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Continuous Time Games Dynamics

A fundamental question in game theory:

▶ which solution concept is the result of a dynamic learning process where
the participants
“accumulate empirical information on the relative advantages of the
various pure strategies at their disposal”
(Nash’s PhD thesis).

To that end:

▶ numerous classes of dynamical systems have been proposed from both a
learning and a population perspective
(Hofbauer and Sigmund 1988, Weibull 1995, Sandholm 2010).
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Differences between dynamics

Many differences among game dynamics:

▶ they can be imitative (replicator) or innovative (Smith);

▶ rest points might properly contain the game’s Nash set or coincide with it;

▶ strictly dominated strategies might extinct or survive.

Many negative results:

▶ there is no class of uncoupled game dynamics that always converges to a
Nash equilibrium (Hart and Mas-Collel 2003).

▶ weakly dominated strategies may survive (Samuelson 1993).
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▶ The main unifying feature of game dynamics is that they are
first order dynamical systems over the game’s mixed strategy space.

▶ Can second order dynamics be introduced naturally in games?

▶ Do second order systems allow to have better convergence properties?
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Contributions

▶ We derive a wide class of higher order imitative dynamics;

▶ We show that strictly dominated strategies become extinct faster than the
corresponding first order dynamics;

▶ For Nash equilibria, an analogue of the folk theorem of evolutionary game
theory holds;

▶ In contrast to first order, weakly dominated strategies become extinct.
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Model and Notation

Basic ingredient: a multi-player game in normal form G ≡ G(N ,A, u):

▶ N = {1, . . . , N}: players of the game

▶ Ak = {α0, α1, . . . }: actions of player k

▶ Xk ≡ ∆(Ak): mixed strategies (or population distributions) of player k

▶ uk : X ≡
∏

k Xk → R: the players’ (multilinear) payoff functions

uk(x) =
∑k

α
xkαukα(x) where ukα(x) = uk(α;x−k)

Objective: write a well-behaved dynamical system of the form ẍ = F (x, ẋ).
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Towards Higher Order I: the Direct Approach

The most direct route to second order dynamics: add a dot!

For instance, take the standard (multi-population) replicator dynamics:

dxkα

dt
= xkα (ukα(x)− uk(x))

and write:

d2xkα

dt2
= xkα (ukα(x)− uk(x))

The problem:

These dynamics are not well-defined: solutions may escape the strategy space.
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Towards Higher Order II: Morgan and Fl̊am (2004)

A solution: project this velocity on the corresponding tangent cone

ẋ = v

v̇ = projTxX V (x)

where TxX is the tangent cone to X at x:

TxX = {z ∈
∏

k
RAk :

∑k

α
zkα = 0 and zkα ≥ 0 whenever xkα = 0}

Drawbacks: no justification, discontinuous dynamics, problem of existence...
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Towards Higher Order III - Infinite Potential Walls

Another solution: Erect infinite walls at the boundary of X:

ẍkα = xkα

(
ukα(x)−

∑k

β
xkβukβ(x)

)
+Wkα(xk, ẋk)

where:

1.
∑

α Wkα = 0

2. Wkα → ∞ as xkα → 0

3. Wkα → 0 as ẋkα → 0

Drawback: How to fix W? Which learning or population justification?
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Towards Higher Order IV: Reinforcement Learning loop

.. ...
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Towards Higher Order IV: Reinforcement Learning loop

...Pick strategies ....x(t) ∈ X
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Towards Higher Order IV: Reinforcement Learning loop

...Pick strategies.

Record payoffs

....x(t) ∈ X.

ukα(x(t))

.

Play
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Towards Higher Order IV: Reinforcement Learning loop

...Pick strategies.

Record payoffs

.

Score performances

.

Map performance

scores to strategies

....x(t) ∈ X.

ukα(x(t))

.

Play

.

ykα(t) 7→ ykα(t+ 1)

.

Score

.

y 7→ x

.

Update
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Which mapping from scores to strategies?

Key Step 1: mapping scores y ∈ RA to strategies x ∈ ∆(A).

Desired properties of the evaluation map G : RA → ∆(A):

1. Monotonicity: Gα(y) increases in yα.

2. Symmetry: yα ↔ yβ ⇐⇒ Gα ↔ Gβ

3. Independence of Irrelevant Alternatives: Gα

/
Gβ only depends on yα, yβ

4. Invariance: G(y0, . . . , yn) = G(y0 + c, . . . , yn + c) for any c ∈ R.
(Relative score differences is all that matters, just like adding a constant to the

game’s payoffs does not change the game.)

Proposition

If G : RS → ∆(S) satisfies the above properties, then G is a Gibbs map:

Gα(y) =
exp(λyα)∑
β exp(λyβ)

for some λ > 0.
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Reinforcement Learning: Updating Scores

Key Step 2: how to measure a strategy’s performance?

A simple updating rule: score’s rate of change is the instantaneous payoff:

ẏkα(t) = ukα(x(t))

Coupled with the Gibbs map xkα = exp(ykα)
/∑k

β exp(ykβ), this updating

rule yields the (first-order) replicator dynamics:

ẋkα = xkα

(
ukα(x)−

∑k

β
xkβukβ(x)

)
(Hofbauer et al. 09; Mertikopoulos-Moustakas 10; Rustichini 99; Sorin, 09)
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Reinforcement Learning: Second Order Effects

What if the rate of change corresponds to the cumulative payoff ?

ẏkα = Ukα

where Ukα(t) =
∫ t

0
ukα(x(s))ds is the cumulative payoff of strategy α.

A second derivation yields:

ÿkα(t) = ukα(x(t))

Coupled with the Gibbs map, we obtain the second order replicator dynamics:

..ẍkα = xkα (ukα(x)− uk(x)) + xkα

(
ẋ2
ka

/
x2
kα −

∑k
β ẋ2

kβ

/
xkβ

)
Important observations: the initial velocity ẏ(0) is 0.
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ẏkα = Ukα

where Ukα(t) =
∫ t

0
ukα(x(s))ds is the cumulative payoff of strategy α.

A second derivation yields:
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Population justification

ẋkα = xkα (Ukα(t)− Uk(t)), where Ukα(t) =
∫ t

0
ukα(x(s))ds

▶ By differentiating with respect to time we obtain:

ẍkα = ẋkα

(
Ukα −

∑k

β
xkβUkβ

)
+xkα

(
ukα −

∑k

β
xkβukβ

)
−xkα

∑k

β
ẋkβUkβ

▶ Some easy algebra yields
∑k

β ẋkβUkβ =
∑

β ẋ2
kβ

/
xkβ

▶ Consequently:

ẍkα = xkα (ukα(x)− uk(x)) + xkα

(
ẋ2
kα

/
x2
kα −

∑k

β
ẋ2
kβ

/
xkβ

)
This is the second order replicator equation !
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ẋkα = xkα (Ukα(t)− Uk(t)), where Ukα(t) =
∫ t

0
ukα(x(s))ds

▶ By differentiating with respect to time we obtain:
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ẋkβUkβ

▶ Some easy algebra yields
∑k
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Higher Order Imitative Dynamics

More generally, players may use other ”payoff observables” wkα : X → R to
update their scores:

y
(n)
kα = wkα(x)

leading to the higher order imitative dynamics:

..x
(n)
kα = xkα

(
wkα(x)−

∑k
β xkβwkβ(x)

)
+ xkα

(
Rn−1

kα −
∑k

β xkβR
n−1
kβ

)
where Rn−1

kα is the higher order adjustment term of the replicator dynamics.
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Examples I

First and second order replicator dynamics in a dominance solvable game.
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Examples II

First and second order replicator dynamics in a coordination game.
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Examples III

First and second order replicator dynamics in Matching Pennies.
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Extinction of Dominated Strategies I

Theorem
Let x(t) be an interior solution path of the n-th order replicator dynamics. If
qk ∈ Xk is iteratively strictly dominated, then:

DKL(qk ∥xk(t)) ≥ λkct
n/n! +O(tn−1),

where c > 0 and DKL is the K-L divergence
DKL(qk ∥xk) =

∑k
α qkα log

(
qkα

/
xkα

)
.

In particular, for pure strategies α ≺ β, we have:

xkα(t)
/
xkβ(t) ≤ exp

(
−λk∆uβαt

n/n! +O(tn−1)
)
,

where ∆uβα = minx∈X{ukβ(x)− ukα(x)} > 0.

In other words, iteratively strictly dominated strategies become extinct in the
n-th order replicator dynamics n orders as fast as in the first order replicator
dynamics.
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Extinction of Dominated Strategies I

Sketch of Proof.

▶ y
(n)
kα = ukα.

▶ If q ≺ q′, then ukα(q
′
k;x−k)− ukα(qk;x−k) ≥ δ > 0 for all x−k ∈ X−k.

▶ The entropic difference V (x) = DKL(qk ∥xk)−DKL(q
′
k ∥xk) then gives:

dn

dtn
V (x(t)) ≥ δ > 0,

and the theorem follows by an n-fold application of the mean value theorem
and induction on the rounds of elimination of dominated strategies.
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Weakly Dominated Strategies

What about weakly dominated strategies?

In first order dynamics, weakly dominated strategies survive, even in simple
2× 2 games.

Theorem
Let x(t) be an interior solution orbit of the n-th order (n ≥ 2) replicator
dynamics that starts at rest: ẋ(0) = . . . = x(n−1)(0) = 0.

If qk ∈ Xk is weakly dominated, then it becomes extinct along x(t) at a rate

DKL(qk ∥xk(t)) ≥ λkct
n−1/(n− 1)!

where λk is the learning rate of player k and c > 0 is a positive constant.

▶ In higher order, weakly dominated strategies extinct if players start unbiased.

▶ No extension for iteratively weakly dominated strategies.
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Weakly Dominated Strategies

Weakly dominated strategies in the second order replicator dynamics:
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Strengthening rationalizability

Kohlberg and Mertens 1986:

A good concept of “strategically stable equilibrium” should satisfy
[...] iterated dominance rationality of the normal form.

Hillas and Kohlberg 2001:

There seems to us one slight strengthening of rationalizability that is
well motivated. It is one round of elimination of weakly dominated
strategies followed by an arbitrarily large number of rounds of
elimination of strictly dominated strategies. This solution is obtained
by Dekel and Fudenberg, under the assumption that there is some
small uncertainty about the payoffs...

Theorem
Higher order dynamics perform one round of elimination of weakly dominated
strategies followed by repeated elimination of strictly dominated strategies.
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Nash Play and the Folk Theorem

What about stability and convergence to Nash equilibrium?

In first order, the golden standard is the folk theorem:

I. Nash equilibria are stationary.

II. If an interior solution orbit converges, its limit is Nash.

III. If a point is (Lyapunov) stable, then it is also Nash.

IV. A point is asymptotically stable if and only if it is a strict equilibrium.

(Hofbauer and Sigmund 1988, Weibull 1995, Sandholm 2010)
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The Higher Order Folk Theorem

Theorem
Let x(t) be a solution orbit of the n-th order replicator dynamics. Then:

I. x(t) = q for all t ≥ 0 if and only if q is a restricted equilibrium of G.

II. If x(0) ∈ int(X) and lim
t→∞

x(t) = q, then q is a Nash equilibrium of G.

III. If every neighborhood U of q in X admits an interior orbit xU (t) such that
xU (t) ∈ U for all t ≥ 0, then q is a Nash equilibrium of G.

IV. Let q be a strict equilibrium. Then, for every neighborhood U of q in X
one has limt→∞ x(t) = q for all trajectories that starts at rest whenever
x(0) ∈ U . Conversely, only strict equilibria have this property.

▶ Convergence rates to strict equilibria are n orders as fast as in first order.
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Concluding Remarks and Future Directions

▶ Non convergence to interior points in all imitative dynamics.

▶ Higher order innovative dynamics.

▶ One player against nature in continuous time (exponential weight
algorithm induces a non-autonomous replicator dynamic on the simplex,
Sorin 2009).

▶ What happens with more general scoring schemes
ykα(t) =

∫ t

0
ϕ(t− s)ukα(s)ds? ϕ(s) = sn gives n-th order dynamics

Other kernels give more general integral dynamics.

How behave the dynamics ?

..ẍkα = xkα (ukα(x)− uk(x)) +
1
2
xkα

(
ẋ2
ka

/
x2
kα −

∑k
β ẋ2

kβ

/
xkβ

)

It is not well defined!... (Laraki Mertikopoulos 2013)
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..ẍkα = xkα (ukα(x)− uk(x)) +
1
2
xkα

(
ẋ2
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How behave the dynamics ?

..ẍkα = xkα (ukα(x)− uk(x)) +
1
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It is not well defined!... (Laraki Mertikopoulos 2013)
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Concluding Remarks and Future Directions
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Thank you Amir, Hofbauer, Sorin.

Thanks to the audience.
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