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Abstract—This paper addresses the problem of parallelizing the
Rapidly-exploring Random Tree algorithm on large-scale distributed-
memory architectures, using the Message Passing Interface. We propose
three parallel versions of RRT, evaluate them on different motion plan-
ning problems, and thoroughly analyze the various factors influencing
their performance.
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I. INTRODUCTION

Due to a wide range of applications, sampling-based path planning
has benefited from a considerable research effort [2], [3]. It has
proven to be an effective framework suitable for a large class of
problems in various domains such as autonomous robotics, aerospace,
manufacturing, virtual prototyping, computer animation, structural
biology, and medicine. These application fields yield increasingly
difficult, highly-dimensional problems with complex geometric and
differential constraints.

The Rapidly-exploring Random Tree (RRT) [4] has become a
popular algorithm for solving single-query motion planning prob-
lems. It is suited to solve robot path planning problems involving
holonomic, nonholonomic, kinodynamic, or kinematic loop-closure
constraints [4]–[6]. It is also applied to planning in discrete spaces or
for hybrid systems [7]. In computational biology, it is used to analyze
genetic network dynamics [8] or protein-ligand interactions [9].
However, when applied to complex problems, the incremental growth
of an RRT can become computationally expensive [10]–[13]. Some
techniques have been proposed to improve the efficiency of RRT, by
controlling the sampling domain [10], reducing the complexity of the
nearest neighbor search [11], or using gap reduction techniques [12].

Our objective is to further investigate RRT improvement by ex-
ploiting speedup from parallel computation. Some results have been
obtained in that direction (Section II). However, existing work consid-
ers mainly shared-memory architectures and small-scale parallelism,
up to 16 processors [14]–[16]. In this work, we are interested in what
can be achieved by larger-scale parallelism. We focus on parallelizing
RRT on distributed-memory architectures, which require using the
Message Passing Interface (MPI).

Our contribution is threefold. First, we propose three parallel
versions of RRT, based on classical parallelization schemes: OR par-
allel RRT, Distributed RRT and Manager-worker RRT (Section III).
Besides the abstract view provided by the algorithms themselves, we
also present the main technicalities involved in their development.
Then, we evaluate the algorithms on several motion planning prob-
lems and show their differences in behavior (Section IV). Finally,
we analyze their performance in order to understand the impact
of several characteristics of the studied problems (Section V). The
parallel algorithms have been kept voluntarily simple to allow us to
better isolate the effect of each of the influencing factors.
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II. RELATED WORK

A. Parallel Motion Planning

The idea of improving motion planning performance by using
parallel computation has been raised in prior work. In a survey of
some early work [17], a classification scheme is proposed to review
different motion planning approaches and some related parallel
processing methods. A more recent trend is to exploit the current
multi-core technology available on many of today’s PCs, which easily
allows having multiple threads collaboratively solving a problem [18].
Another recent trend is the use of shared-memory models on many-
core Graphics Processing Units (GPUs) [19].

Among the most classical approaches, the embarrassingly parallel
paradigm exploits the fact that some randomized algorithms, such as
the Probabilistic Road-Map (PRM), are what is termed “embarrass-
ingly parallel” [20]. The massive inherent parallelism of the basic
PRM algorithm enables a significant speedup, even with relatively
simplistic parallelizing strategies, especially on shared-memory archi-
tectures. In this approach, computation time is minimized by having
several processes cooperatively building the road-map.

Another simple approach is known as the OR parallel paradigm. It
was first applied to theorem proving, before being used to provide a
parallel formulation for the Randomized Path Planner (RPP) [21]. Its
principle is to have several processes running the same sequential
randomized algorithm, each one trying to build its own separate
solution. The first process to reach a solution reports it and broadcasts
a termination message. The idea here is to minimize computing
time by finding a small-sized solution. Despite its simplicity, the OR
parallel paradigm has been successfully applied to other randomized
algorithms, such as in [22].

A more sophisticated approach is a decentralized master-client
scheme developed to distribute the computation of the Sampling-
based Roadmap of Trees (SRT) algorithm [23]. In a first step,
several trees that can be RRTs or Expansive Space Trees (ESTs)
are computed in parallel by all processes. In a second step, several
master processes cooperate to evenly distribute the computation of
edges linking these trees, among their respective client processes.

More generally, an approach based on growing several independent
trees can lead to a straightforward parallelization. This is the case
for the Rapidly exploring Random Forest of Trees (RRFT) [8], and
for RRTLocTrees where several local trees are grown in difficult
passages and connected to a global tree [24]. However, the focus
of this paper lies elsewhere, our aim being to provide a parallel
version of the basic (single-tree) RRT algorithm. Furthermore, this
work is not about parallelizing subroutines of RRT, such as is done
for collision detection in [19], nor about parallelizing specific variants
of RRT, such as is done for the any-time RRT in [25]. Finally, our
aim is to reduce the runtime of RRT and not to improve the quality
of the paths it returns.

B. Parallel RRT

There is only little work related to parallelizing RRT [14]–[16].
The first one [14] applies the simple OR parallel and embarrassingly
parallel paradigms, and a combination of both. To benefit from the
simplicity of the shared-memory model, the embarrassingly parallel
algorithm is run on a single symmetrical multiprocessor (SMP) node
of a multi-nodes parallel computer. The only communication involved
is a termination message that is broadcast when a solution is reached,
but some coordination is required to avoid concurrent modifications
of the tree. This scheme does not make use of the full computational
power of the parallel platform, contrary to the OR parallel algorithm,
which is run on all processors of all nodes. The same paradigms
are also applied on a dual-core CPU in [15], where they are renamed



Algorithm 1: OR parallel RRT
input : the configuration space C, the root qinit

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T ) or received(endMsg) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findBestNeighbor(T , qrand)
5 qnew ← extend(qnear , qrand)
6 if not tooSimilar(qnear , qnew) then
7 addNewNodeAndEdge(T , qnear , qnew)

8 if stopCondition(T ) then
9 broadcast(endMsg)

OR and AND implementations. In the Open Motion Planning Library1

(OMPL) of the ROS framework, the AND paradigm is implemented
via multi-threading, and thus for shared memory.

To the best of our knowledge, there has been only one attempt
to develop a parallel version of RRT on a distributed-memory
architecture. In [16], the construction of the tree is distributed among
several autonomous agents, using a message-passing model. However,
no explanation is given on how the computation is distributed, and
how the tree is reconstructed from the parts built by the agents.

III. PARALLELIZING RRT

For scalability purposes, we have chosen to parallelize RRT
on distributed-memory architectures, using the message-passing
paradigm, one of the most widespread approaches for programming
parallel computers. Since this paradigm imposes no requirement
on the underlying hardware and requires an explicit parallelization
of the algorithms, it enables a wide portability. Any algorithm
developed following this approach can also be run on a shared-
memory architecture, even though it would mean not making an
optimal use of this architecture. Besides, scalable distributed-memory
architectures are rather commonly available, in the form of networks
of personal computers, clustered workstations or grid computers.
To develop our parallel algorithms, we have chosen to comply to
the standard and widely-used Message Passing Interface2 (MPI). Its
logical view of the hardware architecture consists of p processes, each
with its own exclusive address space. Our message-passing programs
are based on the Single Program Multiple Data (SPMD) paradigm
and follow a loosely synchronous approach: all processes execute
the same code, containing mainly asynchronous tasks, but also a few
tasks that synchronize to perform interactions.

A. OR Parallel RRT

The simplest way to parallelize RRT is to apply the OR parallel
paradigm. Algorithm 1 presents our version of an OR parallel RRT
that is similar to the one in [14]. Each process computes its own
RRT (lines 1-7) and the first to reach a stopping condition broadcasts
a termination message (lines 8-9). This broadcast operation cannot
actually be implemented as a regular MPI Broadcast routine, as
this collective operation would require all processes to synchronize.
Rather, the first process to finish sends a termination message to
all others, using MPI Send routines matched with MPI Receive
routines. As it is not known beforehand when these interactions
should happen, a non-blocking receiving operation that will “catch”
the termination message is initiated before entering the while loop.
The received(endMsg) operation is implemented as an MPI Test

1http://www.ros.org/doc/api/ompl/html
2http://www.mpi-forum.org

Algorithm 2: Distributed RRT
input : the configuration space C, the root qinit

output: the tree T

1 T ← initTree(qinit)
2 while not stopCondition(T ) or received(endMsg) do
3 while received(nodeData(qnew , qnear)) do
4 addNewNodeAndEdge(T , qnear , qnew)

5 qrand ← sampleRandomConfiguration(C)
6 qnear ← findBestNeighbor(T , qrand)
7 qnew ← extend(qnear , qrand)
8 if not tooSimilar(qnear , qnew) then
9 addNewNodeAndEdge(T , qnear , qnew)

10 broadcast(nodeData(qnew , qnear))

11 if stopCondition(T ) then
12 broadcast(endMsg)

routine checking the status (completed or pending) of the request
generated by the non-blocking receiving operation. Finally, in case of
several processes reaching a solution at the same time, the program
ends with a collective operation for processes to synchronize and
agree on which one should report its solution. Note that communi-
cations are negligible in the total runtime of the OR parallel RRT.

B. Collaborative Building of a Single RRT

Instead of constructing several RRTs concurrently, another possi-
bility is to have all processes working collaboratively on building a
single RRT. Parallelization is then achieved by partitioning the task
of building an RRT into sub-tasks assigned to the various processes.
We propose two ways of doing so, based on different decomposition
techniques. (1) Since constructing an RRT consists in exploring
a search space, we can use an exploratory decomposition [26].
Each process performs its own sampling of the search space – but
without any space partitioning involved – and maintains its own
copy of the tree, exchanging with the others the newly constructed
nodes. This leads to a distributed (or decentralized) scheme where
no task scheduling is required, aside from a termination detection
mechanism. (2) Another classical approach is to perform a functional
decomposition of the task [27]. In the RRT algorithm, two kinds of
sub-tasks can be distinguished: the ones that require knowledge of
the tree (initializing it, adding new nodes and edges, finding the best
neighbor of qrand, and evaluating the stopping conditions) and those
that do not (sampling a random configuration and performing the
extension step). This leads to the choice of a manager-worker (or
master-slave) scheme as the dynamic and centralized task-scheduling
strategy, the manager being in charge of maintaining the tree, and the
workers having no knowledge of it. We now present both schemes
in greater details.

1) Distributed RRT: Our version of a Distributed RRT is given by
Algorithm 2. In each iteration of the tree construction loop (lines 2-
10), each process first checks whether it has received new nodes
from other processes (line 3). If this is the case, the process adds
them to its local copy of the tree (line 4). Then, it performs its own
expansion attempt (lines 5-7). If it is successful (line 8), the process
adds the new node to its local copy of the tree (line 9) and broadcasts
it (line 10). Adding all the received nodes before attempting an
expansion ensures that every process works with the most up-to-date
state of the tree. It is important to note that processes never wait for
messages; they simply process them as they arrive. At the end, the
first process to reach a stopping condition broadcasts a termination
message (lines 11-12). This broadcast operation is implemented in
the same way as for the OR parallel RRT. Similarly, the broadcast of



Algorithm 3: Manager-worker RRT
input : the configuration space C, the root qinit

output: the tree T
1 if processID = mgr then
2 T ← initTree(qinit)
3 while not stopCondition(T ) do
4 while received(nodeData(qnew , qnear)) do
5 addNewNodeAndEdge(T , qnear , qnew)

6 qrand ← sampleRandomConfiguration(C)
7 qnear ← findBestNeighbor(T , qrand)
8 w ← chooseWorker()
9 send(expansionData(qrand, qnear), w)

10 broadcast(endMsg)
11 else
12 while not received(endMsg) do
13 receive(expansionData(qrand, qnear), mgr)
14 qnew ← extend(qnear , qrand)
15 if not tooSimilar(qnear , qnew) then
16 send(nodeData(qnew , qnear), mgr)

new nodes (line 10) is not implemented as a regular MPI Broadcast
routine, which would cause all processes to wait for each other. As
a classical way to overlap computation with interactions, we again
use MPI Send routines matched with non-blocking MPI Receive
routines. That way, the received(nodeData) test (line 3) is
performed by checking the status of the request associated with a
non-blocking receiving operation initiated beforehand, the first one
being triggered before entering the while loop, and the subsequent
ones being triggered each time a new node is received and processed.
Again, the case of several processes reaching a solution at the same
time has to be dealt with. Finally, a Universally Unique Identifier
(UUID) is associated with each node, in order to provide processes
with a homogeneous way of referring to the nodes.

2) Manager-Worker RRT: Algorithm 3 presents our version of
a Manager-worker RRT. The program contains the code executed
by the manager (lines 2-10) and the workers (lines 12-16). The
manager is the only process having access to the tree. It performs
the operations related to its construction, and delegates the expansion
attempts to workers. In general, the expansion is the most compu-
tationally expensive stage in the RRT construction, since it involves
motion simulation and validation. The manager could also delegate
the sampling step, but this would not be worthwhile because of the
low computational cost of this operation in our settings (i.e. in the
standard case of a uniform random sampling in the whole search
space): the additional communication cost would then outweigh any
potential benefit.

At each iteration of the tree construction (lines 3-9) the manager
first checks whether it has received new nodes from workers (line 4).
If so, it adds them to the tree (line 5). Then, it samples a random
configuration (line 6) and identifies its best neighbor in the tree
(line 7). Next, it looks for an idle worker (line 8), which means
potentially going through a waiting phase, and sends it the data
necessary to perform an expansion attempt (line 9). Finally, when
a stopping condition is reached, it broadcasts a termination message
(line 10). On the other hand, workers are active as long as they
have not received this message (line 12), though they can go through
waiting phases. During each computing phase, a worker receives
some data from the manager (line 13) and performs an expansion
attempt (line 14). If it is successful (line 15), it sends the newly
constructed node to the manager (line 16).

Contrary to the previous ones, this algorithm does not require

non-blocking receiving operations for broadcasting the termination
message. Workers being idle if they receive no data, there is
no need to overlap computation with interactions. Before entering
a computing phase, a worker waits on a blocking MPI Receive
routine implementing both the receive(expansionData) oper-
ation and the received(endMsg) test. The type of message
received determines its next action: stopping or attempting an expan-
sion. On the manager side, blocking MPI Send routines implement
the broadcast(endMsg) and send(expansionData) operations.
The remaining question about the latter is to which worker should the
data be sent. An important task of the manager is to perform load-
balancing among workers, through the chooseWorker() function.
For that, it keeps track of the status (busy or idle) of all workers
and sends one sub-task at a time to an idle worker, choosing it in
a round robin fashion. If all workers are busy, the manager waits
until it receives a message from one of them, which then becomes
idle. This has two consequences. First, on the worker side, the
send(nodeData) operation covers two MPI Send routines: one in-
voked to send the new node when the expansion attempt is successful,
and the other containing no data used otherwise. Second, on the
manager side, two matching receiving operations are implemented
via non-blocking MPI Receive routines, allowing for the use of
MPI Wait routines if necessary. This also enables to implement
the received(nodeData) test with an MPI Test routine. These
non-blocking receiving operations are initiated before entering the
while loop, and re-initiated each time the manager receives and
processes a message. Finally, to reduce the communication costs
of the send(nodeData) operation, workers do not send back the
configuration qnear . Rather, the manager keeps track of the data it
sends to workers, which also releases us from having to use UUIDs.

C. Implementation Framework

Since the sequential implementation of RRT we wanted to par-
allelize was written in C++, and MPI being primarily targeted at
C and Fortran, we had to use a C++ binding of MPI. We were
also confronted with the low-level way in which MPI deals with
communications, requiring the programmer to explicitly specify the
size of each message. In our application, messages were to contain
instances of high-level classes, whose attributes could be pointers or
STL containers. Thus, we have decided to exploit the higher-level
abstraction provided by the Boost.MPI library3. Coupled with the
Boost.Serialization library4, it enables processes to easily exchange
class instances, making the tasks of gathering, packing and unpacking
the underlying data transparent to the programmer. Finally, we have
used the implementation of UUIDs provided by the Boost library5.

IV. EXPERIMENTS

Before presenting the results of the experiments themselves, we
first introduce the metrics used to evaluate the parallel algorithms.
We also present the parallel platform we have worked on, and the
motion planning problems we have studied. We then explain the two
experiments we have performed, and report the obtained results. A
detailed analysis of the performance of the parallel algorithms will
be the focus of Section V.

A. Performance Metrics

When evaluating a parallel algorithm on a given problem, we want
to know how much performance gain it achieves over its sequential

3http://www.boost.org/doc/libs/1 47 0/libs/mpi
4http://www.boost.org/doc/libs/1 47 0/libs/serialization
5http://www.boost.org/doc/libs/1 47 0/libs/uuid



Problem name  Passage  Corridor  Roundabout 

Problem type 
      

TS  (s) 48 ± 18 1250 ± 1001 38 ± 18 
NS 644 ± 119 1027 ± 695 655 ± 336 Sequen

tial RRT 

XS 1807 ± 690 45374 ± 40855 1130 ± 456 
Fig. 1. Simplified schematic representation of the configuration spaces of
the three studied problems, and numerical results obtained with the sequential
RRT including potential energy computation (first experiment). Average values
over 100 runs (and standard deviation) are given for the sequential runtime,
TS (in seconds), the number of nodes in the final tree, NS , and the number
of expansion attempts, XS .

counterpart. Aimed at measuring so, the speedup S of a parallel
algorithm run on p processors is defined as the ratio of the runtime
of its sequential counterpart to its own runtime: S(p) = TS / TP (p)
[26], [27]. The parallel runtime TP (p) is measured on a parallel
computer, using p processors, and the sequential runtime TS is mea-
sured on one processor of the same computer. We define TP (p) (resp.
TS) as the mean time needed to reach a solution, by averaging the
runtimes obtained over 100 executions of a parallel (resp. sequential)
algorithm. We then evaluate the scalability of a parallel algorithm,
i.e. whether the speedup increases in proportion to the number of
processors. Another common metric we use is the efficiency E of a
parallel algorithm, which is defined as the ratio of the speedup to
the number of processors: E(p) = S(p) / p [26], [27]. For a given
number of processors, we analyze the evolution of the efficiency with
respect to the computational cost of the studied problem.

B. Parallel Computer Architecture

The numerical results presented in this paper have been obtained
by running the algorithms on MareNostrum, the parallel platform
of the Barcelona Supercomputing Center. It is an IBM R© cluster
platform composed of 2560 IBM R© BladeCenter R© JS21 blade servers
connected by a MyrinetTM local area network warranting 2 Gbit/s of
bandwidth. Each server includes two 64-bit dual-core PowerPCTM

970MP processors at 2.3 GHz, sharing 8 GB of memory. The
implementation of MPI installed on this platform is MPICH26.

C. Motion Planning Problems Studied

We have evaluated the algorithms on three motion planning prob-
lems involving molecular models. The application we have used is
the molecular motion planning toolkit we are currently develop-
ing [9]. However, it is important to note that these algorithms are
not application-specific and can be applied to any kind of motion
planning problem. The studied problems involve free-flying objects
(i.e. six degrees of freedom)7. They are characterized by different
configuration-space topologies (cf. Fig. 1). Passage is a protein-ligand
exit problem, where a ligand exits the active site of a protein through
a pathway that is relatively short and large but locally constrained by
several side-chains. Corridor is a similar problem, but with a longer
and very narrow exit pathway, i.e. more geometrically constrained

6http://www.mcs.anl.gov/research/projects/mpich2
7To facilitate the evaluation of the algorithms, we have chosen not to

increase dimensionality. Increasing it would mainly raise the computational
cost of the nearest neighbor search. Note that, however, the cost of this
operation becomes almost dimension-independent when using projections on
a lower-dimension space, without a significant loss in accuracy [28].

than Passage. In Roundabout, a protein goes around another one in
an empty space, thus involving the weakest geometrical constraints,
but the longest distance to cover.

D. First Experiment - Speedup Measurements

The first experiment we have conducted aims at studying the
speedup and scalability of the parallel versions of RRT. Tests have
been carried out while considering a computational cost for the RRT
expansion significantly greater that the communication cost. This is
a favorable situation for parallelization using MPI (as will illustrate
the results of the second experiment in Section IV-E) because the
communication overhead can be outweighed by the sharing of high-
cost workload-units between processes [27]. Such a situation happens
when planning motions of complex systems (robots or molecules), as
further discussed in Section V-D. In the present context, the expansion
cost is dominated by the energy evaluation of molecular motions,
which replaces simple collision detection, and exemplifies a planning
problem requiring high-cost expansions.

Fig. 1 presents the results obtained when solving the three problems
with the sequential RRT in its Extend version [4], and considering
the aforementioned conditions (i.e. high expansion cost). Fig. 2
presents the scalability achieved by the three parallel algorithms
on each problem. The OR parallel RRT always shows very poor
speedup and scalability. On the other hand, the speedup achieved by
the Distributed RRT and Manager-worker RRT can be really high.
Differences between problems are significant, the best speedup being
achieved on the most constrained problem, Corridor, then Passage,
then Roundabout. These results are further explained in the analysis
presented in Section V.

E. Second Experiment - Efficiency Measurements

In our second experiment, we analyze the evolution of the effi-
ciency of the parallel algorithms in relation to the computational cost
of an RRT expansion. In parallel programming, it is generally ob-
served that efficiency improves as the computational cost of a process
workload-unit increases wrt the communication overhead [27]. To test
that, we run a controlled experiment in which we artificially increase
the cost of the RRT expansion to emulate different settings. We start
with a low-cost expansion setting (where motion validation is reduced
to collision detection, i.e. without energy evaluation). To increase
the expansion cost, we repeat t times the collision detection test in
the extend() function. The expansion cost c can then be estimated
by dividing the runtime of the sequential RRT by the number of
expansion attempts. Finally, c is varied by varying t.

Fig. 3 shows how the speedup of the three algorithms scales with
respect to the expansion cost, when run on 32 processors. As the
number of processors is fixed, efficiency is proportional to speedup.
The efficiency of the OR parallel RRT does not scale at all with
respect to c: the ratio between computation and communication costs
does not influence speedup. On the other hand, this ratio has a strong
impact on the speedup of the Distributed RRT and Manager-worker
RRT. They both achieve a very low speedup when c is low: the first
point of each curve, obtained with t = 1, shows that in this case the
parallel version is even slower than the sequential one (i.e. S < 1).
When c increases, both algorithms show a similar and important
increase in efficiency. The magnitude of this increase is strongly
influenced by the studied problem: it is the greatest on the most
constrained problem, Corridor (for which almost optimal efficiency
is achieved), then Passage, then Roundabout. When c is high, making
communication load insignificant compared to computation load, the
efficiency reaches a plateau.
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Fig. 2. Scalability of the three parallel algorithms on the Passage, Corridor
and Roundabout problems (first experiment). Both the observed speedup and
the speedup estimated by the models presented in Section V are reported.

V. ANALYSIS OF THE PARALLEL ALGORITHMS

The experiments we have presented provide the first clues on
the differences in behavior between the parallel versions of RRT.
However, the resulting speedup curves are not sufficient to understand
performance variations due to the problem type, the number of
processors involved or the computational cost of the RRT expansion.
This is what we analyze now for each parallel algorithm.

A. OR Parallel RRT

The OR parallel RRT does not rely on sharing the computation
load among processes, but on finding small-sized solutions that are
faster to compute. The more processes are involved, the greater is the
chance to find a solution that can be computed quickly. On average,

the number of expansion attempts performed by the OR parallel RRT
on p processors, XP (p), decreases with p. Similarly, the number
of nodes in the tree, NP (p), decreases with p (cf. Fig. 4). If we
express the parallel runtime as TP (p) = XP (p) × c, where c is
the computational cost of the RRT expansion, we get that TP (p)
decreases with p. If the sequential runtime is similarly expressed as
TS = XS ×c, with XS the number of expansion attempts performed
by the sequential RRT, we have:

S(p) =
XS

XP (p)
(1)

Fig. 2 illustrates the evolution with respect to p of both the
observed speedup (computed using runtimes averaged over 100 runs)
and the speedup estimated by (1) (computed using values of XS and
XP (p) averaged over 100 runs). The graphs show that the estimated
speedup values fit very well the observed data. Important features of
the behavior of the OR parallel RRT are highlighted by (1). First, S
does not depend on the expansion cost c because XP does not depend
on it. This confirms what could be intuitively deduced from the fact
that the efficiency curves of the OR parallel RRT are more or less flat
(cf. Fig. 3). Second, the only factor influencing the evolution of S(p)
is the variation of XP (p). XP (p) decreases with p, and its lower
bound is the minimum number of expansion attempts required to
reach a solution. This explains why S(p) increases with p towards an
asymptotic value Smax (equal to 2, 8 and 2.7 for Passage, Corridor
and Roundabout respectively, as shown by Fig. 2). If we define the
variability in runtime by the ratio of the standard deviation to the
mean of the sequential runtime TS reported in Fig. 1, we get as values
0.4, 0.8 and 0.5 for Passage, Corridor and Roundabout respectively.
Table I shows that Smax is strongly positively correlated with this
sequential runtime variability.

B. Distributed RRT

In the Distributed RRT, the computation load is shared among
processes. It can again be expressed as XP (p) × c, where XP (p)
decreases with p thanks to work sharing. On the other hand, a
significant communication load is added to the global workload.
However, communications happen only after a new node is built.
If we assume that the tree construction is equally shared among
processes, from the NP (p) nodes present in the solution, each process
will have contributed NP (p) / p. Furthermore, each process sends
this amount of nodes to the others and receives this amount of
nodes from each of the p − 1 other processes. The communication
load can thus be estimated by 2 (p− 1) × (NP (p) / p) ×m, where
m is the cost of sending one node between two processes. Thus:
TP (p) = XP (p) × c + 2 (p−1)

p
× NP (p) × m. This highlights

the fact that the workload repartition between computation and
communication mainly depends on the ratio c

m
. Finally, we get:

S(p) =
XS × c

XP (p) × c + 2 (p−1)
p

×NP (p) ×m
(2)

Fig. 2 illustrates the evolution of both the observed speedup and
the speedup estimated by (2) (computed using numbers of nodes
and expansion attempts averaged over 100 runs). Here, m has
been estimated by running the Distributed RRT on two processors,
knowing that TP (2) = XP (2)× c + NP (2)×m. The graphs show
that the estimated speedup values provide a good fit to the observed
speedup of the Distributed RRT. The main factor allowing S(p) to
increase with p is work sharing, i.e. the decrease of XP (p). Another
factor increasing speedup is what we call the “OR parallel effect”: as
each process performs its own sampling of the search space, when
few processes are involved, on average the Distributed RRT reaches
smaller-sized solutions than the sequential RRT. Fig. 4 shows that
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Fig. 3. Evolution of the speedup and efficiency of the parallel algorithms
in relation to the computational cost of the RRT expansion, when solving
the Passage, Corridor and Roundabout problems on 32 processors (second
experiment). As a reference, the vertical line shows the expansion cost values
corresponding to what is measured in the first experiment.

this phenomenon is observed mainly on problems whose sequential
runtime variability is high, such as Corridor: in the middle graph,
the curve representing NP (p) for the Distributed RRT is below the
horizontal line representing NS when p is not too high. On the other
hand, an important factor hampers the increase in speedup. When an
RRT is built collaboratively, a side-effect of adding more processors
is to change the balance between exploration and refinement (these
terms being defined as in [10]) in favor of more refinement. This
translates into globally performing more expansion attempts (i.e.
p×XP (p) increases with p) and generating larger trees (i.e. NP (p)
increases with p, as can be seen in Fig. 4). In other words, the overall
computation load increases with p.

TABLE I
COMPARISON OF VARIOUS VARIABLES ASSOCIATED WITH THE PARALLEL

ALGORITHMS APPLIED TO THE Passage, Corridor AND Roundabout
PROBLEMS ON THE MARENOSTRUM PLATFORM.

Passage Corridor Roundabout
sequential runtime variability 0.4 0.8 0.5
OR parallel RRT Smax 2 8 2.7

Distributed RRT
p̄ 36 > 160 25

Smax 8.3 > 50 3.4

Manager-worker RRT
p̄ 22 36 18

Smax 7.8 21.4 3.5

The denominator of (2) represents the workload of a single process.
Even though the global (i.e. for all processes) computation load
increases with p, the local (i.e. for one process) computation load
XP (p) × c decreases with p. However, the other term in the sum,
representing the communication load, increases with p both because
of the increase in NP (p) and also because 2 (p − 1) / p increases
with p from 1 to 2. The decrease in computation load seems to
dominate, since Fig. 2 mainly shows an increase in speedup with p for
the Distributed RRT. However, it appears from the least constrained
problem, Roundabout, that when p becomes too high the speedup
starts to decrease slightly. The optimal observed speedup Smax is
8.3 and 3.4 for Passage and Roundabout, and seems to be greater
than 50 for Corridor (cf. Fig. 2). It is achieved for an optimal value
of p, denoted by p̄, equal to 36 and 25 for Passage and Roundabout,
and greater than 160 for Corridor (cf. Fig. 2). We also observe
in Table I that p̄ and Smax are strongly positively correlated: the
more processes can collaborate without increasing too much the
refinement, the higher Smax is. The magnitude of the increase in
refinement can be observed through the magnitude of the increase in
NP (p) with p (cf. Fig. 4). It appears that problems characterized by
weak geometrical constraints, such as Roundabout, are more sensitive
to this issue, leading to poor speedup. The increase in refinement
also has a strong impact on the evolution of the efficiency of the
Distributed RRT. For problems characterized by strong geometrical
constraints, such as Corridor, the efficiency scales better with respect
to the expansion cost c (cf. Fig. 3).

C. Manager-Worker RRT

In the Manager-worker RRT, each expansion attempt is preceded
by a communication from the manager to a worker, and each
successful expansion is followed by a communication from a worker
to the manager. Since the message sent after a failed expansion is
empty, it can be ignored. In the trivial case of the manager using a
single worker, communication and computation cannot be overlapped,
and thus TP (2) = (XP (2) + NP (2)) × m + XP (2) × c, where
c is the expansion cost and m the cost of sending a message.
Running tests on two processors and using this formula allowed us
to estimate m. If more workers are available, two cases should be
considered. First, if communication is more costly than computation
(i.e. m > c) the manager cannot use more than two workers at
a time: while the manager sends some data to a worker, the other
worker has already finished its computation. In that case, we have
TP (p) = (XP (p) + NP (p)) × m > TS , and parallelization is
therefore useless. Second, if c > m, more than two workers can be
used, but the manager is still a potential bottleneck, depending on the
ratio between c and m. On a given problem and for a given value of
c, at most p̄ processors can be used, and thus the number of workers
effectively used is min(p − 1, p̄ − 1). Assuming the computation
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Fig. 4. Evolution of the number of nodes in the trees produced by the parallel
algorithms in relation to the number of processors, when solving the Passage,
Corridor and Roundabout problems (first experiment). The horizontal line
represents the number of nodes generated by the sequential RRT.

load is equally shared among these workers, we have:

S(p) =
XS × c

(XP (p) + NP (p)) ×m + XP (p)×c
min(p−1, p̄−1)

(3)

Again, the speedup values estimated by (3) show a very good fit to
the observed speedup of the Manager-worker RRT (cf. Fig. 2). The
model provided by (3) explains the evolution of the speedup of the
Manager-worker RRT with respect to p and c. When p ≤ p̄, S(p)
increases with p thanks to work sharing among workers. However,
when p > p̄, increasing p does not allow using more workers.
Therefore, S(p) reaches a plateau around a value Smax equal to
7.8, 21.4 and 3.5 for Passage, Corridor and Roundabout (cf. Fig. 2).
p̄ is given by the value of p for which S(p) reaches Smax: it is equal

TABLE II
RESULTS OBTAINED BY THE PARALLEL ALGORITHMS ON CACAO.

Passage Corridor Roundabout
OR parallel RRT Smax 2 8 2.4

Distributed RRT
p̄ 22 > 160 28

Smax 6.3 > 65 2.7

Manager-worker RRT
p̄ 25 31 23

Smax 8.8 23.5 3.2

to 22, 36 and 18 for Passage, Corridor and Roundabout (cf. Fig. 2).
Obviously, Smax is strongly positively correlated with p̄ (cf. Table I).
The second experiment shows that, on a given problem, p̄ increases
with c: the less significant the communication cost is compared to
the expansion cost, the more workers can be used. This explains why
we observe on Fig. 3 that S increases with c at first, and then reaches
a plateau: when p̄ reaches 32 (the number of processors used in the
experiment), S cannot increase anymore. Contrary to the Distributed
RRT, the Manager-worker RRT does not benefit from the “OR parallel
effect” (in Fig. 4 the curve of NP (p) is never below the horizontal
line representing NS). As a consequence, the Manager-worker RRT
shows a lower speedup than the Distributed RRT on problems with a
high variability in sequential runtime, such as Corridor (cf. Fig. 2).
Besides, it suffers from the increase in refinement, which translates
into XP (p) and NP (p) increasing with p, when p ≤ p̄ (cf. Fig. 4).
Again, problems characterized by weak geometrical constraints, such
as Roundabout, are more sensitive to the issue.

D. Discussion

To evaluate the influence of the system architecture, we have also
performed the two experiments presented in Section IV on another
parallel platform, Cacao, available in our laboratory. Cacao is a small
cluster platform composed of 24 HP servers, each including two
64-bit quad-core processors at 2.66 GHz, connected by a 10 Gbit/s
InfiniBand switch, and using OpenMPI. Our objective was to assess
(i) the influence of the used architecture on the performance of the
parallel algorithms and (ii) the goodness-of-fit of the models provided
by (1), (2) and (3). First, we observe that the models are robust and
also provide good estimations of the speedup achieved on Cacao.
Second, the results obtained on Cacao and reported in Table II are
very similar in terms of speedup and efficiency to those obtained
on MareNostrum (cf. Table I). Speedup values reached by the OR
parallel RRT are the same on both architectures because it involves
no communication. The Distributed RRT is more impacted by the
choice of the architecture than the Manager-worker RRT because
its “n to n” communication scheme makes it more sensitive to the
level of optimization of the MPI communications. As a result, when
communications are less efficient (as has been observed on Cacao)
the Distributed RRT can be outperformed by the Manager-worker
RRT on less constrained problems (such as Passage and Roundabout)
characterized by a low variability in sequential runtime.

One may wonder whether the Manager-worker RRT could be im-
proved by assigning workers batches of multiple expansion attempts
instead of single ones. We have evaluated this idea and obtained
mixed results. The drawback of this variant is that it further worsens
the main hindrance affecting the Manager-worker RRT, namely the
loss of balance between refinement and exploration. If k is the size of
a batch of expansion attempts, we observe that XP and NP increase
with k. On problems for which the success rate of an RRT expansion
is high (NS/XS = 1/3 for Passage and 1/2 for Roundabout) this
makes the speedup of this variant worse than that of the regular
Manager-worker RRT, even with very low values of k. Nevertheless,



we have noted that using batches of expansions slightly increases
speedup on the Corridor problem, where the success rate of an RRT
expansion is much lower (NS/XS = 1/50), except when k becomes
too high.

Algorithms involving the construction of several independent RRTs
can directly benefit from this work. For example, in the variant
of the bidirectional-RRT [4] where both trees are extended toward
the same random configuration, processes can be separated in two
groups getting random configurations from an extra process. More
sophisticated variants of RRT, such as ML-RRT [13] or T-RRT [29],
can be parallelized using the proposed schemes as such. Similar
sampling-based tree planners, such as RRT* [30] or the one based
on the idea of expansive space [31], can also benefit from this
work. Regarding the latter, since the propagate function is the
exact counterpart of the extend function of RRT, it could be
parallelized exactly in the same way as RRT. On the other hand,
parallelizing RRT* would be much more involved, except for the OR
parallel version. Besides new vertices, messages exchanged between
processes should also include added and removed edges, which would
increase the communication load. This could be balanced in the
Distributed version by the fact that the expansion is more costly in
RRT* than in RRT. However, since one RRT* expansion intertwines
operations requiring or not access to the tree, a Manager-worker
RRT* would likely be not very efficient.

An important question is about the generalizability of this work.
Our results show that problems for which the variability in sequential
runtime is high can benefit from the OR parallel RRT. Furthermore,
problems for which the computational cost of an RRT expansion
is high can benefit from the Distributed RRT and the Manager-
worker RRT. Knowing that the communication cost on the parallel
platforms we have used is about 1 ms, our results indicate that the
computational cost of the RRT expansion has to be at least one
order of magnitude greater. On the examples reported here, a good
speedup is achieved for an RRT expansion cost greater than 25 ms. In
the context of robot path planning, high-cost expansions may occur
in various situations. The first one is the case of high geometric
complexity. For example, on the flange benchmark from [32], the
computational cost of the RRT expansion is about 27 ms, and on
the exhaust disassembly problem from [33], it is about 28 ms on
the KineoWorksTM platform. High-cost expansions may also occur
for problems under kinodynamic constraints requiring a dynamic
simulator to be used for the expansion [18]. Another situation is
when path planning is performed on constraint manifolds embedded
in higher-dimensional ambient spaces [34]. This is especially costly
for complex systems such as closed-chain mechanisms. For example,
on a problem from [35] where the Justin robot has to transport a
tray in a cluttered environment, this cost is about 120 ms. Even
more complex examples are task-based motion planning problems
involving humanoid robots with dynamic constraints [36], [37]. For
example, on a problem from [37] where two HRP-2 robots have
to collaboratively transport a table, the expansion cost is greater
than one second. The expansion costs reported above indicate that
these robotic examples would yield similar (or even higher) speedup
than those we have analyzed. This illustrates that a large class of
practical problems with complex environments and robot systems
could potentially benefit for an MPI-based parallelization of RRT.

VI. CONCLUSION

We have proposed three parallel versions of RRT, designed for
distributed-memory architectures using MPI: OR parallel RRT, Dis-
tributed RRT and Manager-worker RRT. Our OR parallel RRT is sim-
ilar to the one in [14] and to those developed for shared memory [15].
Our Distributed RRT and Manager-worker RRT are the counterparts

for distributed memory of the AND (or embarrassingly parallel)
RRT [14], [15]. The experiments presented in this paper show that
parallelizing RRT with MPI can provide substantial performance
improvement on problems for which the computational cost of the
RRT expansion is significantly higher than the cost of a commu-
nication. Furthermore, the empirical results and the performance
analysis reveal that the best parallelization scheme depends on the
studied problem, the computational cost of the RRT expansion and
the parallel architecture.

The Distributed RRT and Manager-worker RRT provide a good
speedup, except on problems characterized by weak geometrical
constraints. In that case, they suffer from an important increase in
refinement (vs. exploration) that translates into a significant increase
of the overall computation and communication loads. On problems
showing a low variability in sequential runtime, depending on the
used architecture, the Manager-worker RRT can outperform the Dis-
tributed RRT. On the other hand, if the sequential runtime variability
is high, the Distributed RRT greatly outperforms the Manager-worker
RRT thanks to the “OR parallel effect”.

Based on the results we have obtained, and as future work, we
plan to improve the parallel schemes presented here. A limitation of
the Distributed RRT is that it could suffer from memory-overhead
issues because each process maintains its own tree. To address this
point, we plan to better exploit the architecture of cluster platforms,
by combining message passing with multi-threading, and allowing
the processes sharing the same memory to work on a common tree.
In the Manager-worker RRT, to avoid seeing the manager becoming a
bottleneck, a hierarchical approach involving several managers could
be developed. As part of our future work, we also plan to investigate
approaches combining the three paradigms. For example, integrating
the OR parallel RRT into the Manager-worker RRT could allow it to
perform better on problems showing a great variability in sequential
runtime. Instead of parallelizing RRT itself, we could also parallelize
its most computationally expensive components, such as the collision
detection, as is done in [19].
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