) a second approach takes advantage of the same classification
methods but with data provided by a stereoscopic sensor. Results look less good
but more stable in relation with light disturbances.

In our project, two different solutions have been developped. Beside the
passive stereoscopic sensor, an active 3D vision system has been developped,
based on a CCD camera combined with an IR structured ligth emitter. From
one or another system, 3D reconstruction is reached and attribute vectors are
then extracted and allow to identify the current seat situation among the learnt
ones illustrated in figure 1.

These two vision based methods will be presented and discussed in this pa-
per, with respect to several criteria: density of the acquired depth images, ac-
quisition speed, mechanical and safety constraints. .. The first promising results
with these different technologies will be presented.

2 Structured light based approach

2.1 Generalities

This approach developed by Siemens VDO Automotive in collaboration with
LAAS-CNRS and ONERA-DOTA is concerned with 3D active vision system
based on a matricial sensor combined with an infrared structured light emit-
ter. This principle is currently used in other application fields as robotics,
architecture. ..[2, 12, 13]. A light pattern is projected onto the scene, the 2D
deformation of this pattern in the image plane due to the objects contained in
the scene is analyzed. Then once the sensor is calibrated, triangulation tech-
niques allow to give 3D data on the observed scene. The latest step of this
process is the extraction of specific characteristics from the 3D reconstruction
and then the classification. This technique is usually applied with supervised
environmental conditions (light control...), low real time constraints and no
light power restrictions.

The approach is original in the sense that the system has to cope with
specific automotive constraints and to present a good robustness with respect
to an uncontrolled light disturbances and back-light. These constraints has
required the development of specific measurement devices and algorithms in
order to classify all the most current situations regarding occupant safety.

2.2 Sensor presentation

The efficiency of such a system depends on some characteristics like the reso-
lution of the sensor and light emitter, the gap between the light emitter and
the sensor, the calibration accuracy, the radiance of the beams, its location in
the cockpit... The gap between the light emitter and the sensor must be large
enough to allow 2 ¢m accuracy on 3D points located at 1 m from the camera.
A too large gap will lead to mounting problems and to occluded beams. A 6 cm
gap has issued good results. The light emitter is composed of a laser diode



(830 nm wavelength), a Damman diffraction grid that split the original beam
into several beams and a concave planar lens to spread the illumination on a
conic field of 90° x 70°.

The light emitter resolution is quite critical in order to determine if there is a
person or an object on the seat and to distinguish head, arms. . . from a passen-
ger. Current developments have been performed with a 11 x 11 array of beams
that demonstrate a good compromise between 3D reconstruction accuracy and
calculation time. Another prototype has been designed with 19 x 16 beams to
have a meaningful reconstruction for demo-car (figure 3-(a)). Each laser beam
Dy is labelled by its row and column position in the array (figure 3-(b)).

In order to brighten the dots on the image, the radiance of each beam should
be maximized by optimizing the output power (limited by the eye safety re-
quirements) and narrowing the beam diameter. The maximal output power is
function of the wavelength of the emitted light and of the operating modes of the
illuminator. As an example for an illuminator wavelength of 850 nm, operating
in a pulse mode of 1ms duration every 10 ms, the maximum permissible power
considering, non intentional vision is 0.78 mW (Standard IEC 825-1). Pulse
duration of 100 us would increase the permissible power by a factor 2.

Image acquisition is carried out using a single short focal length CCD cam-
era with a 2.6 mm lens providing an field of view of 130° x 100°. The off line
calibration step determines the parameters corresponding to the well-known
perspective projection camera model, taking into account intra and inter sen-
sor/illuminator and lens characteristics [3]. At first, the camera calibration
process consists in estimating in one global step both the intrinsic and distor-
tion parameters from matchings between a set of points defined on a planar
calibration target and their projections on the image plane. To reduce the mea-
surement errors, the computation of the parameters is done with multiple pose
of this target.

Then another calibration process is required to identify the laser beams
equation parameters in the camera coordinate system. It uses multiple views of
the same calibration target on which the lasers beams are projected (figure 3-
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Figure 3: (a) Laser beams, (b) associated labels, (c) calibration target



The camera/illuminator device is located in the overhead console position
which appears to be the most efficient position since it provides the best overview
of the passenger seat even if it has two drawbacks. The first one is the need of
a very wide angle of sight of the illuminator/camera (> 90°). The second one is
that the compactness requirement gets critical which could lead to mount the
ECU in a distant location.

2.3 3D reconstruction and classification

The occupant detection methodology can be decomposed in a 3D reconstruc-
tion process and then a classification one, both detailled hereafter. The 3D
reconstruction process requires itself two steps. The first step concerns the ex-
traction of light dots, intersections of laser beams with the image plane, by the
way of conventional image processing techniques that have to deal with prob-
lems like light disturbances (shadows, direct sunlight. .. ), passenger movement,
surfaces with low reflexivity, specular reflections. . .

The second step is related to the dot labeling, e.g. the search of matchings

between the light dots and the laser beams. The labeling process is based on
the sequential application of the following constraints:
Epipolar constraint: For each dot i, after distortion correction, and each
beam Dy, the distance in the image between the dot and the Dy projection
(noted Dy, ,.) is calculated. A matching (i, f) is discarded if the distance d(i, f)
exceeds a certain tolerance, generally three or four pixels in experiments. Fig-
ure 4 shows light beams projections in the image plane. The different crosses
represent the extracted light dots over time. Although the beams projections
are very close to each other, thanks to this first constraints, the number of can-
didate beams Dy to correspond to a light dot ¢ is drastically reduced (about
95%).

Figure 4: Image dots positions and associated projected beams

Depth constraints: for cockpit occupancy reconstruction, the triangulation
must yield to 3D points whose depth lies within the range [0,1.5 m]. A matching



(4, f) is discarded, if the depth of the resulting reconstructed 3D point, exceeds
this threshold.

Topological constraints: the two following constraints allow to evaluate the
matching confidence:

(a) uniqueness: each laser beam must be imaged with, at most, one light
dot. So, a beam label can be associated to at most one dot and vice versa.

(b) order: this constraint implying pairs of light dots, is applied only if their
two labels belong to the same column or row in the array of beams (figure 3-(b)).
Given two light dots p; = (u;,v;)T and p; = (uj,v;)7, two labels f (column Cy,
row Ry) and g (column Cy, row Ry), the order constraint is:

if Rf = Ry (resp. Cy = C,) then (i,f) and (5,9) are consistent < (Cy, Cy)
(resp. (Ry,Rg)) and (vs,v;) (resp. (u;,uj;)) are in the same order.

To apply these constraints, three different optimization techniques have been
evaluated maximal cliques, continuous relaxation and discrete relaxation [9].
This last one has shown the better compromise between speed and matching
performances. Its principle can be summarized as follows: a first pass, defined by
epipolar and depth constraints, exhibits trustworthy and ambiguous labellings,
depending on whether a dot ¢ matches a unique beam fy or may be associated
with several ones. Topological constraints are next checked for the remaining
ambiguous matchings [8]. The discrete iterative relaxation process is set up so
as to eliminate the ambiguous matchings that are incompatible with confident
ones regarding some uniqueness and order relationships. Consequently, the total
number of confident matchings increases iteratively.

From the labelling process results and the off-line calibration phase, 3D
coordinates can be computed. From the 3D points, the 3D shape is then rep-
resented by a triangular mesh (figure 7). Referring to the final decision related
with airbag inflation, the different scenarii described in figure 1 can be grouped
and reduced to a simpler set represented in figure 5.
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Figure 5: The different scenarii and associated airbags operating conditions

The classification method is also based on a hierarchical process. The first
level consists in detecting one of the three occupant categories: empty seat,
baby seat, “something” on the seat. It is based, on the one hand, on the analysis
of the motion of the objects located within the observed scene and, on the other
hand, on the extraction of specific attributes related to each occupancy class and



computed in some analysis areas defined in the vehicle longitudinal projection
plane. The 3D reconstructed points are simply projected onto this particular
plane to have a kind of scene profile characteristic of the occupancy class (fig-
ure 8). The analysis areas correspond to three horizontally-oriented stripes in
the longitudinal plane and are located as follows : one which envelops the seat
sitting and the two other located just above the seat sitting. The classification
is made by the method of the K nearest neighbours, from the results of the at-
tributes learnt in a database built from images acquired on the different seat oc-
cupancy classes.

In case of “something” is detected on the seat, a COOP_OOP  InPos
second processing level estimates the position of
the occupant with respect to two operating zones of
the airbag. This very simple technique is based on the
analysis of the number of light dots in each zone. These
zones are defined according to an emerging normaliza-
tion about the critical volume close to the dashboard
(figure 6): the Critical Out Of Position (COOP) and
Out Of Position (OOP) volumes. The only criterion
for the definition of these zones, consists in the distance Figure 6: OOP and COOP
to the dashboard (invariant w.r.t. the seat position). zones
Finally, this information is then fused in order to provide a final decision to the
airbag ECU.

2.4 Results

The different algorithms have been implemented in C code on a 400 MHz PC. 3D
reconstruction is performed each 50 ms for a 11 x 11 array of beams. Figure 7
shows two examples of reconstruction provided with the 19 x 16 array. The
right sub-figures represent the triangular meshes generated from the 3D points.
The results show that the system is able to give a very good approximation
of the volumetric distribution of the occupancy within the observed scene. In
addition a very good estimation of the distances between the dashboard and the
occupant is achieved (£ 2 c¢m).

The classification even if it is based on very simple principles gives promising
results. The tests that have been performed in real situations have proved that
it is able to make the distinction between the most important occupancy classes
listed before. In addition this technique allows to make the distinction between
the different dashboard proximity situations. In a further step, the analysis of
the dynamic evolution of the situation along an image sequence, will lead to an
improvement of the classification robustness.

Figure 8 shows two scenarii examples and their projections in the longitudi-
nal plane. In the first case, some reconstructed points are close to the airbag,
so the airbag must not fire. In the second case, the airbag firing is compatible
with the analyzed situation.
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Figure 7: 3D reconstruction of scenarii: (a) empty baby seat, (b) passenger on
the seat
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Figure 8: (a) Original images, (b) reconstruction projection in the vehicle lon-
gitudinal plane and associated airbags operating conditions

3 Stereovision based approach

Concerning the stereoscopic vision, developments take profit of well-known prin-
ciples and aim to adapt them to the constrained automotive context: real time
performances, dense and accurate reconstruction, low cost technology. . .

3.1 3D acquisition from stereovision

The pixel-based stereo algorithm aims to match pixels between left and right
images [5] acquired by the stereo cameras. The stereovision process includes
several steps. An off-line calibration determines the parameters of the stereo
sensor: camera models, inter camera situations, lens distortions... it allows
computing the epipolar geometry between the cameras.



Figure 9: Some images: (a) empty seat, (b) child in a booster, (c) standing child

From on line acquisitions, the rectification process [6] corrects the original
images, to perform a perfect virtual alignment of the two cameras and their
epipolar lines; two matched pixels must be on the same line of the rectified
images. Rectification and distorsion correction could require complex computa-
tions: these functions are performed in the same loop, using pre-computed tables
to find the rectified (u,v) coordinates from the real ones, and using simply a
bilinear interpolation.

Then, for every line of the right and left images, the correlation process
(figure 10) must match pixels, with respect to a similarity measurement based
on windows centered on the compared pixels: several similarity measurements
(SSD -Sum of Squared Differences-, ZNCC -Zero Normalized Cross Correlation-
, CT -Census Transform-, ...) have been evaluated, using typically 11 x 11
windows. Every pixel (u,v) on the left image, is compared to all potential
matched pixels of the right image, located on the same u line, from the position
U + dmin 0 U + dpgz; a score function score = f(d) is obtained, where d is
the disparity between the corresponding left and right pixels. A good optimum
must be found from the score function. Several criteria can be used to filter false
matchings: strength, uniqueness and form of the correlation peak (figure 11),
and right-left validation. This last step inverses the role of left and right images
and considers as valid only those matches for which the reverse correlation has
fallen on the initial point in the left image [6].

Sub-pixel estimates are obtained by fitting a parabole to the correlation
values surrounding the optimum. The quality is accessed not only by the cor-
rectness of the estimate, but also by the ability to filter out false matchings
using the validity criteria.
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The better similarity measurement has been selected in order to improve
the robustness of the process with respect to environmental conditions; the
CT score gives more matches, less artefacts in the disparity map and a better
reconstruction than the classical scores. Nevertheless matching can be found
only on textured areas of the images. On fig. 12, the disparity map is presented
for an image of a pasenger in the cockpit: white points correspond to unmatched
pixels, in homogeneous areas of the original image; generally, the correlation is
very good on the passenger head or hands (skin, hair); CT score is better than
ZNCC score.

At last the 3D reconstruction process based on triangulation techniques and
on the calibration results, computes a depth map from the disparity map.

The performances of the stereovision method are good enough to fulfill real-
time and accuracy requirements. The complete algorithm is executed in 250 ms
on 128 x 128 images; it provides a 3D dense reconstruction on the passenger
seat (between 3000 and 5000 3D points) so that a large variety of situations
(e.g. passenger in advanced or extended position, different objects, ...) could
be sufficiently characterized to provide good inputs for a classifier. With such
a frequency, the airbag requirements are not satisfied, especially for fast pas-
senger motions (fast transition between safe and unsafe situations); the stereo
frequency could be increased easily to 20Hz using a multi-resolution approach.

Figure 12: Stereo matching examples with a passenger on the seat: (a) original
image, (b) disparity map with CT score, (c) disparity map with ZNCC score

3.2 Classification from stereovision

By now, the passenger seat classification is performed using a classical case-
based approach. During a supervised learning step, a lot of prototypes are
recorded for each class to be identified. The figure 9 presents some images of
the large data base built in order to learn some characteristic configurations
of the passenger seat. With respect to the NHTSA requirements concerning
the firing conditions of the airbag, the work has been focused on identifying the
following classes: (1) empty seat, (2) passenger in normal position, (3) passenger
out of position, (4) empty booster, (5) child in a booster, (6) Front facing baby
seat, (7) Rear facing baby seat, (8) object(s) on the seat.

The out-of-position configurations of a passenger (figure 3.2) are mainly



defined from the head position with respect to the airbag. Three areas are
defined by two vertical planes parallel to the dashboard (figure 6); if some
significative parts of the passenger are detected in the critical out-of-position
area, then, the airbag cannot be inflated, while in the intermediate area, only a
depovered inflation is desirable.

Figure 13: Out-of-position passen- Figure 14: Pertinent areas in the
gers cockpit

One difficult issue consists in identifying these situations without any false
alarm or misclassification: the real time constraints are very severe, because the
configuration changes could occur very fast (for example, a quick head motion in
order to switch on the radio). A trade-off must be found between the computa-
tion time required by the data acquisition and analysis, against the classification
capabilities of the system: with very few data processing, it is possible to detect
the presence of something in the critical out-of-position area, but it is more than
likely that mistakes or false alarms will occur.

The classification strategy uses a scene description as a set of local attributes
(a specific detail located in a precise location: for example, number of points
acquired in a given area of the cockpit, that could allow to identify a rear facing
baby seat) or global ones (for example, number of points that belongs to planar
faces, that could be significative to recognize an empty seat). These attributes
must be discriminant (they must allow to distinguish between the classes), but
also, generic, so that a generalization can be automatically obtained from the
large learning data set, and invariant with respect to the possible modifications
of the cockpit geometry, mainly the seat translation and the orientation of the
seat back. This invariance issue is important, because all global attributes could
fail, if they are not adapted with respect to the seat position and orientation.

An iterative method has been designed in order to find these seat parameters:
from a initial position given by the lower point located in the left side of the
3D image and the higher point located in the right side, intermediate points
belonging to the sitting or to the back part of the seat are integrated iteratively
to the seat boundary, using some shape constraints that must be verified by



Figure 15: (a) Camera prototype, (b) vehicle integration, (c) cockpit represen-
tation

this boundary (maximum translation, maximum orientation, planarity...). The
figure 17 shows the seat configuration for some images presented in figures 9
and 3.2.

Once this seat configuration has been computed, some specific areas are
defined on figure 3.2: the segment on the left corresponds to the dashboard.
The two security areas are limited by planes and five parallelipipedic boxes are
defined on the seat to classify the passenger seat occupancy: two boxes for the
seat volume (on the seat sitting and the seat back), one box above the sitting
area and two boxes with variable heights along the seat back (the lower one for
the passenger body, the higher one for the head). A preliminary classification,
using as attributes, the number of 3D points which belong to these seven areas,
gives good results, but it is not sufficient to deal with all possible configurations.

Within the context of passenger safety, the head plays a central role. Locat-
ing the head with respect to the dashboard is an important issue and fast, robust
techniques need to be developed. Some segmentation methods have been ex-
plored based either on the density or the curvature estimate on each 3D point;
such an approach could be performed only on a ROI corresponding to some
boxes described here before. From the depth map, using a density criterion to
extract the head when a passenger is detected, an accurate enough positioning
of the head within the cockpit (~ 2 ¢m) can be estimated.

3.3 Stereovision prototype

A low-cost and compact stereo head, developped for this application, consists in
two synchronized low-cost sensor, mounted on the same board (figure 15-(a)).
It integrates a wide angle NIR illuminator and shutter/gain can be controlled
by means of a RS232 interface, with respect to the intensity computed in some
areas of the images. Each sensor is equipped with a low-cost and compact
optical lens (focal: 2.1 mm); such optic has high vignetting and distortion. In
order to limit these drawbacks, only the central part of the images is processed;
in this configuration, the perception field is bounded to a 110° view angle. On
the figure 16, an image of the calibration pattern (located 25 ¢m in front of the
stereo head) shows clearly the importance of the calibration step required to
correct the distortion in further processings.



This stereo prototype has been integrated in the cockpit of a demo car(figure 15-
(b)). The different algorithms have been implemented in ”"C” code within a
Windows NT environment; a dedicated Man-Machine-Interface allows to evalu-
ate the method results(figure 15-(c)). First classification algorithms have been
tested successfully (figure 17), but more intensive validations must be performed.

Figure 17: 3D points and seat configuration for images presented on figure 9

4 Comparison of the two approaches

3D vision based on structured light sensor shows some very good advantages for
automotive application:

e The sensor can be realized in CMOS technology, cheap and high integrated
solution can be viewed.

e First results show that 3D reconstruction using a restricted number of
information allows a quite fast process with respect to the airbag require-
ments but some limitations exists in terms of resolution.

e Intensity images are still available and can be used for complementary
processing.



e An homogeneous distribution of the light dots in the scene allows very
good reconstruction capabilities.

Nevertheless some improvements must be brought concerning the compact-
ness of the measurement device (camera + light emitter) and with respect to
uncontrolled light disturbances and backlight.

Advantages of stereoscopic vision are mainly related with the very good
resolution of the reconstructed image useful for classification purposes. In ad-
dition it is weakly influenced by backlights. As it consists in a passive system,
eye safety requirements are not concerned with. Some remaining drawbacks
concern the computation time and the non-homogeneous distribution of the re-
constructed 3D image, so that it cannot be guaranteed that the field of interest
will be always described.

5 Conclusion

New airbag generations will need more and more information about the automo-
bile cockpit occupancy: nature of the occupant, distances to the dashboard. .. It
is now obvious that 3D reconstruction of the cockpit inner space is necessary.
Uses of video sensing for extracting this information look to be one of the real
potential solutions. This technology is supported by the drastic reduction of the
sensor cost but also by the exponential improvement and cost reduction of the
image processing hardware. Within Siemens VDO Automotive, in collaboration
with some labs and institutes, both in France and Germany, several video-based
approaches have been evaluated for performing 3D reconstruction: conventional
stereoscopic vision, 3D vision based on structured lightning, and time of flight
techniques.

The results presented within this paper show the very high potentialities
of the two first mentionned techniques. Beside the well known stereoscopic
technique which gives a very high reliability of the reconstructed 3D images, but
still remains slightly heavy in terms of computational time, uses of a structured
light sensor looks to propose an interesting compromise between accuracy and
speed. A combination of the two techniques should give optimal results: the
presence of light dots on non textured areas should give 3D data where stereo
by itself could not find points.

A strong interest of cars manufacturers, customers, governmental organiza-
tions has been identified for such 3D perception concepts. New “smart airbag”
generation including partial inflation capabilities, should take into account in-
formation provided by such intelligent perception systems.
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